Metabolic Versatility of Small Archaea Micrarchaeota and Parvarchaeota

Total Page:16

File Type:pdf, Size:1020Kb

Metabolic Versatility of Small Archaea Micrarchaeota and Parvarchaeota Lawrence Berkeley National Laboratory Recent Work Title Metabolic versatility of small archaea Micrarchaeota and Parvarchaeota. Permalink https://escholarship.org/uc/item/1vc6t690 Journal The ISME journal, 12(3) ISSN 1751-7362 Authors Chen, Lin-Xing Méndez-García, Celia Dombrowski, Nina et al. Publication Date 2018-03-01 DOI 10.1038/s41396-017-0002-z Peer reviewed eScholarship.org Powered by the California Digital Library University of California The ISME Journal (2018) 12:756–775 https://doi.org/10.1038/s41396-017-0002-z ARTICLE Metabolic versatility of small archaea Micrarchaeota and Parvarchaeota 1 2,3 4 5 Lin-Xing Chen ● Celia Méndez-García ● Nina Dombrowski ● Luis E. Servín-Garcidueñas ● 6 1 1 1 7 1 Emiley A. Eloe-Fadrosh ● Bao-Zhu Fang ● Zhen-Hao Luo ● Sha Tan ● Xiao-Yang Zhi ● Zheng-Shuang Hua ● 8 6 1 2 2 Esperanza Martinez-Romero ● Tanja Woyke ● Li-Nan Huang ● Jesús Sánchez ● Ana Isabel Peláez ● 9 4 10 Manuel Ferrer ● Brett J. Baker ● Wen-Sheng Shu Received: 5 April 2017 / Revised: 26 August 2017 / Accepted: 9 October 2017 / Published online: 8 December 2017 © The Author(s) 2018. This article is published with open access Abstract Small acidophilic archaea belonging to Micrarchaeota and Parvarchaeota phyla are known to physically interact with some Thermoplasmatales members in nature. However, due to a lack of cultivation and limited genomes on hand, their biodiversity, metabolisms, and physiologies remain largely unresolved. Here, we obtained 39 genomes from acid mine drainage (AMD) and hot spring environments around the 1234567890 world. 16S rRNA gene based analyses revealed that Electronic supplementary material The online version of this article Parvarchaeota were only detected in AMD and hot spring (https://doi.org/10.1038/s41396-017-0002-z) contains supplementary habitats, while Micrarchaeota were also detected in others material, which is available to authorized users. including soil, peat, hypersaline mat, and freshwater, * Brett J. Baker suggesting a considerable higher diversity and broader than [email protected] expected habitat distribution for this phylum. Despite their * Wen-Sheng Shu small genomes (0.64–1.08 Mb), these archaea may con- [email protected] tribute to carbon and nitrogen cycling by degrading multiple saccharides and proteins, and produce ATP via aerobic 1 State Key Laboratory of Biocontrol, Guangdong Key Laboratory respiration and fermentation. Additionally, we identified of Plant Resources, College of Ecology and Evolution, Sun Yat- Sen University, Guangzhou 510275, People’s Republic of China several syntenic genes with homology to those involved in iron oxidation in six Parvarchaeota genomes, suggesting 2 Departamento de Biología Funcional-IUBA, Universidad de Oviedo, Oviedo, Spain their potential role in iron cycling. However, both phyla lack biosynthetic pathways for amino acids and nucleotides, 3 Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA suggesting that they likely scavenge these biomolecules 4 from the environment and/or other community members. Department of Marine Science, University of Texas Austin, fi Marine Science Institute, Port Aransas, TX 78373, USA Moreover, low-oxygen enrichments in laboratory con rmed 5 our speculation that both phyla are microaerobic/anaerobic, Laboratory of Microbiomics, National School of Higher Studies fi fi Morelia, National University of Mexico, Morelia, Michoacan based on several speci c genes identi ed in them. 58190, Mexico Furthermore, phylogenetic analyses provide insights into 6 Department of Energy Joint Genome Institute, Walnut Creek, CA the close evolutionary history of energy related functional- 94598, USA ities between both phyla with Thermoplasmatales. These 7 Yunnan Institute of Microbiology, Yunnan University, results expand our understanding of these elusive archaea Kunming 650091, People’s Republic of China by revealing their involvement in carbon, nitrogen, and iron 8 Department of Ecological Genomics, Center for Genomic cycling, and suggest their potential interactions with Sciences, National University of Mexico, Cuernavaca, Thermoplasmatales on genomic scale. Morelos 62210, Mexico 9 Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain 