Evidence for Autism Spectrum Disorder in Jacobsen Syndrome: Identification of a Candidate Gene in Distal 11Q

Total Page:16

File Type:pdf, Size:1020Kb

Evidence for Autism Spectrum Disorder in Jacobsen Syndrome: Identification of a Candidate Gene in Distal 11Q © American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE Evidence for autism spectrum disorder in Jacobsen syndrome: identification of a candidate gene in distal 11q Natacha Akshoomoff, PhD1, Sarah N. Mattson, PhD2 and Paul D. Grossfeld, MD3 Purpose: Jacobsen syndrome, also called the 11q terminal dele- was no correlation between deletion size and the presence of autism tion disorder, is a contiguous gene disorder caused by the deletion of spectrum disorder, implicating at least one predisposing gene in the the end of the long arm of chromosome 11. Intellectual skills range distal 8.7 Mb of 11q. The findings from three additional patients with from low average to severe/profound intellectual disability and usu- autistic features and “atypical” distal 11q deletions led to the identi- ally correlate with deletion size. Comprehensive genotype/phenotype fication of an autism “critical region” in distal 11q containing four evaluations are limited, and little is known about specific behavioral annotated genes including ARHGAP32 (also known as RICS), a gene ­characteristics associated with 11q terminal deletion disorder. encoding rho GTPase activating protein. Methods: In this prospective study, 17 patients with 11q terminal Conclusion: Results from this study support early autism spectrum deletion disorder underwent cognitive and behavioral assessments. disorder screening for patients with 11q terminal deletion disor- Deletion sizes were determined by array comparative genomic der and provide further molecular insights into the pathogenesis of hybridization. autism spectrum disorder. Results: Deletion sizes ranged from 8.7 to 14.5 Mb across the patients. Genet Med advance online publication 24 July 2014 We found that 8 of 17 patients (47%) exhibited behavioral character- Key Words: autism spectrum disorder; ARHGAP32; behavioral istics consistent with an autism spectrum disorder diagnosis.­ There phenotype; Jacobsen syndrome; 11q terminal deletion INTRODUCTION MATERIALS AND METHODS Jacobsen syndrome (JBS; MIM 147791), also called the 11q ter- Subjects minal deletion disorder (11q-), is a contiguous gene disorder There were 5 male and 12 female patients with ages ranging caused by the deletion of the end of the long arm of chromo- from 3 to 21 years at the time of testing. All participants (n = some 11.1–3 There is considerable phenotypic variability, but 17) were prospectively recruited from the 11q Research and common problems include dysmorphic features, intellectual Resource Group, which has hosted a biennial conference in San disability, thrombocytopenia, congenital heart defects, pyloric Diego, California, since 1998. Most testing was conducted in stenosis, and structural renal anomalies.2–6 Our previous study conjunction with this conference. Before participation, written demonstrated a range of intellectual impairment across 14 informed consent (parents) and assent (children older than age patients with 11q- and a strong correlation between deletion 7 years) was obtained, as approved by the institutional review size and degree of cognitive impairment.7 These results also board. implicated at least two loci in distal 11q contributing to the Patients with a diagnosis of JBS by previous karyotype analy- cognitive deficits in 11q-. sis or array comparative genomic hybridization (aCGH) were There have been case reports of autistic-like features in 11q- eligible for participation in the study. We defined JBS as a con- patients,8–10 but there are no systematic prospective studies stellation of clinical features in association with a terminal 11q using standard research diagnostic procedures. The present deletion that includes the ETS-1 and FLI-1 genes. These two study is a prospective evaluation of 11q- patients with two aims: genes likely cause the two historically life-threatening aspects (i) to determine the likelihood that patients meet criteria for of the syndrome: congenital heart disease and Paris-Trousseau autism spectrum disorder (ASD) using standardized diagnostic bleeding disorder.2,3,11,12 Only patients with pure 11q termi- procedures and (ii) to identify the candidate gene(s) respon- nal deletions were included in the main cohort. We excluded sible for this phenotype. patients with unbalanced