Bismuth-213 for Targeted Radionuclide Therapy: from Atom to Bedside
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Proton Stereotactic Body Radiation Therapy for Liver Metastases— Results of 5-Year Experience for 81 Hepatic Lesions
1760 Original Article Proton stereotactic body radiation therapy for liver metastases— results of 5-year experience for 81 hepatic lesions Alex R. Coffman1, Daniel C. Sufficool2, Joseph I. Kang1, Chung-Tsen Hsueh3, Sasha Swenson4, Patrick Q. McGee4, Gayathri Nagaraj3, Baldev Patyal1, Mark E. Reeves5, Jerry D. Slater1, Gary Y. Yang1 1Department of Radiation Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA; 2Department of Radiation Oncology, Kettering Health Network, Kettering, OH, USA; 3Department of Medical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA; 4Loma Linda University School of Medicine, Loma Linda, CA, USA; 5Department of Surgical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA Contributions: (I) Conception and design: GY Yang; (II) Administrative support: B Patyal, JD Slater, GY Yang; (III) Provision of study materials or patients: CT Hsueh, G Nagaraj, ME Reeves; (IV) Collection and assembly of data: AR Coffman, GY Yang; (V) Data analysis and interpretation: AR Coffman, GY Yang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Alex R. Coffman, MD. Department of Radiation Oncology, Loma Linda University Medical Center, 11234 Anderson Street, Suite B121, Loma Linda, CA 92354, USA. Email: [email protected]. Background: To report on our institutional experience using Proton stereotactic body radiation therapy (SBRT) for patients with liver metastases. Methods: All patients with liver metastases treated with Proton SBRT between September 2012 and December 2017 were retrospectively analyzed. Local control (LC) and overall survival (OS) were estimated using the Kaplan-Meier method calculated from the time of completion of Proton SBRT. LC was defined according to Response Evaluation Criteria in Solid Tumors (RECIST) guidelines (version 1.1). -
An Analysis of Vertebral Body Growth After Proton Beam Therapy for Pediatric Cancer
cancers Article An Analysis of Vertebral Body Growth after Proton Beam Therapy for Pediatric Cancer Keiichiro Baba 1, Masashi Mizumoto 1,* , Yoshiko Oshiro 1,2, Shosei Shimizu 1 , Masatoshi Nakamura 1, Yuichi Hiroshima 1 , Takashi Iizumi 1, Takashi Saito 1, Haruko Numajiri 1, Kei Nakai 1 , Hitoshi Ishikawa 1,3, Toshiyuki Okumura 1, Kazushi Maruo 4 and Hideyuki Sakurai 1 1 Proton Medical Research Center, Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba, Ibaraki 305-8576, Japan; [email protected] (K.B.); [email protected] (Y.O.); [email protected] (S.S.); [email protected] (M.N.); [email protected] (Y.H.); [email protected] (T.I.); [email protected] (T.S.); [email protected] (H.N.); [email protected] (K.N.); [email protected] (H.I.); [email protected] (T.O.); [email protected] (H.S.) 2 Department of Radiation Oncology, Tsukuba Medical Center Hospital, Tsukuba, Ibaraki 305-8558, Japan 3 National Institutes for Quantum and Radiological Science and Technology, QST Hospital, Chiba 263-8555, Japan 4 Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-29-853-7100; Fax: +81-29-853-7102 Simple Summary: Radiotherapy has a key role in treatment of pediatric cancer and has greatly improved survival in recent years. However, vertebrae are often included in the irradiated area, and this may affect growth after treatment. -
Particle Accelerators and Detectors for Medical Diagnostics and Therapy Arxiv:1601.06820V1 [Physics.Med-Ph] 25 Jan 2016
Particle Accelerators and Detectors for medical Diagnostics and Therapy Habilitationsschrift zur Erlangung der Venia docendi an der Philosophisch-naturwissenschaftlichen Fakult¨at der Universit¨atBern arXiv:1601.06820v1 [physics.med-ph] 25 Jan 2016 vorgelegt von Dr. Saverio Braccini Laboratorium f¨urHochenenergiephysik L'aspetto pi`uentusiasmante della scienza `eche essa incoraggia l'uomo a insistere nei suoi sogni. Guglielmo Marconi Preface This Habilitation is based on selected publications, which represent my major sci- entific contributions as an experimental physicist to the field of particle accelerators and detectors applied to medical diagnostics and