Necessarily Linearly Independent), We Have X = YA Where Y Is the N X 2 Matrix Whose Column Matrices Are Y, and Y2 and a Is a Non- Singular 2 X 2 Matrix

Total Page:16

File Type:pdf, Size:1020Kb

Necessarily Linearly Independent), We Have X = YA Where Y Is the N X 2 Matrix Whose Column Matrices Are Y, and Y2 and a Is a Non- Singular 2 X 2 Matrix VOL. 36, 1950 MA THEMA TICS: F. D. MURNAGHAN 673 SCHWARZ' INEQUALITY AND LORENTZ SPA CES BY FRANcIs D. MURNAGHAN INSTITUTO TECNOL6GICO DE AERONAUTICA, RiO DB JANEIRO Communicated September 1, 1950 The most fundamental formula in the theory of Euclidean or unitary metric spaces is, doubtless, Schwarz' inequality which states that the modulus of the scalar product of two vectors, real or complex, is dominated by the product of their magnitudes (the modulus of the scalar product being equal to the product of the magnitudes when, and only when, the two vectors are linearly dependent). Expressed in matrix notation (x*y)(y*x) % (x*x)(y*y) where x and y are any two n X 1 matrices, real or complex, and x*, y* are the conjugate transposed matrices of x and y, respectively. The proof, now classical, of this fundamental result runs as follows. If X is any complex number the squared magnitude of Xx + y is never negative; on varying the argument of X it follows that neither of the two quadratic polynomial functions of I XI: (X*X) I X 1 2 2 x*y I XI + (y*y) is ever negative. Hence the quadratic polynomial function (x*x)e2 + 21 x*y e + (y*y) of the real variable e is never negative and this implies, on using the theory of the zeros of a quadratic polynomial, Schwarz' inequality. We wish to point out in the present note that the positiveness of x*x and the theory of the zeros of a quadratic polynomial are really somewhat foreign to Schwarz' fundamental inequality and to give the analog of Schwarz' inequality for Lorentz spaces, in which -the scalar product of a non-zero n X 1 matrix by itself may be negative or zero, instead of being always positive as in Euclidean or unitary spaces. Let xi and x2 be any two linearly independent n X 1 matrices, real or complex, and denote by X the n X 2 matrix whose column matrices are xi and x2. If xi and x2 are linear combinations of two other n X 1 matrices, yi and y2 (necessarily linearly independent), we have X = YA where Y is the n X 2 matrix whose column matrices are y, and y2 and A is a non- singular 2 X 2 matrix. We take y, to be a multiple of xl, so chosen that Yi*y = 1 and we set y2 = - (yl*x2)yl + x2. Then Y1*Y2 = 0 and y2 is not the zero matrix. The 2 X 2 matrix Y* Y, being the matrix (O °*Y), has a positive determinant and, since X*X = A *( Y* Y)A, the determinant of the 2 X 2 matrix X*X, being the product of the determinant of the 2 X 2 matrix Y* Y by det A 12, is positive. Since X*X is the matrix (X *X1 Xl*X2 this proves Schwarz' inequality in the case where the X1 X2 X2 two n X 1 matrices xi and x2 are linearly independent. When they are linearly dependent X may be written in the form YA where the 2 X 2 Downloaded by guest on September 30, 2021 674 MA THEMA TICS: F. D. M URNA GHA N PROC. N. A. S. matrix A is singular. Hence the 2 X 2 matrix X*X is singular; this completes the proof of Schwarz' inequality. Before passing to the case of Lorentz spaces we make the obvious remark that if we wish to avail ourselves of the diagonalization property of Her- mitian matrices the above proof of Schwarz' inequality may be given in the following (less elementary and only slightly more concise) variant form. The 2 X 2 matrix X*X is Hermitian and so there exists a 2 X 2 unitary matrix U such that U*(X*X) U is diagonal. Since X*X is posi- tively definite the diagonal elements of this diagonal form of X*X (i.e., the characteristic numbers of X*X) are positive and hence the determinant of X*X is positive. This proves the part of Schwarz' inequality which is concerned with linearly independent n X 1 matrices xl and X2. The sim- plest and most direct proof of the part which is concerned with linearly dependent n X 1 matrices xi and X2 is that given above. Turning now to the case of Lorentz spaces, let F be the diagonal n X n matrix all of whose diagonal elements are 1 save the last which is -1. The Lorentz scalar product