Roots of Algebraic and Transcendental Equations

Total Page:16

File Type:pdf, Size:1020Kb

Roots of Algebraic and Transcendental Equations Roots of Algebraic and Transcendental Equations Dr. Kamlesh Jangid Department of HEAS (Mathematics) Rajasthan Technical University, Kota-324010, India E-mail: [email protected] Dr. Kamlesh Jangid Numerical Analysis Introduction In scientific and engineering studies, a frequently occurring problem is to find roots of an equation of the form f (x) = 0 (1) If f (x) is a quadratic, cubic or a biquadratic expression, then algebraic formulae are available for expressing the roots in terms of the coefficients. Dr. Kamlesh Jangid Numerical Analysis Cont... On the otherhand, when f (x) is a polynomial of higher degree or an expression involving transcendental functions, algebraic methods are not available, and recourse must be taken to find the roots by approximate methods. This lecture is concerned with the description of several numerical methods for the solution of equations of the form (1), where f (x) is algebraic or transcendental or a combination of both. Dr. Kamlesh Jangid Numerical Analysis Cont... Now, algebraic functions of the form n n−1 n−2 fn(x) = a0x + a1x + a2x + ··· + an−1x + an; (2) are called polynomials. A non-algebraic function is called transcendental function, e.g., f (x) = x − ex, g(x) = x − cos x, etc. The roots of (1) may be either real or complex. We discuss methods of finding a real root of algebraic or transcendental equations and also methods of determining all real and complex roots of polynomials. Dr. Kamlesh Jangid Numerical Analysis Methods to find roots of f (x) = 0 Bisection Method Regula-Falsi method Newton-Raphson method Generalized Newton-Raphson method Dr. Kamlesh Jangid Numerical Analysis Mathematical Preliminaries Theorem If f (x) is continuous function in [a; b], and if f (a) and f (b) are of opposite signs, then there exists at least one ξ 2 (a; b) such that f (ξ) = 0. Theorem (Intermediate value theorem) Let f (x) be continuous function in [a; b] and k be any number between f (a) and f (b). Then 9 a number ξ in (a; b) such that f (ξ) = k. Dr. Kamlesh Jangid Numerical Analysis Bisection Method This method is based on Theorems (previous slide) which states that if f (x) is continuous function in [a; b], and if f (a) and f (b) are of opposite signs, then there exists at least one root between a and b. For definiteness, let f (a) be positive and f (b) be negative. Then the root lies between a and b and let its approximate value be given by x0 = (a + b)=2. If f (x0) = 0, we conclude that x0 is a root of the equation f (x) = 0. Dr. Kamlesh Jangid Numerical Analysis Cont... Otherwise, the root lies in either [a; x0] or [x0; b] depending on whether f (x0) is negative or positive. We denotes this new interval as [a1; b1] whose length is jb − aj=2. As before, this is bisected at x1 and the new interval will be exactly half the length of the previous one. We repeat this process until the latest interval (which contain the root) is as small as desired, say . At the end of the nth n step, the new interval will be [an; bn] of length jb − aj=2 . Dr. Kamlesh Jangid Numerical Analysis Cont... jb − aj We then have < , which gives on simplification 2n log (jb − aj/) n ≥ e : This gives the number of iterations required to loge 2 achieve an accuracy . For example, if jb − aj = 1 and = 0:001 then n ≥ 10. The method is shown graphically as Dr. Kamlesh Jangid Numerical Analysis Figure: Graphical representation of the Bisection method Example Find a root, correct to three decimal places and lying between 0 and 0.5, of the equation 4e−x sin x − 1 = 0. Solution Let f (x) = 4e−x sin x − 1. We have f (0) = −1 and f (0:5) = 0:163145. Therefore, x1 = 0:25. Since f (x1) = −0:22929, it follows that the root lies between 0.25 and 0.5. Therefore 0:25 + 0:5 x = = 0:375 2 2 The successive approximations are given by x3 = 0:3125; x4 = 0:3438; x5 = 0:3594; x6 = 0:3672; Dr. Kamlesh