therapy. They are reprinted in Part II of this work to be considered for the Habilitation and they cover original achievements and relevant aspects for the present and future of medical applications of particle physics. The text reported in Part I is aimed at putting my scientific work into its con- text and perspective, to comment on recent developments and, in particular, on my contributions to the advances in accelerators and detectors for cancer hadrontherapy and for the production of radioisotopes. Dr. Saverio Braccini Bern, 25.4.2013 i ii Contents Introduction 1 I 5 1 Particle Accelerators and Detectors applied to Medicine 7 2 Particle Accelerators for medical Diagnostics and Therapy 23 2.1 Linacs and Cyclinacs for Hadrontherapy . 23 2.2 The new Bern Cyclotron Laboratory and its Research Beam Line . 39 3 Particle Detectors for medical Applications of Ion Beams 49 3.1 Segmented Ionization Chambers for Beam Monitoring in Hadrontherapy 49 3.2 Proton Radiography with nuclear Emulsion Films . 62 3.3 A Beam Monitor Detector based on doped Silica Fibres . -
Proton Therapy ACKNOWLEDGEMENTS
AMERICAN BRAIN TUMOR ASSOCIATION Proton Therapy ACKNOWLEDGEMENTS ABOUT THE AMERICAN BRAIN TUMOR ASSOCIATION Founded in 1973, the American Brain Tumor Association (ABTA) was the first national nonprofit organization dedicated solely to brain tumor research. For over 40 years, the Chicago-based ABTA has been providing comprehensive resources that support the complex needs of brain tumor patients and caregivers, as well as the critical funding of research in the pursuit of breakthroughs in brain tumor diagnosis, treatment and care. To learn more about the ABTA, visit www.abta.org. We gratefully acknowledge Anita Mahajan, Director of International Development, MD Anderson Proton Therapy Center, director, Pediatric Radiation Oncology, co-section head of Pediatric and CNS Radiation Oncology, The University of Texas MD Anderson Cancer Center; Kevin S. Oh, MD, Department of Radiation Oncology, Massachusetts General Hospital; and Sridhar Nimmagadda, PhD, assistant professor of Radiology, Medicine and Oncology, Johns Hopkins University, for their review of this edition of this publication. This publication is not intended as a substitute for professional medical advice and does not provide advice on treatments or conditions for individual patients. All health and treatment decisions must be made in consultation with your physician(s), utilizing your specific medical information. Inclusion in this publication is not a recommendation of any product, treatment, physician or hospital. COPYRIGHT © 2015 ABTA REPRODUCTION WITHOUT PRIOR WRITTEN PERMISSION IS PROHIBITED AMERICAN BRAIN TUMOR ASSOCIATION Proton Therapy INTRODUCTION Brain tumors are highly variable in their treatment and prognosis. Many are benign and treated conservatively, while others are malignant and require aggressive combinations of surgery, radiation and chemotherapy. -
PIONEERING THERAPY for LIFE Table of Contents
PIONEERING THERAPY FOR LIFE Table of contents Key figures 20151 IBA at a glance 2 IBA is 30 years old 4 Proton therapy 6 Dosimetry 20 RadioPharma Solutions 24 Industrial 26 Human resources 28 Corporate social responsibility 30 Governance 36 Economical review 39 IFRS consolidated financial statements for the year ended December 31, 2015 73 IBA SA Annual financial statements148 General information 152 Stock market and shareholders 157 Key figures 2015 REBIT (3) / SALES & SERVICES TRENDS 12% 12 IBA is a high-technology medical 10.9% company which concentrates 10% 10 its activities on proton therapy, radiopharmacy, particle accelerators 8 8% for industry, and dosimetry. 6% IBA is the worldwide leader in 6 the proton therapy market. 4 4% Listed on the NYSE Euronext Brussels. 2 2% 1 200 employees worldwide. 0% IBA operates in two areas: “Proton 0 Therapy and Other Accelerators ” and 2010 2011 2012 2013 2014 2015 “Dosimetry”. Key figures 2015 + 22.6% 332 2015 revenue increase EUR million Backlog in Proton Therapy & Other Accelerators OPERATING RESULTS 2014 2015 Change CAGR (1) (EUR 000) (EUR 000) (EUR 000) (%) 2014/2015 Sales and services 220 577 270 357 49 780 22.60% Gross margin 96 096 113 655 18.30% REBITDA (2) 28 321 33 710 5 389 19.00% REBITDA/Sales and services 12.80% 12.50% REBIT (3) 22 932 29 553 6 621 28.90% REBIT/Sales and services 10.40% 10.90% Net profit 24 294 61 189 36 895 151.90% (1) CAGR: compound annual growth rate (2) REBITDA: recurring earnings before interest, taxes, depreciation, and amortization. -