translocations (deletion of distal 11q All authors contributed equally to this work. 1Department of Psychiatry, School of Medicine, University of California, San Diego, San Diego, California, USA; 2Department of Psychology, San Diego State University, San Diego, California, USA; 3Department of Pediatrics, School of Medicine, University of California, San Diego, San Diego, California, USA. Correspondence: Natacha Akshoomoff ([email protected]) Submitted 21 April 2014; accepted 6 June 2014; advance online publication 24 July 2014. doi:10.1038/gim.2014.86 GeNeTICs in meDICINe | Volume 17 | Number 2 | February 2015 143 ORIGINAL RESEARCH ARTICLE AKSHOOMOFF et al | Autism and Jacobsen syndrome and duplication of another locus) inherited from a parent car- Schedule (ADOS).21 The ADOS is a standardized observation rying a balanced translocation. As expected, the majority of of social behavior in naturalistic and communicative con- patients have congenital heart defects, some of which have been texts, with different modules and tasks for children of different surgically repaired. ages and language levels. The ADOS was specifically designed Three additional patients with atypical deletions (i.e., inter- to assist with the diagnosis of ASD. The revised algorithm of stitial deletions in distal 11q or smaller terminal deletions not the ADOS (ADOS-2)22,23 was used for classification purposes. spanning the ETS-1 and FLI-1 genes), two of whom had a pre- This revised algorithm includes social, communication, and viously known diagnosis of ASD, are also described but not restricted repetitive behaviors and thus better represents all the included in the main cohort. Specifically, patient 18 initially observed diagnostic features of ASD than the previously used had autism diagnosed and subsequently underwent aCGH ADOS algorithm. analysis that identified a maternally inherited 6.1-Mb terminal The Autism Diagnostic Interview, Revised (ADI-R)24 was deletion in 11q. Patient 19 had many clinical features of JBS, administered to the parents of two of the subjects with atypical including intellectual disability, congenital heart disease, and deletions who were unavailable for testing with the ADOS. Paris-Trousseau bleeding disorder. Subsequent aCGH analysis The data from the Social Communication Questionnaire, identified a de novo 7.3-Mb interstitial deletion that spanned cognitive testing, VABS-II, and the ADOS or ADI-R for each the ETS-1 and FLI-1 genes. Patient 20 was originally identified subject were reviewed (by N.A.). Using a clinical best estimate in the UNIQUE database (http://www.rarechromo.org; patient diagnostic approach following criteria in the Diagnostic and ID 16270). This patient originally underwent aCGH testing Statistical Manual of Mental Disorders, Fifth Edition,25 and fol- because of intellectual disability and mild dysmorphic features, lowing a method used in previous published research studies which identified a de novo approximately 0.3-Mb interstitial that includes clinical judgment,23,26,27 each case was classified as deletion in distal 11q that was deleted in all 17 patients in our ASD or non-ASD. cohort and in the two other patients with atypical deletions described. Genetic testing. Blood samples from each patient underwent aCGH as described previously7 by Signature Genomics (www. Measures signaturegenomics.com) at the time of the conference, before the Parent questionnaires and interviews. Before testing, study by a Clinical Laboratory Improvement Admendments– parents completed a demographic and developmental certified laboratory ordered by the patient’s local primary care history questionnaire. Parents also completed the Social physician or geneticist, or in the laboratory of Dr. Orsetta Communication Questionnaire,13 which is a 40-item parent Zuffardi, Department of Medical Genetics, University of Pavia, report screening measure that provides a dimensional Italy, as described previously.28 measure of ASD symptomatology. The Social Communication Samples tested by the Signature Genomics laboratory uti- Questionnaire has good sensitivity and specificity with lized the custom-designed OS V2.0 platform, a system that uses respect to the separation of ASD from non-ASD diagnoses at 135,000 oligonucleotides with approximately 10-kb resolution all intelligence quotient levels. Children under 5 years of age in distal 11q, thereby providing a readout of individual genes who obtain a score of 11 or more points and children 5 years that are deleted in distal 11q. of age