Jmmv19783905.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Jmmv19783905.Pdf https://doi.org/10.24199/j.mmv.1978.39.05 7 July 1978 DETAILED COMPARISONS OF THE DENTITIONS OF EXTANT HEXANCHID SHARKS AND TERTIARY HEXANCHID TEETH FROM SOUTH AUSTRALIA AND VICTORIA, AUSTRALIA (SELACHII: HEXANCHIDAE) By Noel R. Kemp Tasmanian Museum, G.P.O. Box 1164M, Hobart, 7001, Australia Abstract In extant hexanchid sharks except for (usually) a bigger primary cusp, isolated teeth of a given size of the smaller species Hexanchus vitulus (Springer and Waller) may be confused with those of H. griseus (Bonnaterre). This specific size difference has significance in the fossil record. Heptranchias perlo (Bonn.) differs in its more slender and relatively larger primary cusp with basal denticles (not serrations as in Hexanchus) on its mesial margin and fewer crownlets increasing and then decreasing in size distally. Notorynchus cepedianus (Peron) differs mainly in its more robust primary cusp and crownlets which are fewer in number than in Hexanchus and which decrease evenly in size distally, like Hexanchus. Cali- fornian specimens of Notorynchus are included in the monotypic TV. cepedianus until the taxonomic significance of the variability of the upper medial teeth is established and defined. N. cepedianus is recorded from the fossil record for the first time. Heptranchias haswelli Ogil- by is regarded as a species inquirenda. Hexanchus agassizi Cappetta is expanded to include the Eocene Hexanchus teeth from South Australia. Heptranchias howellii (Reed) from the South Australian Eocene and Notorynchus primigcnius (Agassiz) from the Victorian Mio- cene are recorded and described from Australia for the first time. Introduction Compagno (1973) lists two families in the suborder Hexanchoidei; Hexanchidae, with The sixgill and sevengill sharks of the family two genera, Hexanchus and Notorynchus and Hexanchidae, although a relatively small group, Heptranchidae with the monotypic genus Hep- are well represented in the fossil record, es- tranchias. He based this separation of Hep- pecially outside Australia, for example Wood- tranchias into its own family on a suggestion ward (1886), Jordan (1907), Leriche (1910, by Dr Shelton P. Applegate 'because of many 1927, 1957) and are common in modern seas, differences in cranial and external morphology for example Garman (1913), Bigelow and between it and the other hexanchoids {Hexan- Schroeder (1948), Whitley (1968), Bass, D'- chus and Notorynchus)' (Compagno, 1973:33). Aubrey and Kistnasamy (1975). Taxonomic- Recently Bass et al. (1975) suggest that more ally, however, they are not a stable group (see detailed anatomical studies of the six- and below). sevengill sharks may show that the smaller Less than a dozen fossil hexanchid teeth species of Hexanchus, H. vitulus, may have have been described from the Australian fossil more in common with Heptranchias perlo than (Pledge, 1967; Kemp, 1970). Three record with the larger species, Hexanchus griseus. H. teeth and several fragments from the Eocene of griseus, on the other hand, may have more in were assigned by Pledge (1967) South Australia common with Notorynchus cepedianus. Until 'Notidanus' serratissimus Ag., cf. serra- to W these suggestions are confirmed or repudiated serritissimus. The three tissimus and W? by further detailed work the suprageneric clas- the Miocene of Victoria were fragments from sification adopted here is that of Patterson described Kemp (1970) as Notorynchus cf. by (1967). primigenius. In light of recent publications (Welton, 1974; Cappetta, 1976) and with the Terminology recovery of further specimens from the South Australian Eocene during the last decade, the The tooth types medials, laterals and pos- present study shows that the three extant gen- teriors are used in the sense of Applegate termed la- era are represented in the South Australian and (1965a). The faces of a tooth are Victorian Tertiary material. bial and lingual and the margins mesial and 61 62 NOEL R. KEMP basal primary cusp entire denticles \ crow nlets ma T crown root LABIAL LINGUAL serrations ingual thickening mesial + distal MESIAL LABIAL Figures 1-4—Terminology. Abbreviations 1-3. Notarynchus cepedianus (Peron), The following abbreviations are used: AMS, lower right second lateral tooth (Figs. 1, 2, x2;Fig. 3, xl-5). Australian Museum, Sydney; AUGD, Univer- 4. Hexanchus agassizi Cappetta, lower left sity of Adelaide, Department of Geology; CM, lateral of about fourth, fifth or sixth row Canterbury Museum, Christchurch, New Zea- (xl-5). land; MUGD, University of Melbourne, De- partment of Geology; NMV, National Museum distal as defined by Hoojier (1954). In the of Victoria, Melbourne; NZNM, National Mu- cockscomb-like dentition of the hexanchids the seum of New Zealand, Wellington; RJFJ, pri- larger primary cusp is followed by a number of vate collection of Dr R. J. F. Jenkins, South crownlets (Applegate, 1965b). The mesial mar- Australia; SAMD, South Australian Depart- gin of the primary cusp may be serrated, or, if ment of Mines; SAM, South Australian