of two n X 1 matrices x and y is y*Fx and we say that the n X 1 matrix x, real or complex, is time-like, null or space-like according as x*Fx is negative, zero or positive, respectively. The last element of a time-like n X 1 matrix cannot be zero and it follows that every pair of linearly independent n X 1 matrices xl and X2 contains a space-like linear combination; this implies that if xj*Fxi .Z 0 and xl*Fx2 = O then x2*Fx2 > 0. Let us denote by X the n X 2 matrix whose column matrices are any given pair of linearly independent matrices xl and x2; if xi and x2 are linear combinations of two other n X 1 matrices Yi and y2, necessarily linearly independent, we have X = YA where Y is the n X2 matrix whose column matrices are yi and Y2 and A is a non-singular 2 X 2 matrix. Hence the determinant of the 2 X 2 matrix X*FX has the same sign as the determinant of the matrix Y*FY and, if xl and x2 are linearly dependent, the matrix X*FX is singular. Taking xi and X2 to be linearly independent there exists a linear combination Yi of xl and X2 which is such that yj*Fyi = 1 (since there exists a space-like linear combination of xi and x2). We may suppose that y, is not a multiple of X2 (since it is not a multiple of both xi and X2) and we set Y2 = - (Yl*FX2)Yl + X2. Then YI*FY2 = 0 and the determinant of the 2 X 2 matrix Y*FY is y2*Fy2. Thus, if there exists no time-like linear combination of xl and x2, the determinant of the 2 X 2 matrix X*FX is non-negative. Similarly, if there does exist a time-like linear combination of xl and X2, this determi- nant is negative. Thus we have the following analog, for Lorentz spaces, of Schwarz' inequality: (xj*FxI) (x2*Fx2) < Ixl*Fx21 2 Downloaded by guest on September 30, 2021 VOL. 36, 1950 MA THEMA TICS: F. D. MURNAGHAN 675 if, and only if, there exists a time-like linear combination of the two n X 1 matrices xi and X2, supposed linearly independent. Since there always exists a space-like linear combination of two linearly independent n X 1 matrices, xl and X2, one of the two characteristic num- bers of the 2 X 2 Hermitian matrix X*FX is positive. The second characteristic number may be either positive, zero or negative; in the first case, i.e., when the 2 X 2 Hermitian matrix X*FX is positively def- inite, we say that the n X 2 matrix X is space-like (so that every non- trivial linear combination of the column matrices of a space-like n X 2 matrix is space-like). Thus we may complete the analog, for Lorentz spaces, of Schwarz' inequality as follows: If (xi*Fxl)(x2*Fx2) = xl*Fx212 there exists a null non-trivial linear combination of xi and X2 while there does not exist a time-like linear combi- nation of xi and x2; (xi*Fxl)(x2*Fx2) > IX1*Fx2 12 if, and only if, the n X 2 matrix X, whose column matrices xl and X2 are linearly independent, is space-like. These results may be extended to the case of p n X 1 matrices xi, x. where 3 < p < n. The proof given above shows that the p X P matrix X*FX, where X is the n X p matrix whose column matrices are xI, ... xp, is singular if the p n X 1 matrices xl, .. ., x. are linearly dependent and so we shall suppose that they are linearly independent. The p X p matrix X*FX cannot have less than p - 1 positive characteristic numbers (since every pair of linearly independent n X 1 matrices possesses a space-like linear combination). Thus the n X p matrix X is space-like (by which we mean that every non-trivial linear combination of its colunm matrices is space-like) if, and only if, the determinant of the p X p matrix X*FX is positive. This determinant is negative if, and only if, there exists a time- like linear combination of the p n X 1 matrices xi, . ., x.. The matrix X*FX is singular if, and only if, there exists a null non-trivial linear combi- nation of xi, . ., x, (while no time-like linear combination of these exists). In the case p = n the determinant of X*FX is negative since there certainly exists a time-like linear combination of n linearly independent n X 1 matrices xi, . ., xn; the negativeness of det X*FX is a priori evident since det X*FX is the product of det F by det X 2. If we shall ever have to consider physical spaces with more than one time direction we must introduce quasi-Lorentz spaces.