and older who obtain a score of 15 or more points are considered to be highly likely to meet criteria for an ASD.14 RESULTS On the day of testing, parents completed the Vineland Individual behavioral and genetic test results and are shown in Adaptive Behavior Scales, Second Edition Survey Interview Table 1. Of the 17 subjects in the main cohort, 8 (47%) were form (VABS-II) with a trained examiner.15 The VABS-II is determined to meet criteria for a research diagnosis of ASD. a parent interview measure of child adaptive behavior skills Among the male subjects, four of five (80%) subjects who and provides a standardized assessment of adaptive behavior underwent complete testing met research criteria for ASD. The in three subdomains (communication,
Recommended publications
  • The National Economic Burden of Rare Disease Study February 2021
    Acknowledgements This study was sponsored by the EveryLife Foundation for Rare Diseases and made possible through the collaborative efforts of the national rare disease community and key stakeholders. The EveryLife Foundation thanks all those who shared their expertise and insights to provide invaluable input to the study including: the Lewin Group, the EveryLife Community Congress membership, the Technical Advisory Group for this study, leadership from the National Center for Advancing Translational Sciences (NCATS) at the National Institutes of Health (NIH), the Undiagnosed Diseases Network (UDN), the Little Hercules Foundation, the Rare Disease Legislative Advocates (RDLA) Advisory Committee, SmithSolve, and our study funders. Most especially, we thank the members of our rare disease patient and caregiver community who participated in this effort and have helped to transform their lived experience into quantifiable data. LEWIN GROUP PROJECT STAFF Grace Yang, MPA, MA, Vice President Inna Cintina, PhD, Senior Consultant Matt Zhou, BS, Research Consultant Daniel Emont, MPH, Research Consultant Janice Lin, BS, Consultant Samuel Kallman, BA, BS, Research Consultant EVERYLIFE FOUNDATION PROJECT STAFF Annie Kennedy, BS, Chief of Policy and Advocacy Julia Jenkins, BA, Executive Director Jamie Sullivan, MPH, Director of Policy TECHNICAL ADVISORY GROUP Annie Kennedy, BS, Chief of Policy & Advocacy, EveryLife Foundation for Rare Diseases Anne Pariser, MD, Director, Office of Rare Diseases Research, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health Elisabeth M. Oehrlein, PhD, MS, Senior Director, Research and Programs, National Health Council Christina Hartman, Senior Director of Advocacy, The Assistance Fund Kathleen Stratton, National Academies of Science, Engineering and Medicine (NASEM) Steve Silvestri, Director, Government Affairs, Neurocrine Biosciences Inc.
    [Show full text]
  • Sex-Specific Hippocampal 5-Hydroxymethylcytosine Is Disrupted in Response to Acute Stress Ligia A
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications, Department of Statistics Statistics, Department of 2016 Sex-specific hippocampal 5-hydroxymethylcytosine is disrupted in response to acute stress Ligia A. Papale University of Wisconsin, [email protected] Sisi Li University of Wisconsin, [email protected] Andy Madrid University of Wisconsin, [email protected] Qi Zhang University of Nebraska-Lincoln, [email protected] Li Chen Emory University See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/statisticsfacpub Part of the Other Statistics and Probability Commons Papale, Ligia A.; Li, Sisi; Madrid, Andy; Zhang, Qi; Chen, Li; Chopra, Pankaj; Jin, Peng; Keles, Sunduz; and Alisch, Reid S., "Sex- specific hippocampal 5-hydroxymethylcytosine is disrupted in response to acute stress" (2016). Faculty Publications, Department of Statistics. 62. https://digitalcommons.unl.edu/statisticsfacpub/62 This Article is brought to you for free and open access by the Statistics, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, Department of Statistics by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Ligia A. Papale, Sisi Li, Andy Madrid, Qi Zhang, Li Chen, Pankaj Chopra, Peng Jin, Sunduz Keles, and Reid S. Alisch This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/statisticsfacpub/62 Neurobiology of Disease 96 (2016) 54–66 Contents lists available at ScienceDirect Neurobiology of Disease journal homepage: www.elsevier.com/locate/ynbdi Sex-specific hippocampal 5-hydroxymethylcytosine is disrupted in response to acute stress Ligia A. Papale a,1,SisiLia,c,1, Andy Madrid a,c,QiZhangd,LiChene,PankajChoprae,PengJine, Sündüz Keleş b, Reid S.