Mu- the serrations are relatively large, they are seum, Adelaide; TFF, private collection of Mr termed basal denticles. A character of the T. F. Flannery, Beaumaris, Victoria; USNM, family is the presence of one series of func- United States National Museum, Washington. tional teeth in both jaws except for the upper Systemalics medials which have two or three and the Order HEXANCHIFORMES posteriors of both jaws which have two Suborder HEXANCHOIDEI to four functional series. The description of dentition of Hexanchus griseus is given in de- Family HEXANCHIDAE tail as a datum for the diagnoses of the other The Hexanchidae are characterized by six species. or seven gill-openings and heterodont denti- SOUTH-EASTERN AUSTRALIAN HEXANCHID SHARKS 63 tion, that is the teeth are of dissimilar shape Genera both within and between the two jaws. Except Rafinesque (1810) erected two genera, Hex- for another two families all other sharks have anchus and Heptranchias, based on six- and only five gill openings. sevengill sharks respectively. Cuvier (1817, The Chlamydoselachidae, or frill shark, of fide Bigelow and Schroeder, 1948) included which only one specimen has been recorded both of these genera in his new genus Noti- from Australian waters, in 1976 (J. R. Paxton, danus. This genus also came to include an- pers. comm.), has a terminal mouth compared other sevengill shark, Notorynchus, both before with the subterminal mouth of all other sharks and after Ayres (1855) described it as a new and six gill openings with the first opening con- genus. Subsequent studies showed that the tinuous across the throat. The remaining five three genera of Rafinesque and Ayres were openings are interrupted on the ventral sur- valid and Cuvier's Notidanus has not been face. The dentition of Chlamydoselachus, the used for extant sharks for more than half a single genus of the family, is homeodont, that century. Palaeontologists have until recently is all the teeth are of similar shape both within used Notidanus as an encompassing genus, for and between the two jaws. example Leriche (1957), Casier (1966), Cap- The Pristiophoridae, or saw sharks, has a petta et al. (1967) (fide Cappetta 1970), sixgill genus, Pliotrema, which has yet to be Pledge (1967), as it was widely held that sep- found in Australian waters. It is easily sepa- aration of the genera of hexanchids was only rated from the sixgill hexanchid species by possible on the basis of the anatomy of their its two dorsal fins, rostral snout with barbells soft parts. A number of authors, however (Ap- and marginal teeth, homeodont dentition and plegate 1965b; Waldman 1970; Welton 1974; no anal fin. The hexanchids have only one dor- Cappetta 1975) have noted some of the sa- sal fin, no rostral snout and possess an anal lient dental differences, mainly in the lower fin. lateral teeth, between these three genera. An- Main characters tunes and Jonet (1969), in describing Miocene teeth from Portugal, include in the family Hex- One dorsal fin, always posterior to pelvics; anchidae only two genera, Hexanchus Rafines- anal fin present; caudal fin with a definite lobe que and Heptranchias Rafinesque. They in- and well marked subterminal notch pre- ; clude Notorynchus Ayres in the latter genus caudal pit absent; six or seven gill-openings but give no reason for this. not connected ventrally, last gill opening in As set out in the key below the sixgill genus front of and extending below pectoral origin; is readily separated from the two sevengill spiracle present but small; nictitating mem- genera which differ from each other in the brane absent; upper labial furrow absent, lower shape and size of their snouts. The descriptions labial furrow present, developed to varying de- under each genus further differentiates them on grees. their dental characteristics. Dentition heterodont: upper jaw, teeth with slender primary cusp and a variable number KEY TO LIVING GENERA of small crownlets; small medial tooth present (After Bigelow and Schroeder, 1948). or absent; lower jaw, teeth basically trapezoi- dal in outline and multicusped; small medial 1 A Six gill-openings Hexanchus tooth present. Small undifferentiated posterior IB Seven gill-openings 2 teeth present in both jaws. As all species of hexanchids possess a simi- 2A Head narrow; snout tapering; hori- lar pavement-like dentition formed by the zontal diameter of eye considerably posteriors in both jaws and as they are rarely greater than distance between nos- recognized in the fossil record, teeth of this trils Heptranchias type are omitted in the following descriptions 2B Head broad; snout broadly rounded; and diagnoses. horizontal diameter of eye consider- 64 NOEL R. KEMP ably smaller than distance between bulge forward exactly as shown by the South nostrils Notorynchus African H. vitulus (Bass et al, 1975, PI. 3B). In one specimen of H. vitulus (USNM 1 12600) Genus HEXANCHUS Rafinesque, 1810 the upper medials do protrude but only slightly, Hexanchus Rafinesque, 1810:14; type species much less so than in the Victorian H. griseus. Squalus griseus Bonnaterre, 1788.