Recommended publications
  • Parametrizations of K-Nonnegative Matrices
    Parametrizations of k-Nonnegative Matrices Anna Brosowsky, Neeraja Kulkarni, Alex Mason, Joe Suk, Ewin Tang∗ October 2, 2017 Abstract Totally nonnegative (positive) matrices are matrices whose minors are all nonnegative (positive). We generalize the notion of total nonnegativity, as follows. A k-nonnegative (resp. k-positive) matrix has all minors of size k or less nonnegative (resp. positive). We give a generating set for the semigroup of k-nonnegative matrices, as well as relations for certain special cases, i.e. the k = n − 1 and k = n − 2 unitriangular cases. In the above two cases, we find that the set of k-nonnegative matrices can be partitioned into cells, analogous to the Bruhat cells of totally nonnegative matrices, based on their factorizations into generators. We will show that these cells, like the Bruhat cells, are homeomorphic to open balls, and we prove some results about the topological structure of the closure of these cells, and in fact, in the latter case, the cells form a Bruhat-like CW complex. We also give a family of minimal k-positivity tests which form sub-cluster algebras of the total positivity test cluster algebra. We describe ways to jump between these tests, and give an alternate description of some tests as double wiring diagrams. 1 Introduction A totally nonnegative (respectively totally positive) matrix is a matrix whose minors are all nonnegative (respectively positive). Total positivity and nonnegativity are well-studied phenomena and arise in areas such as planar networks, combinatorics, dynamics, statistics and probability. The study of total positivity and total nonnegativity admit many varied applications, some of which are explored in “Totally Nonnegative Matrices” by Fallat and Johnson [5].
    [Show full text]
  • Section 2.4–2.5 Partitioned Matrices and LU Factorization
    Section 2.4{2.5 Partitioned Matrices and LU Factorization Gexin Yu [email protected] College of William and Mary Gexin Yu [email protected] Section 2.4{2.5 Partitioned Matrices and LU Factorization One approach to simplify the computation is to partition a matrix into blocks. 2 3 0 −1 5 9 −2 3 Ex: A = 4 −5 2 4 0 −3 1 5. −8 −6 3 1 7 −4 This partition can also be written as the following 2 × 3 block matrix: A A A A = 11 12 13 A21 A22 A23 3 0 −1 In the block form, we have blocks A = and so on. 11 −5 2 4 partition matrices into blocks In real world problems, systems can have huge numbers of equations and un-knowns. Standard computation techniques are inefficient in such cases, so we need to develop techniques which exploit the internal structure of the matrices. In most cases, the matrices of interest have lots of zeros. Gexin Yu [email protected] Section 2.4{2.5 Partitioned Matrices and LU Factorization 2 3 0 −1 5 9 −2 3 Ex: A = 4 −5 2 4 0 −3 1 5. −8 −6 3 1 7 −4 This partition can also be written as the following 2 × 3 block matrix: A A A A = 11 12 13 A21 A22 A23 3 0 −1 In the block form, we have blocks A = and so on. 11 −5 2 4 partition matrices into blocks In real world problems, systems can have huge numbers of equations and un-knowns.