    [Show full text]
  • Anti-MTA2 Monoclonal Antibody, Clone NUB3-387 (DCABH-8980) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-MTA2 monoclonal antibody, clone NUB3-387 (DCABH-8980) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Mouse monoclonal to MTA2 Antigen Description The p53 tumor suppressor gene integrates numerous signals that control cell life and death. There are several proteins that are involved in the p53 pathway, including Chk2, p53R2, p53AIP1, Noxa, PIDD, and MTA2. The transcriptional activity of p53 is modulated by protein stability and acetylation. MTA2, also termed MTA1L1, was found to be a subunit of nucleosome remodeling and deacetylating (NuRD) complex. MTA2 modulates the enzymatic activity of the histone deacetylase complex and its expression reduces the levels of acetylated p53. Deacetylation of p53 by MTA2 represses p53 dependent transcriptional activation and modulates p53 mediated cell growth arrest and apoptosis. MTA2 is ubiquitously expressed in human tissues. Immunogen Synthetic peptide: RRAARRPNLPLKVKPT conjugated to KLH, corresponding to amino acids 626-641 of Human MTA2 Isotype IgG1 Source/Host Mouse Species Reactivity Mouse, Rat, Hamster, Cow, Dog, Human, Monkey Clone NUB3-387 Purification This antibody is a purified IgG. Conjugate Unconjugated Applications ELISA, WB, IP, ICC/IF Positive Control ICC/IF: HEK-293T cells transfected with MTA2 expression vector WB: 293T total cell extract. Format Liquid Size 100 μl Buffer Preservative: 15mM Sodium Azide; Constituents: 10mM PBS, pH 7.4 Preservative 15mM Sodium Azide Storage Store at +4°C short term (1-2 weeks). Aliquot and store at -20°C or -80°C. Avoid repeated freeze 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved / thaw cycles.
    [Show full text]
  • Genome-Wide Association Study to Identify Genomic Regions And
    www.nature.com/scientificreports OPEN Genome‑wide association study to identify genomic regions and positional candidate genes associated with male fertility in beef cattle H. Sweett1, P. A. S. Fonseca1, A. Suárez‑Vega1, A. Livernois1,2, F. Miglior1 & A. Cánovas1* Fertility plays a key role in the success of calf production, but there is evidence that reproductive efciency in beef cattle has decreased during the past half‑century worldwide. Therefore, identifying animals with superior fertility could signifcantly impact cow‑calf production efciency. The objective of this research was to identify candidate regions afecting bull fertility in beef cattle and positional candidate genes annotated within these regions. A GWAS using a weighted single‑step genomic BLUP approach was performed on 265 crossbred beef bulls to identify markers associated with scrotal circumference (SC) and sperm motility (SM). Eight windows containing 32 positional candidate genes and fve windows containing 28 positional candidate genes explained more than 1% of the genetic variance for SC and SM, respectively. These windows were selected to perform gene annotation, QTL enrichment, and functional analyses. Functional candidate gene prioritization analysis revealed 14 prioritized candidate genes for SC of which MAP3K1 and VIP were previously found to play roles in male fertility. A diferent set of 14 prioritized genes were identifed for SM and fve were previously identifed as regulators of male fertility (SOD2, TCP1, PACRG, SPEF2, PRLR). Signifcant enrichment results were identifed for fertility and body conformation QTLs within the candidate windows. Gene ontology enrichment analysis including biological processes, molecular functions, and cellular components revealed signifcant GO terms associated with male fertility.