Recommended publications
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • Sharks for the Aquarium and Considerations for Their Selection1 Alexis L
    FA179 Sharks for the Aquarium and Considerations for Their Selection1 Alexis L. Morris, Elisa J. Livengood, and Frank A. Chapman2 Introduction The Lore of the Shark Sharks are magnificent animals and an exciting group Though it has been some 35 years since the shark in Steven of fishes. As a group, sharks, rays, and skates belong to Spielberg’s Jaws bit into its first unsuspecting ocean swim- the biological taxonomic class called Chondrichthyes, or mer and despite the fact that the risk of shark-bite is very cartilaginous fishes (elasmobranchs). The entire supporting small, fear of sharks still makes some people afraid to swim structure of these fish is composed primarily of cartilage in the ocean. (The chance of being struck by lightning is rather than bone. There are some 400 described species of greater than the chance of shark attack.) The most en- sharks, which come in all different sizes from the 40-foot- grained shark image that comes to a person’s mind is a giant long whale shark (Rhincodon typus) to the 2-foot-long conical snout lined with multiple rows of teeth efficient at marble catshark (Atelomycterus macleayi). tearing, chomping, or crushing prey, and those lifeless and staring eyes. The very adaptations that make sharks such Although sharks have been kept in public aquariums successful predators also make some people unnecessarily since the 1860s, advances in marine aquarium systems frightened of them. This is unfortunate, since sharks are technology and increased understanding of shark biology interesting creatures and much more than ill-perceived and husbandry now allow hobbyists to maintain and enjoy mindless eating machines.
    [Show full text]
  • Papers in Press
    Papers in Press “Papers in Press” includes peer-reviewed, accepted manuscripts of research articles, reviews, and short notes to be published in Paleontological Research. They have not yet been copy edited and/or formatted in the publication style of Paleontological Research. As soon as they are printed, they will be removed from this website. Please note they can be cited using the year of online publication and the DOI, as follows: Humblet, M. and Iryu, Y. 2014: Pleistocene coral assemblages on Irabu-jima, South Ryukyu Islands, Japan. Paleontological Research, doi: 10.2517/2014PR020. doi:10.2517/2018PR013 Features and paleoecological significance of the shark fauna from the Upper Cretaceous Hinoshima Formation, Himenoura Group, Southwest Japan Accepted Naoshi Kitamura 4-8-7 Motoyama, Chuo-ku Kumamoto, Kumamoto 860-0821, Japan (e-mail: [email protected]) Abstract. The shark fauna of the Upper Cretaceous Hinoshima Formation (Santonian: 86.3–83.6 Ma) of the manuscriptHimenoura Group (Kamiamakusa, Kumamoto Prefecture, Kyushu, Japan) was investigated based on fossil shark teeth found at five localities: Himedo Park, Kugushima, Wadanohana, Higashiura, and Kotorigoe. A detailed geological survey and taxonomic analysis was undertaken, and the habitat, depositional environment, and associated mollusks of each locality were considered in the context of previous studies. Twenty-one species, 15 genera, 11 families, and 6 orders of fossil sharks are recognized from the localities. This assemblage is more diverse than has previously been reported for Japan, and Lamniformes and Hexanchiformes were abundant. Three categories of shark fauna are recognized: a coastal region (Himedo Park; probably a breeding site), the coast to the open sea (Kugushima and Wadanohana), and bottom-dwelling or near-seafloor fauna (Kugushima, Wadanohana, Higashiura, and Kotorigoe).