    [Show full text]
  • Math 217: True False Practice Professor Karen Smith 1. a Square Matrix Is Invertible If and Only If Zero Is Not an Eigenvalue. Solution Note: True
    (c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License. Math 217: True False Practice Professor Karen Smith 1. A square matrix is invertible if and only if zero is not an eigenvalue. Solution note: True. Zero is an eigenvalue means that there is a non-zero element in the kernel. For a square matrix, being invertible is the same as having kernel zero. 2. If A and B are 2 × 2 matrices, both with eigenvalue 5, then AB also has eigenvalue 5. Solution note: False. This is silly. Let A = B = 5I2. Then the eigenvalues of AB are 25. 3. If A and B are 2 × 2 matrices, both with eigenvalue 5, then A + B also has eigenvalue 5. Solution note: False. This is silly. Let A = B = 5I2. Then the eigenvalues of A + B are 10. 4. A square matrix has determinant zero if and only if zero is an eigenvalue. Solution note: True. Both conditions are the same as the kernel being non-zero. 5. If B is the B-matrix of some linear transformation V !T V . Then for all ~v 2 V , we have B[~v]B = [T (~v)]B. Solution note: True. This is the definition of B-matrix. 21 2 33 T 6. Suppose 40 2 05 is the matrix of a transformation V ! V with respect to some basis 0 0 1 B = (f1; f2; f3). Then f1 is an eigenvector. Solution note: True. It has eigenvalue 1. The first column of the B-matrix is telling us that T (f1) = f1.
    [Show full text]
  • Homogeneous Systems (1.5) Linear Independence and Dependence (1.7)
    Math 20F, 2015SS1 / TA: Jor-el Briones / Sec: A01 / Handout Page 1 of3 Homogeneous systems (1.5) Homogenous systems are linear systems in the form Ax = 0, where 0 is the 0 vector. Given a system Ax = b, suppose x = α + t1α1 + t2α2 + ::: + tkαk is a solution (in parametric form) to the system, for any values of t1; t2; :::; tk. Then α is a solution to the system Ax = b (seen by seeting t1 = ::: = tk = 0), and α1; α2; :::; αk are solutions to the homoegeneous system Ax = 0. Terms you should know The zero solution (trivial solution): The zero solution is the 0 vector (a vector with all entries being 0), which is always a solution to the homogeneous system Particular solution: Given a system Ax = b, suppose x = α + t1α1 + t2α2 + ::: + tkαk is a solution (in parametric form) to the system, α is the particular solution to the system. The other terms constitute the solution to the associated homogeneous system Ax = 0. Properties of a Homegeneous System 1. A homogeneous system is ALWAYS consistent, since the zero solution, aka the trivial solution, is always a solution to that system. 2. A homogeneous system with at least one free variable has infinitely many solutions. 3. A homogeneous system with more unknowns than equations has infinitely many solu- tions 4. If α1; α2; :::; αk are solutions to a homogeneous system, then ANY linear combination of α1; α2; :::; αk is also a solution to the homogeneous system Important theorems to know Theorem. (Chapter 1, Theorem 6) Given a consistent system Ax = b, suppose α is a solution to the system.
    [Show full text]
  • Me Me Ft-Uiowa-Math2550 Assignment Hw6fall14 Due 10/09/2014 at 11:59Pm CDT
    me me ft-uiowa-math2550 Assignment HW6fall14 due 10/09/2014 at 11:59pm CDT The columns of A could be either linearly dependent or lin- 1. (1 pt) Library/WHFreeman/Holt linear algebra/Chaps 1-4- early independent depending on the case. /2.3.40.pg Correct Answers: • B n Let S be a set of m vectors in R with m > n. Select the best statement. 3. (1 pt) Library/WHFreeman/Holt linear algebra/Chaps 1-4- /2.3.42.pg • A. The set S is linearly independent, as long as it does Let A be a matrix with more columns than rows. not include the zero vector. Select the best statement. • B. The set S is linearly dependent. • C. The set S is linearly independent, as long as no vec- • A. The columns of A are linearly independent, as long tor in S is a scalar multiple of another vector in the set. as they does not include the zero vector. • D. The set S is linearly independent. • B. The columns of A could be either linearly dependent • E. The set S could be either linearly dependent or lin- or linearly independent depending on the case. early independent, depending on the case. • C. The columns of A must be linearly dependent. • F. none of the above • D. The columns of A are linearly independent, as long Solution: (Instructor solution preview: show the student so- as no column is a scalar multiple of another column in lution after due date. ) A • E. none of the above SOLUTION Solution: (Instructor solution preview: show the student so- By theorem 2.13, a linearly independent set in n can contain R lution after due date.