10 School of Life Sciences, South China Normal University, Guangzhou 510631, People’s Republic of China Metabolic versatility of ARMAN 757 Introduction anaerobic, thus enrichments with inoculum from AMD systems were performed for these elusive archaea (Sup- Archaea constitute a considerable portion of microbial plementary Fig. 1). diversity, and play significant roles in many biogeochemical cycles on Earth [1]. However, compared to bacteria they are much less understood and fewer genomes have been Materials and methods sequenced [2]. The recently delineated superphylum DPANN includes several phyla of archaea with small cell ARMAN genomes and related metagenomes in and genome sizes and limited metabolic capabilities [3–6]. public database To date, 48 DPANN draft genomes are available (Supple- mentary Table 1; see references therein) and only two In NCBI database, there are two Micrarchaeota and two symbiotic Nanoarchaeota co-cultures have been obtained Parvarchaeota genomes reported from Iron Mountain: [5, 7]. ARMAN-1 (NCBI accession number, PRJNA349044), Two DPANN phyla, Micrarchaeota and Parvarchaeota, ARMAN-2 (PRJNA38565), ARMAN-4 (PRJNA38567), referred to as Archaeal Richmond Mine Acidophilic and ARMAN-5 (PRJNA38569), which were included for Nanoorganisms (ARMAN), were first reported in acid analyses in this study. mine drainage (AMD) biofilms of Iron mountain (Rich- A metagenomic data set sampled from the Fankou mine mond, CA, USA) and are among the smallest micro- tailings AMD outflow in 2010 (sample abbreviation: organisms described to date [8, 9]. The AMD biofilms in FK_AMD_2010), which was published previously [15], Iron Mountain have been comprehensively studied for was included in this study to retrieve ARMAN genomes microbial ecology and evolution [10]. Four genomes of from newly assembled contigs. The ultra-small cells were ARMAN have been obtained from this site, including collected by filtering the AMD outflow through 0.22 μm ARMAN-1 and ARMAN-2 from Micrarchaeota, and pore size filters, which were preserved for DNA extraction ARMAN-4 and ARMAN-5 from Parvarchaeota. The [15]. metabolic functions of ARMAN-2, -4 and -5 in the AMD The available ARMAN genomes were also used as biofilms have been speculated based on metaproteomic references to search for additional ARMAN sequences in analyses [11], while ARMAN-1 was published recently publicly available contigs/scaffolds of >3000 metagenomic only to report its CRISPR–Cas system [12]. Interestingly, data sets deposited in the IMG/M system (alignment ARMAN cells were observed having interactions with length ≥ 250 bp, similarity ≥ 75%). This analysis retrieved Thermoplasmatales cells via pili-like structures [11], and one additional metagenomic data set from Obsidian Pool in this phenomenon was further documented using cryo- the Yellowstone National Park (SRA accession, genic transmission electron microscope technology [13], SRP099390; IMG genome ID, 3300002966) with while the ecological significance of such interactions ARMAN-related genomic sequences (sample abbreviation: remains unclear. Moreover, ARMAN-specificPCRpri- YNP_OP). Obsidian Pool (N44.36°, W110.26°) was mers and metagenomics have revealed their occurrence in reported as a mesothermal hot spring (56 °C; Supplemen- many other AMD-related environments [14–17], indi- tary Table 2) [18]. cating wide distributions of related microorganisms in nature. Study sites, sampling, DNA extraction, and Despite these investigations described above, we know sequencing little about their biodiversity, environmental distribution (in other acidic and non-acidic environments), physiologies, Metagenomic data sets from two AMD and two hot spring and roles in biogeochemical cycling. To address these gaps, environments were collected and analyzed in this study we assembled and binned 39 new genomes from metage- (Supplementary Fig. 2 and Supplementary Table 2); the site nomic datasets obtained from two AMD and three hot descriptions and experimental procedures (e.g., sampling, spring related environments around the world, and the DNA extraction and sequencing) are detailed below. environmental distribution of Micrarchaeota and Parvarch- aeota taxa were evaluated by analyzing 16S rRNA gene (1) Fankou AMD outflow (FK_AMD_2014). Fankou sequences from those new genomes and NCBI and IMG/M mine is located in north