Jangid Numerical Analysis x7 = 0:3711; x8 = 0:3692; x9 = 0:3702; x10 = 0:3706; x11 = 0:3704; x12 = 0:3705; ::: Hence the required root is 0.371, correct to three decimal places. Dr. Kamlesh Jangid Numerical Analysis Regula-Falsi method In this method we choose two pints a and b such that f (a) and f (b) are of opposite signs. Hence, a root must lie in between these points. The method consists in replacing the part of the curve between the points [a; f (a)] and [b; f (b)] by means of the chord joining these points, and taking the point of intersection of the chord with the x-axis as an approximation to the root. Now, the equation of the chord joining the two points [a; f (a)] and [b; f (b)] is given by y − f (a) f (b) − f (a) = : (3) x − a b − a Dr. Kamlesh Jangid Numerical Analysis Cont... The point of intersection in the present case is obtained by putting y = 0 in Eq. (3), we obtain f (a) a f (b) − b f (a) x = a − (b − a) = ; (4) 1 f (b) − f (a) f (b) − f (a) which is the first approximation to the root of f (x) = 0. If now f (x1) and f (a) are of opposite signs, then the root lies between a and x1, and we replace b by x1 in Eq. (4), and obtain the next approximation. Otherwise, we replace a by x1 and generate the next approximation. The procedure is repeated till the root is obtained to the desired accuracy. Dr. Kamlesh Jangid Numerical Analysis Graphical representation of the method is given as Figure: Graphical representation of the Regula-Falsi method Dr. Kamlesh Jangid Numerical Analysis Example The equation 2x = log10 x + 7 has a root between 3 and 4. Find this root, correct to three decimal places, by regula-falsi method. Solution Let f (x) = 2x − log10 x − 7, a = 3 and b = 4. Then we find f (3) = −1:4771 and f (4) = 0:3979. Hence a f (b) − b f (a) x = 1 f (b) − f (a) 3(0:3979) − 4(−1:4771) = 0:3979 + 1:4771 = 3:7878: Dr. Kamlesh Jangid Numerical Analysis Solution Since f (3:7878) = −0:002787, therefore the root lies between 3.7878 and 4. Now, we take a = 3:7878 and b = 4, then 3:7878(0:3979) − 4(−0:002787) x = 2 0:3979 + 0:002787 = 3:7893: and f (x2) = 0:000041, which shows that x = 3:789 is the root correct to three decimal places. Dr. Kamlesh Jangid Numerical Analysis Newton-Raphson method This method is generally used to improve the result obtained by one of the previous method. Let x0 be an approximate root of f (x) = 0 and let x1 = x0 + h be the correct root so that f (x1) = 0. Expanding f (x0 + h) by Taylor’s series, we obtain h2 f (x ) + h f 0(x ) + f 00(x ) + ··· = 0: (5) 0 0 2! 0 Neglecting the second and higher-order derivatives, we have 0 f (x0) + h f (x0) = 0; Dr. Kamlesh Jangid Numerical Analysis Cont... f (x0) which gives h = − 0 : f (x0) A better approximation than x0 is, therefore, given by, x1, where f (x0) x1 = x0 − 0 : f (x0) Successive approximations are given by x2; x3; :::; xn+1, where f (xn) xn+1 = xn − 0 ; n = 0; 1; 2; :: (6) f (xn) Dr. Kamlesh Jangid Numerical Analysis Cont... Geometrically, the method consists in replacing the part of the curve between the points [x0; f (x0)] and the x-axis by means of the tangent to the curve at the point, and is described graphically as Figure: Graphical representation of the Newton-Raphson method Dr. Kamlesh Jangid Numerical Analysis Example Find a root of the equation x sin x + cos x = 0. Solution We have f (x) = x sin x + cos x and f 0(x) = x cos x. The Newton-Raphson formula is, therefore, xn sin xn + cos xn xn+1 = xn − : xn cos xn With x0 = π, the successive iterates are given below n xn f (xn) xn+1 0 3.1416 -1.0 2.8233 1 2.8233 -0.0662 2.7986 2 2.7986 -0.0006 2.7984 3 2.7984 0.0 2.7984 Dr. Kamlesh Jangid Numerical Analysis Generalized Newton-Raphson method If ξ is a root of f (x) = 0 with multiplicity p, then the iteration formula corresponding to Eq. (6) is taken as f (xn) xn+1 = xn − p 0 ; n = 0; 1; 2; :: (7) f (xn) 0 which means that (1=p)f (xn) is the slop of the straight line passing through (xn; yn) and intersecting the x-axis at the point (xn+1; 0). Since ξ is a root of f (x) = 0 with multiplicity p, it follows that ξ is also a root of f 0(x) = 0 with multiplicity (p − 1), of f 00(x) = 0 with multiplicity (p − 2), and so on. Dr. Kamlesh Jangid Numerical Analysis Cont... Hence the expressions 0 00 f (x0) f (x0) f (x0) x0 − p 0 ; x0 − (p − 1) 00 ; x0 − (p − 2) 000 f (x0) f (x0) f (x0) must have the same value if there is a root with multiplicity p, provided that the initial approximation x0 is chosen sufficiently close to the root. Dr.