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • First Record of Swimming Speed of the Pacific Sleeper Shark Somniosus
    Journal of the Marine First record of swimming speed of the Pacific Biological Association of the United Kingdom sleeper shark Somniosus pacificus using a baited camera array cambridge.org/mbi Yoshihiro Fujiwara , Yasuyuki Matsumoto, Takumi Sato, Masaru Kawato and Shinji Tsuchida Original Article Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Yokosuka, Kanagawa 237-0061, Japan Cite this article: Fujiwara Y, Matsumoto Y, Sato T, Kawato M, Tsuchida S (2021). First record of swimming speed of the Pacific Abstract sleeper shark Somniosus pacificus using a baited camera array. Journal of the Marine The Pacific sleeper shark Somniosus pacificus is one of the largest predators in deep Suruga Biological Association of the United Kingdom Bay, Japan. A single individual of the sleeper shark (female, ∼300 cm in total length) was 101, 457–464. https://doi.org/10.1017/ observed with two baited camera systems deployed simultaneously on the deep seafloor in S0025315421000321 the bay. The first arrival was recorded 43 min after the deployment of camera #1 on 21 July 2016 at a depth of 609 m. The shark had several remarkable features, including the Received: 26 July 2020 Revised: 14 April 2021 snout tangled in a broken fishing line, two torn anteriormost left-gill septums, and a parasitic Accepted: 14 April 2021 copepod attached to each eye. The same individual appeared at camera #2, which was First published online: 18 May 2021 deployed at a depth of 603 m, ∼37 min after it disappeared from camera #1 view. Finally, the same shark returned to camera #1 ∼31 min after leaving camera #2.
    [Show full text]
  • BETTER DATA COLLECTION in SHARK FISHERIES LEARNING from PRACTICE Cover Image: Cacaodesign.It FAO Fisheries and Aquaculture Circular No
    NFIF/C1227 (En) FAO Fisheries and Aquaculture Circular ISSN 2070-6065 BETTER DATA COLLECTION IN SHARK FISHERIES LEARNING FROM PRACTICE Cover image: cacaodesign.it FAO Fisheries and Aquaculture Circular No. 1227 NFIF/C1227 (En) BETTER DATA COLLECTION IN SHARK FISHERIES LEARNING FROM PRACTICE by Monica Barone Fishery Resources Consultant FAO Fisheries Department Rome, Italy and Kim Friedman Senior Fishery Resources Officer FAO Fisheries Department Rome, Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2021 Required citation: FAO. 2021. Better data collection in shark fisheries – Learning from practice. FAO Fisheries and Aquaculture Circular No. 1227. Rome. https://doi.org/10.4060/cb5378en The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-134622-8 © FAO, 2021 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode).
    [Show full text]
  • Etyfish Hexanchiform
    HEXANCHIFORMES · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 6.0 - 17 July 2019 Order HEXANCHIFORMES 2 families · 4 genera · 7 species Family CHLAMYDOSELACHIDAE Frilled Sharks Chlamydoselachus Garman 1884 chlamydos, cloak or mantle, referring to first pair of gill slits that fit like a cloak or frill around throat; selachos, shark Chlamydoselachus africana Ebert & Compagno 2009 referring to South Africa’s Marine and Coastal Management research vessel Africana, for the excellent research surveys it has conducted; it is also the vessel that collected paratype Chlamydoselachus anguineus Garman 1884 snake-like, referring to snake or eel-like shape Family HEXANCHIDAE Cow Sharks Heptranchias Rafinesque 1810 hepta, seven; [b]ranchos, gill or ankos, bend or hollow, referring to seven gill openings Heptranchias perlo (Bonnaterre 1788) from French vernacular le perlon, meaning pearl, perhaps referring to smooth and grayish (“lisse & grisâtre”) skin Hexanchus Rafinesque 1810 hexa-, six; [b]ranchos, gill or ankos, bend or hollow, referring to six gill openings Hexanchus griseus (Bonnaterre 1788) latinization of common name “Le Griset,” gray, referring to dark gray coloration Hexanchus nakamurai Teng 1962 in honor of Teng’s colleague Hiroshi Nakamura, who illustrated this species as H. griseus in 1936 Hexanchus vitulus Springer & Waller 1969 a bull calf, i.e., a small cowshark, smaller than its fellow Atlantic congener, H. griseus Notorynchus Ayres 1856 etymology not explained, presumably noto-, back, perhaps referring to single dorsal fin; rhynchus, snout, probably referring to broad, depressed snout Notorynchus cepedianus (Péron 1807) -anus, belonging to: Bernard-Germain-Étienne de La Ville-sur-Illon, comte de [count of] La Cepède (also spelled as La Cépède, Lacépède, or Lacepède, 1756-1825), author of Histoire Naturelle des Poissons (1798-1803) Chlamydoselachus anguineus.
