RESEARCH ARTICLE Bayesian comparison of explicit and implicit causal inference strategies in multisensory heading perception Luigi Acerbi1☯¤*, Kalpana Dokka2☯, Dora E. Angelaki2, Wei Ji Ma1,3 1 Center for Neural Science, New York University, New York, NY, United States of America, 2 Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States of America, 3 Department of Psychology, New York University, New York, NY, United States of America a1111111111 ☯ These authors contributed equally to this work. a1111111111 ¤ Current address: DeÂpartement des neurosciences fondamentales, Universite de Genève, Genève, a1111111111 Switzerland a1111111111 *
[email protected],
[email protected] a1111111111 Abstract The precision of multisensory perception improves when cues arising from the same cause OPEN ACCESS are integrated, such as visual and vestibular heading cues for an observer moving through a Citation: Acerbi L, Dokka K, Angelaki DE, Ma WJ stationary environment. In order to determine how the cues should be processed, the brain (2018) Bayesian comparison of explicit and implicit must infer the causal relationship underlying the multisensory cues. In heading perception, causal inference strategies in multisensory heading perception. PLoS Comput Biol 14(7): e1006110. however, it is unclear whether observers follow the Bayesian strategy, a simpler non-Bayes- https://doi.org/10.1371/journal.pcbi.1006110 ian heuristic, or even perform causal inference at all. We developed an efficient and robust Editor: Samuel J. Gershman, Harvard University, computational framework to perform Bayesian model comparison of causal inference strate- UNITED STATES gies, which incorporates a number of alternative assumptions about the observers. With this Received: July 26, 2017 framework, we investigated whether human observers' performance in an explicit cause attribution and an implicit heading discrimination task can be modeled as a causal inference Accepted: March 28, 2018 process.