Recommended publications
  • A Family of Regula Falsi Root-Finding Methods
    A family of regula falsi root-finding methods Sérgio Galdino Polytechnic School of Pernambuco University Rua Benfica, 455 - Madalena 50.750-470 - Recife - PE - Brazil Email: [email protected] Abstract—A family of regula falsi methods for finding a root its brackets. Second, the convergence is quadratic. Since each ξ of a nonlinear equation f(x)=0 in the interval [a,b] is studied iteration requires√ two function evaluations, the actual order of in this paper. The Illinois, Pegasus, Anderson & Björk and more the method is 2, not 2; but this is still quite respectably nine new proposed methods have been tested on a series of examples. The new methods, inspired on Pegasus procedure, superlinear: The number of significant digits in the answer are pedagogically important algorithms. The numerical results approximately doubles with each two function evaluations. empirically show that some of new methods are very effective. Third, taking out the function’s “bend” via exponential (that Index Terms—regula ralsi, root finding, nonlinear equations. is, ratio) factors, rather than via a polynomial technique (e.g., fitting a parabola), turns out to give an extraordinarily robust I. INTRODUCTION algorithm. In both reliability and speed, Ridders’ method is Is not so hard the design of heuristic procedures to solve a generally competitive with the more highly developed and problem using numerical algorithms. The main drawback of better established (but more complicated) method of van this attitude is that you can be rediscovering the wheel. The Wijngaarden, Dekker, and Brent [9]. famous Halley’s iteration method [1] 1, have the distinction of being the most frequently rediscovered iterative method [2].
    [Show full text]
  • A Review of Bracketing Methods for Finding Zeros of Nonlinear Functions
    Applied Mathematical Sciences, Vol. 12, 2018, no. 3, 137 - 146 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.811 A Review of Bracketing Methods for Finding Zeros of Nonlinear Functions Somkid Intep Department of Mathematics, Faculty of Science Burapha University, Chonburi, Thailand Copyright c 2018 Somkid Intep. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract This paper presents a review of recent bracketing methods for solving a root of nonlinear equations. The performance of algorithms is verified by the iteration numbers and the function evaluation numbers on a number of test examples. Mathematics Subject Classification: 65B99, 65G40 Keywords: Bracketing method, Nonlinear equation 1 Introduction Many scientific and engineering problems are described as nonlinear equations, f(x) = 0. It is not easy to find the roots of equations evolving nonlinearity using analytic methods. In general, the appropriate methods solving the non- linear equation f(x) = 0 are iterative methods. They are divided into two groups: open methods and bracketing methods. The open methods are relied on formulas requiring a single initial guess point or two initial guess points that do not necessarily bracket a real root. They may sometimes diverge from the root as the iteration progresses. Some of the known open methods are Secant method, Newton-Raphson method, and Muller's method. The bracketing methods require two initial guess points, a and b, that bracket or contain the root. The function also has the different parity at these 138 Somkid Intep two initial guesses i.e.