Guangdong province of databases. Metabolic potentials of Micrarchaeota and Par- China (N25.05°, E113.67°), and the microbial ecol- varchaeota were predicted based on functional annotation of ogy of this site was deeply studied previously, to their genes, to reveal their metabolic functions and potential reveal the microbial diversity and composition at roles in nature. Additionally, genomic information likely spatial and temporal scales of the mine tailings [19], suggested that ARMAN spp. are microaerobic and/or the shifts of microbial composition and function 758 L-X Chen et al. across the tailings acidification processes [20], and sequenced on an Illumina HiSeq2000 platform with also the metatranscriptomic activities in the related a PE 100 bp kit. AMD systems [14, 15]. Microorganisms in AMD (4) Tengchong geothermal area (TC_Endo). The Teng- outflow were collected in September, 2014, using chong geothermal
Recommended publications
  • The Journal of the Australian Speleological Federation ICS Down
    CAVES The Journal of the Australian Speleological Federation AUSTRALIA ICS Down Under 2017 • White Nose Syndrome Spéléo Secours FranÇais • Khazad-Dum The Thailand Project No. 197 • JUNE 2014 COMING EVENTS This list covers events of interest to anyone seriously interested in caves and http:///www.uis-speleo.org/ or on the ASF website http://www.caves.org. au. For karst. The list is just that: if you want further information the contact details international events, the Chair of International Commission (Nicholas White, ASF for each event are included in the list for you to contact directly. A more exten- [email protected]) may have extra information. This looks like a sive list was published in the last ESpeleo. The relevant websites and details of very busy 2014 and do not forget the ASF conference in Exmouth in mid-2015. other international and regional events may be listed on the UIS/IUS website I hope we have time to go caving! 2014 September 29—October 2 October 25 Climate Change—the Karst Record 7 (KR7) Melbourne. This international Canberra Speleological Society 60th Birthday Lunch. Yowani Country conference at the University of Melbourne will showcase the latest research Club, 455 Northbourne Ave, Lyneham ACT.11.30am for a 12 noon start. Buf- from specialists investigating past climate records from speleothems and cave fet lunch with some drinks provided. Bar facilities available. Cost: $35 per sediments. Pre and post field trips to karst regions of eastern Australia and person. Payment is required by 30th September, 2014. Should you need to northern New Zealand.
    [Show full text]
  • Marsarchaeota Are an Aerobic Archaeal Lineage Abundant in Geothermal Iron Oxide Microbial Mats
    Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats Authors: Zackary J. Jay, Jacob P. Beam, Mansur Dlakic, Douglas B. Rusch, Mark A. Kozubal, and William P. Inskeep This is a postprint of an article that originally appeared in Nature Microbiology on May 14, 2018. The final version can be found at https://dx.doi.org/10.1038/s41564-018-0163-1. Jay, Zackary J. , Jacob P. Beam, Mensur Dlakic, Douglas B. Rusch, Mark A. Kozubal, and William P. Inskeep. "Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats." Nature Microbiology 3, no. 6 (May 2018): 732-740. DOI: 10.1038/ s41564-018-0163-1. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats Zackary J. Jay1,4,7, Jacob P. Beam1,5,7, Mensur Dlakić2, Douglas B. Rusch3, Mark A. Kozubal1,6 and William P. Inskeep 1* The discovery of archaeal lineages is critical to our understanding of the universal tree of life and evolutionary history of the Earth. Geochemically diverse thermal environments in Yellowstone National Park provide unprecedented opportunities for studying archaea in habitats that may represent analogues of early Earth. Here, we report the discovery and character- ization of a phylum-level archaeal lineage proposed and herein referred to as the ‘Marsarchaeota’, after the red planet. The Marsarchaeota contains at least two major subgroups prevalent in acidic, microaerobic geothermal Fe(III) oxide microbial mats across a temperature range from ~50–80 °C. Metagenomics, single-cell sequencing, enrichment culturing and in situ transcrip- tional analyses reveal their biogeochemical role as facultative aerobic chemoorganotrophs that may also mediate the reduction of Fe(III).