    [Show full text]
  • Review Questions for Exam 1
    EXAM 1 - REVIEW QUESTIONS LINEAR ALGEBRA Questions (answers are below) Examples. For each of the following, either provide a specific example which satisfies the given description, or if no such example exists, briefly explain why not. (1) (JW) A skew-symmetric matrix A such that the trace of A is 1 (2) (HD) A nonzero singular matrix A 2 M2×2. (3) (LL) A non-zero 2 x 2 matrix, A, whose determinant is equal to the determinant of the A−1 Note: Chap. 3 is not on the exam. But this is a great one for next time. (4) (MS) A 3 × 3 augmented matrice such that it has infinitely many solutions (5) (LS) A nonsingular skew-symmetric matrix B. (6) (BP) A symmetric matrix A, such that A = A−1. (7) (CB) A 2 × 2 singular matrix with all nonzero entries. (8) (LB) A lower triangular matrix A in RREF. 3 (9) (AP) A homogeneous system Ax = 0, where A 2 M3×3 and x 2 R , which has only the trivial solution. (10) (EA) Two n × n matrices A and B such that AB 6= BA (11) (EB) A nonsingular matrix A such that AT is singular. (12) (EF) Three 2 × 2 matrices A, B, and C such that AB = AC and A 6= C. (13) (LD) A and B are n × n matrices with no zero entries such that AB = 0. (14) (OH) A matrix A 2 M2×2 where Ax = 0 has only the trivial solution. (15) (AL) An elementary matrix such that E = E−1.
    [Show full text]
  • Solution to Section 3.2, Problem 9. (A) False. If the Matrix Is the Zero Matrix, Then All of the Variables Are Free (There Are No Pivots)
    Solutions to problem set #3 ad problem 1: Solution to Section 3.2, problem 9. (a) False. If the matrix is the zero matrix, then all of the variables are free (there are no pivots). (b) True. Page 138 says that “if A is invertible, its reduced row echelon form is the identity matrix R = I”. Thus, every column has a pivot, so there are no free variables. (c) True. There are n variables altogether (free and pivot variables). (d) True. The pivot variables are in a 1-to-1 correspondence with the pivots in the RREF of the matrix. But there is at most one pivot per row (every pivot has its own row), so the number of pivots is no larger than the number of rows, which is m. ad problem 2: Solution to Section 3.2, problem 12. (a) The maximum number of 1’s is 11: 0 1 1 0 1 1 1 0 0 1 B 0 0 1 1 1 1 0 0 C B C @ 0 0 0 0 0 0 1 0 A 0 0 0 0 0 0 0 1 (b) The maximum number of 1’s is 13: 0 0 1 1 0 0 1 1 1 1 B 0 0 0 1 0 1 1 1 C B C @ 0 0 0 0 1 1 1 1 A 0 0 0 0 0 0 0 0 ad problem 3: Solution to Section 3.2, problem 27. Assume there exists a 3 × 3-matrix A whose nullspace equals its column space.