    [Show full text]
  • MAT 2310. Computational Mathematics
    MAT 2310. Computational Mathematics Wm C Bauldry Fall, 2012 Introduction to Computational Mathematics \1 + 1 = 3 for large enough values of 1." Introduction to Computational Mathematics Table of Contents I. Computer Arithmetic.......................................1 II. Control Structures.........................................27 S I. Special Topics: Computation Cost and Horner's Form....... 59 III. Numerical Differentiation.................................. 64 IV. Root Finding Algorithms................................... 77 S II. Special Topics: Modified Newton's Method................ 100 V. Numerical Integration.................................... 103 VI. Polynomial Interpolation.................................. 125 S III. Case Study: TI Calculator Numerics.......................146 VII. Projects................................................. 158 ICM i I. Computer Arithmetic Sections 1. Scientific Notation.............................................1 2. Converting to Different Bases...................................2 3. Floating Point Numbers........................................7 4. IEEE-754 Floating Point Standard..............................9 5. Maple's Floating Point Representation......................... 16 6. Error......................................................... 18 Exercises..................................................... 25 ICM ii II. Control Structures Sections 1. Control Structures............................................ 27 2. A Common Example.......................................... 33 3. Control
    [Show full text]
  • Solutions of Equations in One Variable Secant & Regula Falsi
    Solutions of Equations in One Variable Secant & Regula Falsi Methods Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011 Brooks/Cole, Cengage Learning Secant Derivation Secant Example Regula Falsi Outline 1 Secant Method: Derivation & Algorithm 2 Comparing the Secant & Newton’s Methods 3 The Method of False Position (Regula Falsi) Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 2 / 25 Secant Derivation Secant Example Regula Falsi Outline 1 Secant Method: Derivation & Algorithm 2 Comparing the Secant & Newton’s Methods 3 The Method of False Position (Regula Falsi) Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 3 / 25 Secant Derivation Secant Example Regula Falsi Rationale for the Secant Method Problems with Newton’s Method Newton’s method is an extremely powerful technique, but it has a major weakness: the need to know the value of the derivative of f at each approximation. Frequently, f ′(x) is far more difficult and needs more arithmetic operations to calculate than f (x). Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 4 / 25 Secant Derivation Secant Example Regula Falsi Derivation of the Secant Method ′ f (x) − f (pn−1) f p − lim . ( n 1)= → x pn−1 x − pn−1 Circumvent the Derivative Evaluation If pn−2 is close to pn−1, then ′ f (pn−2) − f (pn−1) f (pn−1) − f (pn−2) f (pn−1) ≈ = . pn−2 − pn−1 pn−1 − pn−2 ′ Using this approximation for f (pn−1)
    [Show full text]
  • [0.125In]3.375In0.02In Secant & Regula Falsi Methods
    Solutions of Equations in One Variable Secant & Regula Falsi Methods Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011 Brooks/Cole, Cengage Learning 2 Comparing the Secant & Newton’s Methods 3 The Method of False Position (Regula Falsi) Secant Derivation Secant Example Regula Falsi Outline 1 Secant Method: Derivation & Algorithm Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 2 / 25 3 The Method of False Position (Regula Falsi) Secant Derivation Secant Example Regula Falsi Outline 1 Secant Method: Derivation & Algorithm 2 Comparing the Secant & Newton’s Methods Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 2 / 25 Secant Derivation Secant Example Regula Falsi Outline 1 Secant Method: Derivation & Algorithm 2 Comparing the Secant & Newton’s Methods 3 The Method of False Position (Regula Falsi) Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 2 / 25 Secant Derivation Secant Example Regula Falsi Outline 1 Secant Method: Derivation & Algorithm 2 Comparing the Secant & Newton’s Methods 3 The Method of False Position (Regula Falsi) Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 3 / 25 Newton’s method is an extremely powerful technique, but it has a major weakness: the need to know the value of the derivative of f at each approximation. Frequently, f 0(x) is far more difficult and needs more arithmetic operations to calculate than f (x). Secant Derivation Secant Example Regula Falsi Rationale for the Secant Method Problems with Newton’s Method Numerical Analysis (Chapter 2) Secant & Regula Falsi Methods R L Burden & J D Faires 4 / 25 Frequently, f 0(x) is far more difficult and needs more arithmetic operations to calculate than f (x).