    [Show full text]
  • Cave-70-02-Fullr.Pdf
    L. Espinasa and N.H. Vuong ± A new species of cave adapted Nicoletiid (Zygentoma: Insecta) from Sistema Huautla, Oaxaca, Mexico: the tenth deepest cave in the world. Journal of Cave and Karst Studies, v. 70, no. 2, p. 73±77. A NEW SPECIES OF CAVE ADAPTED NICOLETIID (ZYGENTOMA: INSECTA) FROM SISTEMA HUAUTLA, OAXACA, MEXICO: THE TENTH DEEPEST CAVE IN THE WORLD LUIS ESPINASA AND NGUYET H. VUONG School of Science, Marist College, 3399 North Road, Poughkeepsie, NY 12601, [email protected] and [email protected] Abstract: Anelpistina specusprofundi, n. sp., is described and separated from other species of the subfamily Cubacubaninae (Nicoletiidae: Zygentoma: Insecta). The specimens were collected in SoÂtano de San AgustõÂn and in Nita Ka (Huautla system) in Oaxaca, MeÂxico. This cave system is currently the tenth deepest in the world. It is likely that A.specusprofundi is the sister species of A.asymmetrica from nearby caves in Sierra Negra, Puebla. The new species of nicoletiid described here may be the key link that allows for a deep underground food chain with specialized, troglobitic, and comparatively large predators suchas thetarantula spider Schizopelma grieta and the 70 mm long scorpion Alacran tartarus that inhabit the bottom of Huautla system. INTRODUCTION 760 m, but no human sized passage was found that joined it into the system. The last relevant exploration was in Among international cavers and speleologists, caves 1994, when an international team of 44 cavers and divers that surpass a depth of minus 1,000 m are considered as pushed its depth to 1,475 m. For a full description of the imposing as mountaineers deem mountains that surpass a caves of the Huautla Plateau, see the bulletins from these height of 8,000 m in the Himalayas.
    [Show full text]
  • Metagenomic Insights Into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines
    Lawrence Berkeley National Laboratory Recent Work Title Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines. Permalink https://escholarship.org/uc/item/9xc5s0v5 Journal Frontiers in microbiology, 7(FEB) ISSN 1664-302X Authors Vavourakis, Charlotte D Ghai, Rohit Rodriguez-Valera, Francisco et al. Publication Date 2016 DOI 10.3389/fmicb.2016.00211 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ORIGINAL RESEARCH published: 25 February 2016 doi: 10.3389/fmicb.2016.00211 Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines Charlotte D. Vavourakis 1, Rohit Ghai 2, 3, Francisco Rodriguez-Valera 2, Dimitry Y. Sorokin 4, 5, Susannah G. Tringe 6, Philip Hugenholtz 7 and Gerard Muyzer 1* 1 Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands, 2 Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain, 3 Department of Aquatic Microbial Ecology, Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Ceskéˇ Budejovice,ˇ Czech Republic, 4 Research Centre of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia, 5 Department of Biotechnology, Delft University of Technology, Delft, Netherlands, 6 The Department of Energy Joint Genome Institute, Walnut Creek, CA, USA, 7 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration Edited by: of sodium carbonates in the absence of major divalent cations.
    [Show full text]
  • S41564-017-0083-5.Pdf
    CORRECTION https://doi.org/10.1038/s41564-017-0083-5 Author Correction: Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life Donovan H. Parks, Christian Rinke, Maria Chuvochina, Pierre-Alain Chaumeil, Ben J. Woodcroft, Paul N. Evans, Philip Hugenholtz* and Gene W. Tyson* Correction to: Nature Microbiology https://doi.org/10.1038/s41564-017-0012-7 (2017); published online 11 September 2017. In the original version of this Article, the authors stated that the archaeal phylum Parvarchaeota was previously represented by only two single-cell genomes (ARMAN-4_'5-way FS' and ARMAN-5_'5-way FS'). However, these are in fact unpublished, low-quality metage- nome-assembled genomes (MAGs) obtained from Richmond Mine, California. In addition, the authors overlooked two higher-quality published Parvarchaeota MAGs from the same habitat, ARMAN-4 (ADCE00000000) and ARMAN-5 (ADHF00000000) (B. J. Baker et al., Proc. Natl Acad. Sci. USA 107, 8806–8811; 2010). The ARMAN-4 and ARMAN-5 MAGs are estimated to be 68.0% and 76.7% complete with 3.3% and 5.6% contamination, respectively, based on the archaeal-specific marker sets of CheckM. The 11 Parvarchaeota genomes identified in our study were obtained from different Richmond Mine metagenomes, but are highly similar to the ARMAN-4 (ANI of ~99.7%) and ARMAN-5 (ANI of ~99.6%) MAGs. The highest-quality uncultivated bacteria and archaea (UBA) MAGs with similarity to ARMAN-4 and ARMAN-5 are 82.5% and 83.3% complete with 0.9% and 1.9% contamination, respectively. The Parvarchaeota rep- resents only 0.23% of the archaeal genome tree and addition of the ARMAN-4 and ARMAN-5 MAGs do not change the conclusions of this Article, but do impact the phylogenetic gain for this phylum.