    [Show full text]
  • On the Uniqueness of Euclidean Distance Matrix Completions Abdo Y
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Linear Algebra and its Applications 370 (2003) 1–14 www.elsevier.com/locate/laa On the uniqueness of Euclidean distance matrix completions Abdo Y. Alfakih Bell Laboratories, Lucent Technologies, Room 3J-310, 101 Crawfords Corner Road, Holmdel, NJ 07733-3030, USA Received 28 December 2001; accepted 18 December 2002 Submitted by R.A. Brualdi Abstract The Euclidean distance matrix completion problem (EDMCP) is the problem of determin- ing whether or not a given partial matrix can be completed into a Euclidean distance matrix. In this paper, we present necessary and sufficient conditions for a given solution of the EDMCP to be unique. © 2003 Elsevier Inc. All rights reserved. AMS classification: 51K05; 15A48; 52A05; 52B35 Keywords: Matrix completion problems; Euclidean distance matrices; Semidefinite matrices; Convex sets; Singleton sets; Gale transform 1. Introduction All matrices considered in this paper are real. An n × n matrix D = (dij ) is said to be a Euclidean distance matrix (EDM) iff there exist points p1,p2,...,pn in some i j 2 Euclidean space such that dij =p − p for all i, j = 1,...,n. It immediately follows that if D is EDM then D is symmetric with positive entries and with zero diagonal. We say matrix A = (aij ) is symmetric partial if only some of its entries are specified and aji is specified and equal to aij whenever aij is specified. The unspecified entries of A are said to be free. Given an n × n symmetric partial matrix A,ann × n matrix D is said to be a EDM completion of A iff D is EDM and Email address: [email protected] (A.Y.
    [Show full text]
  • 17.Matrices and Matrix Transformations (SC)
    17. MATRICES AND MATRIX TRANSFORMATIONS MATRICES ⎛ 2 1 3 0 ⎞ A matrix is a rectangular array of numbers (or M = ⎜ 5 7 −6 8 ⎟ 3 × 4 symbols) enclosed in brackets either curved or ⎜ ⎟ ⎜ 9 −2 6 −3 ⎟ square. The constituents of a matrix are called entries ⎝ ⎠ or elements. A matrix is usually named by a letter for ⎛ 4 5 7 ⎞ convenience. Some examples are shown below. ⎜ −2 3 6 ⎟ N = ⎜ ⎟ 4 × 3 ⎜ −7 1 0 ⎟ æö314 ⎝⎜ 9 −5 8 ⎠⎟ X = ç÷ èø270- Note that the orders 3 × 4 and 4 × 3 are NOT the æö31426- same. A = ç÷ èø00105- Row matrices ⎡ a b ⎤ F = ⎢ ⎥ ⎣ c d ⎦ If a matrix is composed only of one row, then it is called a row matrix (regardless of its number of ⎡ 4 1 2 ⎤ elements). The matrices �, � and � are row matrices, ⎢ ⎥ Y = ⎢ 3 −1 5 ⎥ ⎢ 6 −2 10 ⎥ J = ()413 L =(30- 42) ⎣ ⎦ K = 21 ⎛ 1 0 ⎞ () I = ⎝⎜ 0 1 ⎠⎟ Column matrices Rows and Columns If a matrix is composed of only one column, then it is called a column matrix (regardless of the number of The elements of a matrix are arranged in rows and elements). The matrices �, � and � are column columns. Elements that are written from left to right matrices. (horizontally) are called rows. Elements that are written from top to bottom (vertically) are called ⎛ ⎞ columns. The first row is called ‘row 1’, the second ⎛ ⎞ 6 4 ⎜ ⎟ ‘row 2’, and so on. The first column is called ⎛ 1 ⎞ ⎜ ⎟ 7 P = ⎜ ⎟ Q = 0 R=⎜ ⎟ ‘column 1, the second ‘column 2’, and so on.
    [Show full text]
  • Sums of Commuting Square-Zero Transformations Nika Novak
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Linear Algebra and its Applications 431 (2009) 1768–1773 Contents lists available at ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa Sums of commuting square-zero transformations Nika Novak Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia ARTICLE INFO ABSTRACT Article history: We show that a linear transformation on a vector space is a sum Received 17 March 2008 of two commuting square-zero transformations if and only if it is Accepted 3 June 2009 a nilpotent transformation with index of nilpotency at most 3 and Available online 4 July 2009 the codimension of im T ∩ ker T in ker T is greater than or equal to 2 Submitted by S. Fallat the dimension of the space im T . We also characterize products of two commuting unipotent transformations with index 2. AMS classification: © 2009 Elsevier Inc. All rights reserved. 15A99 15A7 47A99 Keywords: Commuting matrices and linear transformations Square-zero matrices and transformations Sums 1. Introduction − Let T be a linear transformation on a vector space V.IfT n = 0 for some integer n and T n 1 =/ 0, we say that T is a nilpotent with index of nilpotency n.IfT 2 = 0, we say that T is a square-zero transformation. Considering the question which linear transformations can be written as a sum of two nilpotents, Wu [8] showed that a square matrix is a sum of two nilpotent matrices if and only if its trace equals zero.