    [Show full text]
  • Chapter 6 Nonlinear Equations
    Chapter 6 Nonlinear Equations 6.1 The Problem of Nonlinear Root-finding In this module we consider the problem of using numerical techniques to find the roots of nonlinear x = 0 equations, f . Initially we examine the case where the nonlinear equations are a scalar function of a single independent variable, x. Later, we shall consider the more difficult problem n f x= 0 where we have a system of n nonlinear equations in independent variables, . x = 0 Since the roots of a nonlinear equation, f , cannot in general be expressed in closed form, we must use approximate methods to solve the problem. Usually, iterative techniques are used to start from an initial approximation to a root, and produce a sequence of approximations 0 1 2 x ;x ;x ;::: ; which converge toward a root. Convergence to a root is usually possible provided that the function x f is sufficiently smooth and the initial approximation is close enough to the root. 6.2 Rate of Convergence Let 0 1 2 x ;x ;x ;::: c Department of Engineering Science, University of Auckland, New Zealand. All rights reserved. July 11, 2002 70 NONLINEAR EQUATIONS k k = x p be a sequence which converges to a root ,andlet . If there exists a number and a non-zero constant c such that k +1 lim = c; p (6.1) k k !1 j j p = 1; 2; 3 then p is called the order of convergence of the sequence. For the order is said to be linear, quadratic and cubic respectively. 6.3 Termination Criteria Since numerical computations are performed using floating point arithmetic, there will always be a finite precision to which a function can be evaluated.
    [Show full text]
  • Unit 3 Chord Methods for Finding Roots
    UNIT 3 CHORD METHODS FOR FINDING ROOTS Structure 3.1 Introduction Objectives 3.2 Regula-Falsi Method 3.3 Newton-Raphson Method 3.4 Convergence Criterion 3.5 Summary 3.1 INTRODUCTION In the last unit we introduced you to two iteration methods for finding roots of an equation . f(x) = 0. There we have shown that a root of the equation f(x) = 0 can be obtained by writing the equation in the form x = g(x). Using this form we generate a sequence of approximations x, + , = g(xi) for i = 0. 1,2, . We had also mentioned there that the success of the iteration methods depends upon the form of g(x) and the initial approximation xo. In this unit, we shall discuss two iteration methods : regula-falsi and Newton-Raphson methods. These methods produce results faster than bisection method. The first two sections of this unit deal with derivations and the use of these two methods. You will be able to appreciate these iteration methods better if you can compare the efficiency of these methods. With this In view we introduce fhe concept of convergence criterion which helps us to check the efficiency of each method. Sec 3.4 is devoted to the study of rate of convergence of different iterative methods. Objectives After studying the unit you should be able to : apply regula-falsi and secant methods for finding roots apply Newton-Raphson method for finding roots define 'order of convergence' of an iterative scheme 'obtain the order of convergence of the following four methods : i) bisection method ii) fixed point iteration mettiod iii) secant method iv) Newton-Raphson method 3.2 REGULA-FALSI METHOD (OR METHOD OF FALSE POSITION) In this section we shaH discuss the 'regula-falsi metbod'.