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Analyzing Microbial Physiology and Nutrient Transformation in a Model, Acidophilic Microbial Community using Integrated `Omics' Technologies Permalink https://escholarship.org/uc/item/259113st Author Justice, Nicholas Bruce Publication Date 2013 Supplemental Material https://escholarship.org/uc/item/259113st#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Analyzing Microbial Physiology and Nutrient Transformation in a Model, Acidophilic Microbial Community using Integrated ‘Omics’ Technologies By Nicholas Bruce Justice A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Microbiology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jillian Banfield, Chair Professor Mary Firestone Professor Mary Power Professor John Coates Fall 2013 Abstract Analyzing Microbial Physiology and Nutrient Transformation in a Model, Acidophilic Microbial Community using Integrated ‘Omics’ Technologies by Nicholas Bruce Justice Doctor of Philosophy in Microbiology University of California, Berkeley Professor Jillian F. Banfield, Chair Understanding how microorganisms contribute to nutrient transformations within their community is critical to prediction of overall ecosystem function, and thus is a major goal of microbial ecology. Communities of relatively tractable complexity provide a unique opportunity to study the distribution of metabolic characteristics amongst microorganisms and how those characteristics subscribe diverse ecological functions to co-occurring, and often closely related, species. The microbial communities present in the low-pH, metal-rich environment of the acid mine drainage (AMD) system in Richmond Mine at Iron Mountain, CA constitute a model microbial community due to their relatively low diversity and extensive characterization over the preceding fifteen years.
    [Show full text]
  • And Femtogram-Input DNA Libraries for Microscale Metagenomics
    Validation of picogram- and femtogram-input DNA libraries for microscale metagenomics Christian Rinke1, Serene Low1, Ben J. Woodcroft1, Jean-Baptiste Raina2, Adam Skarshewski1, Xuyen H. Le1, Margaret K. Butler1, Roman Stocker3, Justin Seymour2, Gene W. Tyson1,4 and Philip Hugenholtz1,5 1 Australian Centre for Ecogenomics/School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia 2 Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, Australia 3 Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland 4 Advanced Water Management Centre, University of Queensland, Brisbane, QLD, Australia 5 Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia ABSTRACT High-throughput sequencing libraries are typically limited by the requirement for nanograms to micrograms of input DNA. This bottleneck impedes the microscale analysis of ecosystems and the exploration of low biomass samples. Current methods for amplifying environmental DNA to bypass this bottleneck introduce considerable bias into metagenomic profiles. Here we describe and validate a simple modification of the Illumina Nextera XT DNA library preparation kit which allows creation of shotgun libraries from sub-nanogram amounts of input DNA. Community composition was reproducible down to 100 fg of input DNA based on analysis of a mock community comprising 54 phylogenetically diverse Bacteria and Archaea. The Submitted 14 June 2016 main technical issues with the low input libraries were a greater potential for Accepted 24 August 2016 Published 22 September 2016 contamination, limited DNA complexity which has a direct effect on assembly and binning, and an associated higher percentage of read duplicates. We recommend a Corresponding authors Christian Rinke, lower limit of 1 pg (∼100–1,000 microbial cells) to ensure community composition [email protected] fidelity, and the inclusion of negative controls to identify reagent-specific Philip Hugenholtz, contaminants.