    [Show full text]
  • Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences
    Hindawi Publishing Corporation BioMed Research International Volume 2013, Article ID 147064, 11 pages http://dx.doi.org/10.1155/2013/147064 Research Article Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences Keiko Tanaka,1 Takashi Shiina,1 Taketeru Tomita,2 Shingo Suzuki,1 Kazuyoshi Hosomichi,3 Kazumi Sano,4 Hiroyuki Doi,5 Azumi Kono,1 Tomoyoshi Komiyama,6 Hidetoshi Inoko,1 Jerzy K. Kulski,1,7 and Sho Tanaka8 1 Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan 2 Fisheries Science Center, The Hokkaido University Museum, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan 3 Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan 4 Division of Science Interpreter Training, Komaba Organization for Education Excellence College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan 5 Shimonoseki Marine Science Museum, 6-1 Arcaport, Shimonoseki, Yamaguchi 750-0036, Japan 6 Department of Clinical Pharmacology, Division of Basic Clinical Science and Public Health, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan 7 Centre for Forensic Science, The University of Western Australia, Nedlands, WA 6008, Australia 8 Department of Marine Biology, School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan Correspondence should be addressed to Takashi Shiina; [email protected] Received 1 March 2013; Accepted 26 July 2013 Academic Editor: Dietmar Quandt Copyright © 2013 Keiko Tanaka et al.
    [Show full text]
  • Tiger Shark (Galeocerdo Cuvier) on the East Coast of Australia
    The biology and ecology of the tiger shark (Galeocerdo cuvier) on the east coast of Australia. Bonnie Jane Holmes BSc (Hons) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2015 School of Biological Sciences ABSTRACT The tiger shark (Galeocerdo cuvier) (Péron and Lesueur 1822) is the largest of the carcharhinids, with a circumglobal distribution in both tropical and warm temperate coastal and pelagic waters. In the western Pacific, G. cuvier movements are wide-ranging, encompassing the east coast of Australia and south Pacific Islands. Throughout the region, G. cuvier is exposed to a range of commercial, recreational, artisanal and illegal foreign fishery impacts, as both a target and by-product species. Listed as ‘near threatened’ on the International Union for Conservation of Nature (IUCN) Red List, suitable long term species-specific catch, catch rate and biological data are seldom available for large shark species like G. cuvier, particularly where historical commercial fishery logbook reporting has been poor. Shark control programs targeting large sharks along Australia’s east coast have been in operation for over 60 years, using relatively standardised fishing gear in nearshore waters all year round, with historical catch and effort data recorded by shark contractors. Historical catch, catch rate and biological data collected through the Queensland Shark Control Program (QSCP) since 1993 were investigated, which revealed significant declines (p < 0.05) in catch rates of G. cuvier at some tropical and all sub-tropical locations along the Queensland coast. Significant temporal declines in the average size of G. cuvier also occurred at four of the nine locations analysed (p < 0.05), which could be indicative of fishing reducing abundance in these areas.