    [Show full text]
  • Sema4 Noninvasive Prenatal Select
    Sema4 Noninvasive Prenatal Select Noninvasive prenatal testing with targeted genome counting 2 Autosomal trisomies 5 Trisomy 21 (Down syndrome) 6 Trisomy 18 (Edwards syndrome) 7 Trisomy 13 (Patau syndrome) 8 Trisomy 16 9 Trisomy 22 9 Trisomy 15 10 Sex chromosome aneuploidies 12 Monosomy X (Turner syndrome) 13 XXX (Trisomy X) 14 XXY (Klinefelter syndrome) 14 XYY 15 Microdeletions 17 22q11.2 deletion 18 1p36 deletion 20 4p16 deletion (Wolf-Hirschhorn syndrome) 20 5p15 deletion (Cri-du-chat syndrome) 22 15q11.2-q13 deletion (Angelman syndrome) 22 15q11.2-q13 deletion (Prader-Willi syndrome) 24 11q23 deletion (Jacobsen Syndrome) 25 8q24 deletion (Langer-Giedion syndrome) 26 Turnaround time 27 Specimen and shipping requirements 27 2 Noninvasive prenatal testing with targeted genome counting Sema4’s Noninvasive Prenatal Testing (NIPT)- Targeted Genome Counting analyzes genetic information of cell-free DNA (cfDNA) through a simple maternal blood draw to determine the risk for common aneuploidies, sex chromosomal abnormalities, and microdeletions, in addition to fetal gender, as early as nine weeks gestation. The test uses paired-end next-generation sequencing technology to provide higher depth across targeted regions. It also uses a laboratory-specific statistical model to help reduce false positive and false negative rates. The test can be offered to all women with singleton, twins and triplet pregnancies, including egg donor. The conditions offered are shown in below tables. For multiple gestation pregnancies, screening of three conditions
    [Show full text]
  • RD-Action Matchmaker – Summary of Disease Expertise Recorded Under
    Summary of disease expertise recorded via RD-ACTION Matchmaker under each Thematic Grouping and EURORDIS Members’ Thematic Grouping Thematic Reported expertise of those completing the EURORDIS Member perspectives on Grouping matchmaker under each heading Grouping RD Thematically Rare Bone Achondroplasia/Hypochondroplasia Achondroplasia Amelia skeletal dysplasia’s including Achondroplasia/Growth hormone cleidocranial dysostosis, arthrogryposis deficiency/MPS/Turner Brachydactyly chondrodysplasia punctate Fibrous dysplasia of bone Collagenopathy and oncologic disease such as Fibrodysplasia ossificans progressive Li-Fraumeni syndrome Osteogenesis imperfecta Congenital hand and fore-foot conditions Sterno Costo Clavicular Hyperostosis Disorders of Sex Development Duchenne Muscular Dystrophy Ehlers –Danlos syndrome Fibrodysplasia Ossificans Progressiva Growth disorders Hypoparathyroidism Hypophosphatemic rickets & Nutritional Rickets Hypophosphatasia Jeune’s syndrome Limb reduction defects Madelung disease Metabolic Osteoporosis Multiple Hereditary Exostoses Osteogenesis imperfecta Osteoporosis Paediatric Osteoporosis Paget’s disease Phocomelia Pseudohypoparathyroidism Radial dysplasia Skeletal dysplasia Thanatophoric dwarfism Ulna dysplasia Rare Cancer and Adrenocortical tumours Acute monoblastic leukaemia Tumours Carcinoid tumours Brain tumour Craniopharyngioma Colon cancer, familial nonpolyposis Embryonal tumours of CNS Craniopharyngioma Ependymoma Desmoid disease Epithelial thymic tumours in
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Identification of Novel Kirrel3 Gene Splice Variants in Adult Human
    Durcan et al. BMC Physiology 2014, 14:11 http://www.biomedcentral.com/1472-6793/14/11 RESEARCH ARTICLE Open Access Identification of novel Kirrel3 gene splice variants in adult human skeletal muscle Peter Joseph Durcan1, Johannes D Conradie1, Mari Van deVyver2 and Kathryn Helen Myburgh1* Abstract Background: Multiple cell types including trophoblasts, osteoclasts and myoblasts require somatic cell fusion events as part of their physiological functions. In Drosophila Melanogaster the paralogus type 1 transmembrane receptors and members of the immunoglobulin superfamily Kin of Irre (Kirre) and roughest (Rst) regulate myoblast fusion during embryonic development. Present within the human genome are three homologs to Kirre termed Kin of Irre like (Kirrel) 1, 2 and 3. Currently it is unknown if Kirrel3 is expressed in adult human skeletal muscle. Results: We investigated (using PCR and Western blot) Kirrel3 in adult human skeletal muscle samples taken at rest and after mild exercise induced muscle damage. Kirrel3 mRNA expression was verified by sequencing and protein presence via blotting with 2 different