    [Show full text]
  • Supplemental Information Assembly and Binning an Iterative Assembly
    Supplemental Information Assembly and binning An iterative assembly and binning process was used to reduce complexity and enrich for Haloquadratum sequences in the combined dataset. The initial round of assembly generated 5,403 contigs greater than 5,000 bp in length, for which 856 bins were generated using hierarchical clustering of tetranucleotide frequencies. Of these 856 bins, 424 were determined to be of putative Haloquadratum origin, containing 2,096 contigs. A database of reference genomes containing representatives of Class Halobacteriaceae and Class Nanohaloarchaea (Phylum Nanohaloarchaeota; [1]) was generated from the IMG genome database [2]. Haloquadratum is a distinct phylogenetic group within the Halobacteria [3, 4] and this genomic signature resulted in a sharp distinction between bins above 60% assignable Haloquadratum-like putative CDSs versus those well below 50% (data not shown). The proportion of contigs determined to be Haloquadratum-like represented a nearly identical proportion of the total number of contigs as found in a previous metagenomic study of microbial populations in Lake Tyrrell in 2007 (38.8%) [5]. This result indicates that the first round of assembly and binning captured a portion of the total metagenomic dataset that is similar to the previous relative abundance of Haloquadratum. These contigs provided an ideal situation for generating more refined genomic constructs. Sequence reads were recruited to the contigs putatively related to Haloquadratum. This reduced the number of sequence reads undergoing the second round of assembly by between 62 and 93% (Mean = 79%). Samples with multiple filter fractions had both filter fractions assembled together in an effort to include sequences that may bridge gaps in the previous assembly.
    [Show full text]
  • Unexpected Host Dependency of Antarctic Nanohaloarchaeota
    Unexpected host dependency of Antarctic Nanohaloarchaeota Joshua N. Hamma, Susanne Erdmanna,1, Emiley A. Eloe-Fadroshb, Allegra Angelonia, Ling Zhongc, Christopher Brownleed, Timothy J. Williamsa, Kirston Bartone, Shaun Carswelle, Martin A. Smithe,f, Sarah Brazendalea,2, Alyce M. Hancocka,3, Michelle A. Allena, Mark J. Rafteryc, and Ricardo Cavicchiolia,4 aSchool of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; bDepartment of Energy, Joint Genome Institute, Walnut Creek, CA 94598; cBioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW 2052, Australia; dBiological Resources Imaging Laboratory, University of New South Wales, Sydney, NSW 2052, Australia; eKinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; and fSt. Vincent’s Clinical School, University of New South Wales, Sydney, Darlinghurst, NSW 2010, Australia Edited by Norman R. Pace, University of Colorado Boulder, Boulder, CO, and approved June 5, 2019 (received for review March 25, 2019) In hypersaline environments, Nanohaloarchaeota (Diapherotrites, acidilobi (<0.3-μmdiameter,∼0.6 Mb) (11), Candidatus Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarch- Parvarchaeum acidophilus (0.6-μm diameter, <1 Mb) (12), and aeota [DPANN] superphylum) are thought to be free-living Candidatus Mancarchaeum acidophilum (∼1-μmdiameter,∼1Mb) microorganisms. We report cultivation of 2 strains of Antarctic (13), have all been shown to possess small cell and genome sizes; Nanohaloarchaeota and show that they require the haloarchaeon these are traits that have been proposed to be typical of all Halorubrum lacusprofundi for growth. By performing growth us- DPANN phyla (3). Due to their reduced genomic capacity, these ing enrichments and fluorescence-activated cell sorting, we dem- – onstrated successful cultivation of Candidatus Nanohaloarchaeum Nanoarchaeota and Pavarchaeota require cell cell contact with – antarcticus, purification of Ca.
    [Show full text]
  • Archaea and the Origin of Eukaryotes
    REVIEWS Archaea and the origin of eukaryotes Laura Eme, Anja Spang, Jonathan Lombard, Courtney W. Stairs and Thijs J. G. Ettema Abstract | Woese and Fox’s 1977 paper on the discovery of the Archaea triggered a revolution in the field of evolutionary biology by showing that life was divided into not only prokaryotes and eukaryotes. Rather, they revealed that prokaryotes comprise two distinct types of organisms, the Bacteria and the Archaea. In subsequent years, molecular phylogenetic analyses indicated that eukaryotes and the Archaea represent sister groups in the tree of life. During the genomic era, it became evident that eukaryotic cells possess a mixture of archaeal and bacterial features in addition to eukaryotic-specific features. Although it has been generally accepted for some time that mitochondria descend from endosymbiotic alphaproteobacteria, the precise evolutionary relationship between eukaryotes and archaea has continued to be a subject of debate. In this Review, we outline a brief history of the changing shape of the tree of life and examine how the recent discovery of a myriad of diverse archaeal lineages has changed our understanding of the evolutionary relationships between the three domains of life and the origin of eukaryotes. Furthermore, we revisit central questions regarding the process of eukaryogenesis and discuss what can currently be inferred about the evolutionary transition from the first to the last eukaryotic common ancestor. Sister groups Two descendants that split The pioneering work by Carl Woese and colleagues In this Review, we discuss how culture- independent from the same node; the revealed that all cellular life could be divided into three genomics has transformed our understanding of descendants are each other’s major evolutionary lines (also called domains): the archaeal diversity and how this has influenced our closest relative.