    [Show full text]
  • Evaluation of Spectrum of 2-Periodic Tridiagonal-Sylvester Matrix
    Turkish Journal of Mathematics Turk J Math (2016) 40: 80 { 89 http://journals.tubitak.gov.tr/math/ ⃝c TUB¨ ITAK_ Research Article doi:10.3906/mat-1503-46 Evaluation of spectrum of 2-periodic tridiagonal-Sylvester matrix Emrah KILIC¸ 1, Talha ARIKAN2;∗ 1Department of Mathematics, TOBB Economics and Technology University, Ankara, C¸ankaya, Turkey 2Department of Mathematics, Hacettepe University, Ankara, C¸ankaya, Turkey Received: 13.03.2015 • Accepted/Published Online: 19.07.2015 • Final Version: 01.01.2016 Abstract: The Sylvester matrix was first defined by JJ Sylvester. Some authors have studied the relationships between certain orthogonal polynomials and the determinant of the Sylvester matrix. Chu studied a generalization of the Sylvester matrix. In this paper, we introduce its 2-periodic generalization. Then we compute its spectrum by left eigenvectors with a similarity trick. Key words: Sylvester matrix, spectrum, determinant 1. Introduction There has been increasing interest in tridiagonal matrices in many different theoretical fields, especially in applicative fields such as numerical analysis, orthogonal polynomials, engineering, telecommunication system analysis, system identification, signal processing (e.g., speech decoding, deconvolution), special functions, partial differential equations, and naturally linear algebra (see [2, 6, 7, 8, 15]). Some authors consider a general tridiagonal matrix of finite order and then describe its LU factorization and determine the determinant and inverse of a tridiagonal matrix under certain conditions (see [3, 9, 12, 13]). The Sylvester type tridiagonal matrix Mn(x) of order (n + 1) is defined as 2 3 x 1 0 0 ··· 0 0 6 7 6 n x 2 0 ··· 0 0 7 6 7 6 .
    [Show full text]
  • On Trace Zero Matrices
    GENERAL I ARTICLE On Trace Zero Matrices v S Sunder In this note, we shall try to present an elemen­ tary proof of a couple of closely related results which have both proved quite useful, and al~ indicate possible generalisations. The results we have in mind are the following facts: (a) A complex n x n matrix A has trace 0 if and v S Sunder is at the only if it is expressible in the form A = PQ - Q P Institute of Mathematical Sciences, Chennai. for some P, Q. (b) The numerical range of a bounded linear op­ erator T on a complex Hilbert space 1i, which is defined by W(T) = {(Tx, x) : x E 1i, Ilxll = I}, is a convex set 1. This result is known - see [l] - We shall attempt to make the treatment easy­ as the Toeplitz-Hausdorff theo­ paced and self-contained. (In particular, all the rem; in the statement of the theo­ terms in 'facts (a) and (b)' above will b~ de­ rem, we use standard set-theo­ scribed in detail.) So we shall begin with an retical notation, whereby XES means that x is an element of introductory section pertaining to matrices and the set 5. inner product spaces. This introductory section may be safely skipped by those readers who may be already acquainted with these topics; it is in­ tended for those readers who have been denied the pleasure of these acquaintances. Matrices and Inner-product Spaces An m x n matrix is a rectangular array of numbers of the form Keywords Inner product, commutator, con­ A= (1) vex set.
    [Show full text]