Zinc Complexes with Nitrogen Donor Ligands As Anticancer Agents
molecules Review Zinc Complexes with Nitrogen Donor Ligands as Anticancer Agents Marina Porchia 1,* , Maura Pellei 2,* , Fabio Del Bello 3 and Carlo Santini 2 1 ICMATE-C.N.R., Corso Stati Uniti 4, 35127 Padova, Italy 2 Chemistry Division, School of Science and Technology, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy; [email protected] 3 Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; [email protected] * Correspondence: [email protected] (M.P.); [email protected] (M.P.) Academic Editor: Kogularamanan Suntharalingam Received: 7 November 2020; Accepted: 7 December 2020; Published: 9 December 2020 Abstract: The search for anticancer metal-based drugs alternative to platinum derivatives could not exclude zinc derivatives due to the importance of this metal for the correct functioning of the human body. Zinc, the second most abundant trace element in the human body, is one of the most important micro-elements essential for human physiology. Its ubiquity in thousands of proteins and enzymes is related to its chemical features, in particular its lack of redox activity and its ability to support different coordination geometries and to promote fast ligands exchange. Analogously to other trace elements, the impairment of its homeostasis can lead to various diseases and in some cases can be also related to cancer development. However, in addition to its physiological role, zinc can have beneficial therapeutic and preventive effects on infectious diseases and, compared to other metal-based drugs, Zn(II) complexes generally exert lower toxicity and offer few side effects. -
Clinical Policy: Proton and Neutron Beam Therapies Reference Number: CP.MP.70 Coding Implications Last Review Date: 11/20 Revision Log
Clinical Policy: Proton and Neutron Beam Therapies Reference Number: CP.MP.70 Coding Implications Last Review Date: 11/20 Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description Proton beam therapy (PBT) is a form of external beam radiation therapy (EBRT) that utilizes protons (positively charged subatomic particles) to precisely target a specific tissue mass. Proton beams can penetrate deep into tissues to reach tumors, while delivering less radiation to surrounding tissues. This may make PBT more effective for inoperable tumors, or for those areas in which damage to healthy tissue would pose an unacceptable risk. Neutron beam therapy (NBT) is a less widely available form of EBRT that utilizes neutrons. Its clinical use is very limited due to difficulties in the delivery of this treatment modality. Policy/Criteria I. It is the policy of health plans affiliated with Centene Corporation® that proton beam therapy is medically necessary for the following indications: A. Ocular tumors with no distant metastasis. Fiducial markers (tantalum clips) are permitted to allow eye and tumor position verification; or B. Primary or metastatic tumors of the spine where the spinal cord tolerance may be exceeded with conventional treatment or where the spinal cord has previously been irradiated; or C. Tumors that approach or are located at the base of the skull, including but not limited to: chordoma or chondrosarcoma; or D. Primary hepatocellular cancer treated in a hypofractionated regimen; or E. Primary or benign solid tumors in members/enrollees ≤ 18 years old; or F. Genetic syndromes making total volume of radiation minimization crucial such as but not limited to NF-1 patients and retinoblastoma; or G. -
Clinical Progress in Proton Radiotherapy: Biological Unknowns