    [Show full text]
  • Geomicrobiology of Biovermiculations from the Frasassi Cave System, Italy
    D.S. Jones, E.H. Lyon, and J.L. Macalady ± Geomicrobiology of biovermiculations from the Frasassi Cave System, Italy. Journal of Cave and Karst Studies, v. 70, no. 2, p. 78±93. GEOMICROBIOLOGY OF BIOVERMICULATIONS FROM THE FRASASSI CAVE SYSTEM, ITALY DANIEL S. JONES*,EZRA H. LYON 2, AND JENNIFER L. MACALADY 3 Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA, phone: tel: (814) 865-9340, [email protected] Abstract: Sulfidic cave wallshostabundant, rapidly-growing microbial communiti es that display a variety of morphologies previously described for vermiculations. Here we present molecular, microscopic, isotopic, and geochemical data describing the geomicrobiology of these biovermiculations from the Frasassi cave system, Italy. The biovermiculations are composed of densely packed prokaryotic and fungal cellsin a mineral-organic matrix containing 5 to 25% organic carbon. The carbon and nitrogen isotope compositions of the biovermiculations (d13C 5235 to 243%,andd15N 5 4to 227%, respectively) indicate that within sulfidic zones, the organic matter originates from chemolithotrophic bacterial primary productivity. Based on 16S rRNA gene cloning (n567), the biovermiculation community isextremely diverse,including 48 representative phylotypes (.98% identity) from at least 15 major bacterial lineages. Important lineagesinclude the Betaproteobacteria (19.5% of clones),Ga mmaproteobacteria (18%), Acidobacteria (10.5%), Nitrospirae (7.5%), and Planctomyces (7.5%). The most abundant phylotype, comprising over 10% of the 16S rRNA gene sequences, groupsin an unnamed clade within the Gammaproteobacteria. Based on phylogenetic analysis, we have identified potential sulfur- and nitrite-oxidizing bacteria, as well as both auto- and heterotrophic membersof the biovermiculation community. Additionally ,manyofthe clonesare representativesof deeply branching bacterial lineageswith n o cultivated representatives.
    [Show full text]
  • BIOGEOCHEMICAL INTERACTIONS in FLOODED UNDERGROUND MINES Renee Schmidt Montana Tech
    Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Summer 2017 BIOGEOCHEMICAL INTERACTIONS IN FLOODED UNDERGROUND MINES Renee Schmidt Montana Tech Follow this and additional works at: http://digitalcommons.mtech.edu/grad_rsch Part of the Geochemistry Commons Recommended Citation Schmidt, Renee, "BIOGEOCHEMICAL INTERACTIONS IN FLOODED UNDERGROUND MINES" (2017). Graduate Theses & Non-Theses. 129. http://digitalcommons.mtech.edu/grad_rsch/129 This Thesis is brought to you for free and open access by the Student Scholarship at Digital Commons @ Montana Tech. It has been accepted for inclusion in Graduate Theses & Non-Theses by an authorized administrator of Digital Commons @ Montana Tech. For more information, please contact [email protected]. BIOGEOCHEMICAL INTERACTIONS IN FLOODED UNDERGROUND MINES by Renée Schmidt A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geoscience: Geochemistry Option Montana Tech 2017 ii Abstract This study presents a biogeochemical analysis of microbial communities in flooded underground mines in Butte, Montana, USA. Samples were collected from nine mineshafts representing three distinct geochemical zones. These zones consist of the East, West, and Outer Camp mines. The East Camp mines, bordering the Berkeley Pit Superfund site, have the highest concentrations of dissolved metals and the most acidic pH values. Dissolved metal concentrations in the West Camp are one to three orders of magnitude lower than in the East Camp and have nearly neutral pH values. The Outer Camp mines have similar metal concentrations to the West Camp but are neutral to alkaline in pH. Sulfide levels also differ between the zones. In the East Camp, sulfide levels were below detection limits, whereas the West and Outer Camp mines had sulfide -6 -4 18 concentrations ranging from 10 to 10 mol/L.
    [Show full text]