    [Show full text]
  • Blended Root Finding Algorithm Outperforms Bisection and Regula Falsi Algorithms
    Missouri University of Science and Technology Scholars' Mine Computer Science Faculty Research & Creative Works Computer Science 01 Nov 2019 Blended Root Finding Algorithm Outperforms Bisection and Regula Falsi Algorithms Chaman Sabharwal Missouri University of Science and Technology, [email protected] Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork Part of the Computer Sciences Commons Recommended Citation C. Sabharwal, "Blended Root Finding Algorithm Outperforms Bisection and Regula Falsi Algorithms," Mathematics, vol. 7, no. 11, MDPI AG, Nov 2019. The definitive version is available at https://doi.org/10.3390/math7111118 This work is licensed under a Creative Commons Attribution 4.0 License. This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. mathematics Article Blended Root Finding Algorithm Outperforms Bisection and Regula Falsi Algorithms Chaman Lal Sabharwal Computer Science Department, Missouri University of Science and Technology, Rolla, MO 65409, USA; [email protected] Received: 5 October 2019; Accepted: 11 November 2019; Published: 16 November 2019 Abstract: Finding the roots of an equation is a fundamental problem in various fields, including numerical computing, social and physical sciences. Numerical techniques are used when an analytic solution is not available. There is not a single algorithm that works best for every function. We designed and implemented a new algorithm that is a dynamic blend of the bisection and regula falsi algorithms.
    [Show full text]
  • Chapter 1 Root Finding Algorithms
    Chapter 1 Root finding algorithms 1.1 Root finding problem In this chapter, we will discuss several general algorithms that find a solution of the following canonical equation f(x) = 0 (1.1) Here f(x) is any function of one scalar variable x1, and an x which satisfies the above equation is called a root of the function f. Often, we are given a problem which looks slightly different: h(x) = g(x) (1.2) But it is easy to transform to the canonical form with the following relabeling f(x) = h(x) − g(x) = 0 (1.3) Example 3x3 + 2 = sin x ! 3x3 + 2 − sin x = 0 (1.4) For some problems of this type, there are methods to find analytical or closed-form solu- tions. Recall, for example, the quadratic equation problem, which we discussed in detail in chapter4. Whenever it is possible, we should use the closed-form solutions. They are 1 Methods to solve a more general equation in the form f~(~x) = 0 are considered in chapter 13, which covers optimization. 1 usually exact, and their implementations are much faster. However, an analytical solution might not exist for a general equation, i.e. our problem is transcendental. Example The following equation is transcendental ex − 10x = 0 (1.5) We will formulate methods which are agnostic to the functional form of eq. (1.1) in the following text2. 1.2 Trial and error method Broadly speaking, all methods presented in this chapter are of the trial and error type. One can attempt to obtain the solution by just guessing it, and eventually he would succeed.
    [Show full text]
  • Learning to Teach Algebra
    THE USE OF THE HISTORY OF MATHEMATICS IN THE LEARNING AND TEACHING OF ALGEBRA The solution of algebraic equations: a historical approach Ercole CASTAGNOLA N.R.D. Dipartimento di Matematica Università “Federico II” NAPOLI (Italy) ABSTRACT The Ministry of Education (MPI) and the Italian Mathematical Union (UMI) have produced a teaching equipment (CD + videotapes) for the teaching of algebra. The present work reports the historical part of that teaching equipment. From a general point of view it is realised the presence of a “fil rouge” that follow all the history of algebra: the method of analysis and synthesis. Moreover many historical forms have been arranged to illustrate the main points of algebra development. These forms should help the secondary school student to get over the great difficulty in learning how to construct and solve equations and also the cognitive gap in the transition from arithmetic to algebra. All this work is in accordance with the recent research on the advantages and possibilities of using and implementing history of mathematics in the classroom that has led to a growing interest in the role of history of mathematics in the learning and teaching of mathematics. 1. Introduction We want to turn the attention to the subject of solution of algebraic equations through a historical approach: an example of the way the introduction of a historical view can change the practice of mathematical education. Such a subject is worked out through the explanation of meaningful problems, in the firm belief that there would never be a construction of mathematical knowledge, if there had been no problems to solve.