cancers Review Clinical Progress in Proton Radiotherapy: Biological Unknowns Laura Vanderwaeren 1,2,3 , Rüveyda Dok 1, Kevin Verstrepen 2,3 and Sandra Nuyts 1,4,* 1 Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; [email protected] (L.V.); [email protected] (R.D.) 2 Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium; [email protected] 3 Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium 4 Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium * Correspondence: [email protected]; Tel.: +32-1634-7600; Fax: +32-1634-7623 Simple Summary: Proton radiation therapy is a more recent type of radiotherapy that uses proton beams instead of classical photon or X-rays beams. The clinical benefit of proton therapy is that it allows to treat tumors more precisely. As a result, proton radiotherapy induces less toxicity to healthy tissue near the tumor site. Despite the experience in the clinical use of protons, the response of cells to proton radiation, the radiobiology, is less understood. In this review, we describe the current knowledge about proton radiobiology. Abstract: Clinical use of proton radiation has massively increased over the past years. The main reason for this is the beneficial depth-dose distribution of protons that allows to reduce toxicity to normal tissues surrounding the tumor. Despite the experience in the clinical use of protons, the radiobiology after proton irradiation compared to photon irradiation remains to be completely elucidated. Proton radiation may lead to differential damages and activation of biological processes. -
BCBS AL Radiation Therapy Guidelines V3.0.2019
CLINICAL GUIDELINES Radiation Therapy V3.0.2019 Effective July 15, 2019 Clinical guidelines for medical necessity review of radiation therapy services. © 2019 eviCore healthcare. All rights reserved. Radiation Therapy Criteria V3.0.2019 Please note the following: CPT Copyright 2017 American Medical Association. All rights reserved. CPT is a registered trademark of the American Medical Association. ______________________________________________________________________________________________________ © 2019 eviCore healthcare. All Rights Reserved. Page 2 of 251 400 Buckwalter Place Boulevard, Bluffton, SC 29910 (800) 918-8924 www.eviCore.com Radiation Therapy Criteria V3.0.2019 Please note the following: All information provided by the NCCN is “Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines™)©2018/2019 National Comprehensive Cancer Network. The NCCN Guidelines™ and illustrations herein may not be reproduced in any form for any purpose without the express written permission of the NCCN. To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org.” ______________________________________________________________________________________________________ © 2019 eviCore healthcare. All Rights Reserved. Page 3 of 251 400 Buckwalter Place Boulevard, Bluffton, SC 29910 (800) 918-8924 www.eviCore.com Radiation Therapy Criteria V3.0.2019 Dear Provider, This document provides detailed descriptions of eviCore’s basic criteria (also known as clinical guidelines) for radiation therapy arranged by diagnosis. They have been carefully researched and are continually updated in order to be consistent with the most current evidence-based guidelines and recommendations for the provision of radiation therapy from national medical societies and evidence-based medicine research centers. In addition, the criteria are supplemented by information published in peer-reviewed literature. -
An Overview on Ligands of Therapeutically Interest
Pharmacy & Pharmacology International Journal Review Article Open Access An overview on ligands of therapeutically interest Abstract Volume 6 Issue 3 - 2018 The principles governing metal-ligand complex stability and specificity depend on the 1 2 properties of both the metal and the chelating agent. The exploration of coordination Julia Martín, Miguel Ropero Alés, Agustin G 2 chemistry offers the real prospects of providing new understanding of intractable diseases Asuero and of devising novel therapeutics and diagnosis agents. Refinement in the approach to 1Department of Analytical Chemistry, Escuela Politécnica chelator design has come with a more subtle understanding of binding kinetics, catalytic Superior, University of Seville, Spain mechanisms and donor interactions. Ligands that effectively bind metal ions and also include 2Department of Analytical Chemistry, Faculty of Pharmacy, specific features to enhance targeting, reporting, and overall efficacy are driving innovation University of Seville, Spain in areas of