    [Show full text]
  • Report on the Status of Mediterranean Chondrichthyan Species
    United Nations Environment Programme Mediterranean Action Plan Regional Activity Centre For Specially Protected Areas REPORT ON THE STATUS OF MEDITERRANEAN CHONDRICHTHYAN SPECIES D. CEBRIAN © L. MASTRAGOSTINO © R. DUPUY DE LA GRANDRIVE © Note : The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. © 2007 United Nations Environment Programme Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du leader Yasser Arafat B.P.337 –1080 Tunis CEDEX E-mail : [email protected] Citation: UNEP-MAP RAC/SPA, 2007. Report on the status of Mediterranean chondrichthyan species. By Melendez, M.J. & D. Macias, IEO. Ed. RAC/SPA, Tunis. 241pp The original version (English) of this document has been prepared for the Regional Activity Centre for Specially Protected Areas (RAC/SPA) by : Mª José Melendez (Degree in Marine Sciences) & A. David Macías (PhD. in Biological Sciences). IEO. (Instituto Español de Oceanografía). Sede Central Spanish Ministry of Education and Science Avda. de Brasil, 31 Madrid Spain [email protected] 2 INDEX 1. INTRODUCTION 3 2. CONSERVATION AND PROTECTION 3 3. HUMAN IMPACTS ON SHARKS 8 3.1 Over-fishing 8 3.2 Shark Finning 8 3.3 By-catch 8 3.4 Pollution 8 3.5 Habitat Loss and Degradation 9 4. CONSERVATION PRIORITIES FOR MEDITERRANEAN SHARKS 9 REFERENCES 10 ANNEX I. LIST OF CHONDRICHTHYAN OF THE MEDITERRANEAN SEA 11 1 1.
    [Show full text]
  • Classifying Sharks Using a Dichotomous Key
    Name:____________________________________________ Date:_______________ Period:_____ Classifying Sharks using a Dichotomous Key A classification system is a way of separating a large group of closely related organisms into smaller subgroups. With such a system, identification of an organism is easy. The scientific names of organisms are based on the classification systems of living organisms. To classify an organism, scientists often use a dichotomous key. A dichotomous key is a listing of specific characteristics, such as structure and behavior, in such a way that an organism can be identified through a process of elimination. In this investigation, it is expected that you: 1) Use a key to identify 14 shark families. 2) Study the method used in phrasing statements in a key. Procedure 1. Read sentences 1A and 1B of the key. Then study shark 1 in figure A for the characteristics referred to in 1A and 1B. Follow the directions in these sentences and continue with this process until a family name for Shark 1 is determined. For example, if the shark has an anal fin, and its body is not kite shaped, following the directions of 1A and go directly to sentence 2. If the shark lacks and anal fin or has a kite shaped body, follow the directions of 1B and go to sentence 10. 2. Continue this process with each shark until all animals have been identified. Write the family name on the line below each animal. 3. Use figure 1 as a guide to the anatomical features used in the key. Figure 1 – Anatomy of a Shark Name:____________________________________________ Date:_______________ Period:_____ Key to Shark Identification Name:____________________________________________ Date:_______________ Period:_____ Name:____________________________________________ Date:_______________ Period:_____ Shark Answer Key 1.
    [Show full text]
  • UC Davis UC Davis Previously Published Works
    UC Davis UC Davis Previously Published Works Title Use of a hydrodynamic model to examine behavioral response of broadnose sevengill sharks (Notorynchus cepedianus) to estuarine tidal flow Permalink https://escholarship.org/uc/item/23q9c0bz Journal Environmental Biology of Fishes, 102(9) ISSN 0378-1909 Authors McInturf, AG Steel, AE Buckhorn, M et al. Publication Date 2019-09-15 DOI 10.1007/s10641-019-00894-3 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Environ Biol Fish https://doi.org/10.1007/s10641-019-00894-3 Use of a hydrodynamic model to examine behavioral response of broadnose sevengill sharks (Notorynchus cepedianus) to estuarine tidal flow Alexandra G. McInturf & Anna E. Steel & Michele Buckhorn & Philip Sandstrom & Christina J. Slager & Nann A. Fangue & A. Peter Klimley & Damien Caillaud Received: 17 February 2019 /Accepted: 13 June 2019 # Springer Nature B.V. 2019 Abstract Innovative telemetry and biologging technol- hydrodynamic model of the estuary and calculated cur- ogy has increased the amount of available movement rent vectors along each track. We hypothesized that the data on aquatic species. However, real-time information sharks would adjust their swimming speed and direction on the environmental factors influencing animal move- depending on current strength when passing through the ments can be logistically challenging to obtain, particu- channel underneath the Golden Gate Bridge. Our results larly in habitats where tides and currents vary locally. indicate that sharks did tend to follow the current flow in Hydrodynamic models are capable of simulating com- the channel, but their overall displacement did not sig- plex tidal flow, and may thus offer an alternative method nificantly correlate with tidal amplitude.
    [Show full text]