anti-Kirrel3 protein antibodies. Evidence for three alternatively spliced Kirrel3 mRNA transcripts in adult human skeletal muscle was obtained. Kirrel3 mRNA in adult human skeletal muscle was detected at low or moderate levels, or not at all. This sporadic expression suggests that Kirrel3 is expressed in a pulsatile manner. Several anti Kirrel3 immunoreactive proteins were detected in all adult human skeletal muscle samples analysed and results suggest the presence of different isoforms or posttranslational modification, or both. Conclusion: The results presented here demonstrate for the first time that there are at least 3 splice variants of Kirrel3 expressed in adult human skeletal muscle, two of which have never previously been identified in human muscle.
    [Show full text]
  • Prevalence and Incidence of Rare Diseases: Bibliographic Data
    Number 1 | January 2019 Prevalence and incidence of rare diseases: Bibliographic data Prevalence, incidence or number of published cases listed by diseases (in alphabetical order) www.orpha.net www.orphadata.org If a range of national data is available, the average is Methodology calculated to estimate the worldwide or European prevalence or incidence. When a range of data sources is available, the most Orphanet carries out a systematic survey of literature in recent data source that meets a certain number of quality order to estimate the prevalence and incidence of rare criteria is favoured (registries, meta-analyses, diseases. This study aims to collect new data regarding population-based studies, large cohorts studies). point prevalence, birth prevalence and incidence, and to update already published data according to new For congenital diseases, the prevalence is estimated, so scientific studies or other available data. that: Prevalence = birth prevalence x (patient life This data is presented in the following reports published expectancy/general population life expectancy). biannually: When only incidence data is documented, the prevalence is estimated when possible, so that : • Prevalence, incidence or number of published cases listed by diseases (in alphabetical order); Prevalence = incidence x disease mean duration. • Diseases listed by decreasing prevalence, incidence When neither prevalence nor incidence data is available, or number of published cases; which is the case for very rare diseases, the number of cases or families documented in the medical literature is Data collection provided. A number of different sources are used : Limitations of the study • Registries (RARECARE, EUROCAT, etc) ; The prevalence and incidence data presented in this report are only estimations and cannot be considered to • National/international health institutes and agencies be absolutely correct.
    [Show full text]
  • Inhibition of ROMK Channels by Low Extracellular K and Oxidative Stress
    Am J Physiol Renal Physiol 305: F208–F215, 2013. First published May 15, 2013; doi:10.1152/ajprenal.00185.2013. Inhibition of ROMK channels by low extracellular Kϩ and oxidative stress Gustavo Frindt,1 Hui Li,2 Henry Sackin,2 and Lawrence G. Palmer1 1Department of Physiology and Biophysics, Weill-Cornell Medical College, New York, New York; and 2Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois Submitted 2 April 2013; accepted in final form 8 May 2013 Frindt G, Li H, Sackin H, Palmer LG. Inhibition of ROMK may be essential for preventing Kϩ secretion and minimizing channels by low extracellular Kϩ and oxidative stress. Am J Physiol K losses. Renal Physiol 305: F208–F215, 2013. First published May 15, 2013; Measurements of ROMK activity in heterologous expression doi:10.1152/ajprenal.00185.2013.—We tested the hypothesis that low systems indicate that the channels are sensitive to changes in luminal Kϩ inhibits the activity of ROMK channels in the rat cortical ϩ ϩ ϩ the extracellular K concentration ([K ]o); decreases in [K ]o collecting duct. Whole-cell voltage-clamp measurements of the com- downregulate the channels (7, 28, 29, 31). One aspect of this Downloaded from ponent of outward Kϩ current inhibited by the bee toxin Tertiapin-Q ϩ response is a shift in the dependence of channel activity on (ISK) showed that reducing the bath concentration ([K ]o)to1mM intracellular pH, with low [Kϩ] moving the titration curve for resulted in a decline of current over 2 min compared with that o ϩ inhibition of the channels toward a higher, more physiological observed at 10 mM [K ]o.