disease, diagnosis and therapy. In this contribution the topics of bioinorganic medicinal chemistry, chelating agents in the treatment of metallic ion overload in the body, Correspondence: Julia Martín, Department of Analytical and expanding the notion of chelating agent in medicine are successively dealt with, paying Chemistry, Escuela Politécnica Superior, University of Seville. C/ then attention to platinum, gold, iron, copper and aluminium ion metal complexes having Virgen de África, 7, E–41011 Seville, Spain, Tel +34-9-5455-6250, medicinal interest. A tabular summary containing selected applications of ligands and Email [email protected] complexes of therapeutic interest is also shown to including the most relevant and current Received: March 26, 2018 | Published: May 30 2018 bibliography. -
Here's Your E-Book
Detox Outside the Box 1 Chronic degenerative diseases flood the American healthcare system with sufferers. ln spite of modern medicine's ability to reduce symptoms of many illnesses, their fundamental causes- and cures- still elude traditional practitioners. Because toxic heavy metals are associated with our two biggest challenges, cancer and heart disease (as well as many other severe disease states), the etiology of heavy metal toxicity must be recognized and addressed. Chelation is the answer. A therapy whose time has come, chelation should now be defined and understood as a 21st century modality of choice for removing toxic metals from the body. Some of the world's best known therapies and treatments were not accepted in their early days. For example, acceptance of vitamin C's benefits as a powerful antioxidant took a long time to influence traditional viewpoints. While chelation therapy with EDTA is in its infancy, it will prove as a powerful agent for the removal of toxic heavy metals. I also encourage all clinicians to get on board with this amazing modality. Intravenous chelation has been recognized for decades by the United States Food and Drug Administration as the treatment of choice for lead poisoning. Since intravenous chelation is time consuming and expensive, l've been administering chelation in the form of a suppository, and believe it is a revolutionary advancement. l've seen excellent results for over ten years with thousands of my patients and within the last three years I decided to study calcium disodium EDTA suppositories. I have now published proven results of its safety and efficacy in approved clinical trials. -
Noble Metals in Medicine
Noble Metals in Medicine Transition Metal Complexes as Drugs and Chemotherapeutic Agents BY NICHOLASFARRELL, Kluwer Academic Publishers, Dordrecht, 1989, 291 pages, ISBN 90-277-2828-3, Dfl. 180.00, €59.00 A number of books dealing with the generally having mechanisms of action different biological activity, particularly the therapeutic from that of cisplatin. In some cases metal ions activity, of metal complexes have been publish- are acting by enhancing cellular uptake of ac- ed in recent years. Interest in the field has been tive ligands, a principle which is exemplified promoted by the clinical use of a number of several more times in subsequent chapters deal- precious metal complexes, including platinum ing with anti-bacterial, anti-viral and anti- anti-cancer, gold anti-arthritis and silver anti- arthritic activity. bacterial agents. Now a useful new addition to The utilisation of the redox properties of the literature has been published, somewhat metal compounds is illustrated by a chapter oddly, as Volume I I in the series “Catalysis by devoted to metal ions as mediators of the anti- Metal Complexes”. tumour action of antibiotics such as the In addition to an introduction and appendices bleomycins. Binding of a metal ion, for exam- the book contains 12 chapters, the first six of ple iron(II), to the antibiotic is believed to be which are devoted primarily to the anti-tumour involved in generating activated oxygen species activity of metal complexes, an area to which leading to oxidative cleavage of DNA. the author has made a number of interesting Another chapter discusses the interaction of contributions through his publications on metal complexes with radiation in biological platinum complexes.