    [Show full text]
  • Unified Treatment of Regula Falsi, Newton–Raphson, Secant, And
    Journal of Online Mathematics and Its Applications Uni¯ed Treatment of Regula Falsi, Newton{Raphson, Secant, and Ste®ensen Methods for Nonlinear Equations Avram Sidi Computer Science Department Technion - Israel Institute of Technology Haifa 32000, Israel e-mail: [email protected] http://www.cs.technion.ac.il/ asidi May 2006 Abstract Regula falsi, Newton{Raphson, secant, and Ste®ensen methods are four very e®ec- tive numerical procedures used for solving nonlinear equations of the form f(x) = 0. They are derived via linear interpolation procedures. Their analyses can be carried out by making use of interpolation theory through divided di®erences and Newton's interpolation formula. In this note, we unify these analyses. The analysis of the Stef- fensen method given here seems to be new and is especially simpler than the standard treatments. The contents of this note should also be a useful exercise/example in the application of polynomial interpolation and divided di®erences in introductory courses in numerical analysis. 1 Introduction Let ® be the solution to the equation f(x) = 0; (1) and assume that f(x) is twice continuously di®erentiable in a closed interval I containing ® in its interior. Some iterative methods used for solving (1) and that make direct use of f(x) are the regula falsi method (or false position method), the secant method, the Newton{ Raphson method, and the Ste®ensen method. These methods are discussed in many books on numerical analysis. See, for example, Atkinson [1], Henrici [2], Ralston and Rabinowitz [3], and Stoer and Bulirsch [5]. 8 Y y = f(x) 6 Regula Falsi Method 4 2 x x x x α 2 x 0 0 3 4 1 X −2 −4 −6 −8 −1 −0.5 0 0.5 1 1.5 2 2.5 Figure 1: The regula falsi method.
    [Show full text]
  • UNIT - I Solution of Algebraic and Transcendental Equations
    UNIT - I Solution of Algebraic and Transcendental Equations Solution of Algebraic and Transcendental Equations Bisection Method Method of False Position The Iteration Method Newton Raphson Method Summary Solved University Questions (JNTU) Objective Type Questions 2 Engineering Mathematics - III 1.1 Solution of Algebraic and Transcendental Equations 1.1.1 Introduction A polynomial equation of the form n–1 n–1 n–2 f (x) = pn (x) = a0 x + a1 x + a2 x + … + an–1 x + an = 0 …..(1) is called an Algebraic equation. For example, x4 – 4x2 + 5 = 0, 4x2 – 5x + 7 = 0; 2x3 – 5x2 + 7x + 5 = 0 are algebraic equations. An equation which contains polynomials, trigonometric functions, logarithmic functions, exponential functions etc., is called a Transcendental equation. For example, tan x – ex = 0; sin x – xe2x = 0; x ex = cos x are transcendental equations. Finding the roots or zeros of an equation of the form f(x) = 0 is an important problem in science and engineering. We assume that f (x) is continuous in the required interval. A root of an equation f (x) = 0 is the value of x, say x = for which f () = 0. Geometrically, a root of an equation f (x) = 0 is the value of x at which the graph of the equation y = f (x) intersects the x – axis (see Fig. 1) Fig. 1 Geometrical Interpretation of a root of f (x) = 0 A number is a simple root of f (x) = 0; if f () = 0 and f ' ( α ) 0 . Then, we can write f (x) as, f (x) = (x – ) g(x), g() 0 …..(2) A number is a multiple root of multiplicity m of f (x) = 0, if f () = f 1() = ...
    [Show full text]