    [Show full text]
  • Ion Channels 3 1
    r r r Cell Signalling Biology Michael J. Berridge Module 3 Ion Channels 3 1 Module 3 Ion Channels Synopsis Ion channels have two main signalling functions: either they can generate second messengers or they can function as effectors by responding to such messengers. Their role in signal generation is mainly centred on the Ca2 + signalling pathway, which has a large number of Ca2+ entry channels and internal Ca2+ release channels, both of which contribute to the generation of Ca2 + signals. Ion channels are also important effectors in that they mediate the action of different intracellular signalling pathways. There are a large number of K+ channels and many of these function in different + aspects of cell signalling. The voltage-dependent K (KV) channels regulate membrane potential and + excitability. The inward rectifier K (Kir) channel family has a number of important groups of channels + + such as the G protein-gated inward rectifier K (GIRK) channels and the ATP-sensitive K (KATP) + + channels. The two-pore domain K (K2P) channels are responsible for the large background K current. Some of the actions of Ca2 + are carried out by Ca2+-sensitive K+ channels and Ca2+-sensitive Cl − channels. The latter are members of a large group of chloride channels and transporters with multiple functions. There is a large family of ATP-binding cassette (ABC) transporters some of which have a signalling role in that they extrude signalling components from the cell. One of the ABC transporters is the cystic − − fibrosis transmembrane conductance regulator (CFTR) that conducts anions (Cl and HCO3 )and contributes to the osmotic gradient for the parallel flow of water in various transporting epithelia.
    [Show full text]
  • Regulation of Apoptosis by P53-Inducible Transmembrane Protein Containing Sushi Domain
    1193-1200.qxd 24/9/2010 08:07 Ì ™ÂÏ›‰·1193 ONCOLOGY REPORTS 24: 1193-1200, 2010 Regulation of apoptosis by p53-inducible transmembrane protein containing sushi domain HONGYAN CUI, HIROKI KAMINO, YASUYUKI NAKAMURA, NORIAKI KITAMURA, TAKAFUMI MIYAMOTO, DAISUKE SHINOGI, OLGA GODA, HIROFUMI ARAKARA and MANABU FUTAMURA Cancer Medicine and Biophysics Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan Received January 14, 2010; Accepted March 30, 2010 DOI: 10.3892/or_00000972 Abstract. The tumor suppressor p53 is a transcription factor repair, apoptosis, and anti-angiogenesis (1,2). The p21/waf1 that induces the transcription of various target genes in gene is considered to be one of the most important p53 target response to DNA damage and it protects the cells from genes because it is essential for p53-dependent cell cycle malignant transformation. In this study, we performed cDNA arrest at G1. p53R2, which supplies nucleotides for DNA microarray analysis and found that the transmembrane protein synthesis, facilitates the repair of DNA damage. Several containing sushi domain (TMPS) gene, which encodes a mitochondrial proteins including BAX, Noxa, and p53- putative type I transmembrane protein, is a novel p53-target regulated apoptosis-inducing protein 1 (p53AIP1) contribute gene. TMPS contains a sushi domain in the extracellular to the release of cytochrome c from mitochondria. Other region, which is associated with protein-protein interaction. proteins such as Fas/ApoI and unc-5 homolog B (UNC5B) TMPS expression is induced by endogenous p53 under geno- are also associated with apoptosis. Brain-specific angio- toxic stress in several cancer cell lines.
    [Show full text]