Planetary Penetrators for Sample Return Missions

Total Page:16

File Type:pdf, Size:1020Kb

Planetary Penetrators for Sample Return Missions Planetary Penetrators for Sample Return Missions Chad A. Truitt A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2016 Committee: Robert M. Winglee Michael McCarthy Erika Harnett Program Authorized to Offer Degree: Earth and Space Sciences © Copyright 2016 Chad A. Truitt University of Washington Abstract Planetary Penetrators for Sample Return Missions Chad A. Truitt Chair of the Supervisory Committee: Professor Robert M. Winglee Earth and Space Sciences Sample return missions offer a greater science yield when compared to missions that only employ in situ experiments or remote sensing observations, since they allow the application of more complicated technological and analytical methodologies in controlled terrestrial laboratories that are both repeatable and can be independently verified. The successful return of extraterrestrial materials over the last four decades has contributed to our understanding of the solar system, but retrieval techniques have largely depended on the use of either soft-landing, or touch-and-go procedures that result in high ΔV requirements, and return yields typically limited to a few grams of surface materials that have experienced varying degrees of alteration from space weathering. Hard-landing methods using planetary penetrators offer an alternative for sample return that significantly reduce a mission’s ΔV, increase sample yields, and allow for the collection of subsurface materials, and lessons can be drawn from previous sample return missions. The following details progress in the design, development, and testing of penetrator/sampler technology capable of surviving subsonic and low supersonic impact velocities (<700 m/s) that would enable the collection of geologic materials using tether technology to return the sample to a passing spacecraft. The testing of energy absorbing material for protecting the sample, as well as the design evolution and field testing of the penetrator are discussed. It is shown through field testing that penetrators at speeds between 300-600 m/s (~Mach 1-2) can penetrate into the ground to depths of 1-2 m with overall structural integrity maintained. Four series of test flights are discussed that demonstrate the arc of the research from penetrator survivability, to successful sample collection and ejection of the sample return container. The potential for metamorphic effects during sampling is discussed along with future work that will assist in defining parameters for selecting appropriate primitive bodies for future sample return missions. TABLE OF CONTENTS List of Figures ................................................................................................................................ iii List of Tables .................................................................................................................................. v Chapter 1. Sample Return and Spacecraft ...................................................................................... 1 1.1 The Importance of Sample Return ............................... Error! Bookmark not defined. 1 1.2 Samp;le Return Methods................................................................................................. 3 1.3 Penetrators and Space Exploration ............................ Error! Bookmark not defined. 11 Chapter 2. Sample Return Systems for Extreme Enviroments (SaRSEE).................................... 15 2.1 SaRSEE Mission Concept............................................................................................. 15 2.2 Penetrator Design .......................................................................................................... 20 Chapter 3. Field Testing…………………………………………………………………………29 3.1 Black Rock, Nevada................................................... 2Error! Bookmark not defined. 9 3.2 Ione, CA: Series 1 ........................................................................................................ 33 3.3 Ione, CA: Series 2…………………………………………………………………….37 3.4 Ione, CA: Series 3…………………………………………………………………….46 Chapter 4. The Potential for Metamorphic Effects……………………………………………...50 4.1 Impact Metamorphism…………………………………………………………………50 4.2 Impact Velocity and Pressure………………………………………………………….52 4.3 Observed Impact Effects in the Sandstone…………………………………………….55 i Chapter 5. Discussion…………………………………………………………………………...61 5.1 The Orange Ring………………………………………………………………………..61 5.2 Penetration Depth and Self Ejection……………………………………………………64 5.3 Future Work…………………………………………………………………………….65 Chapter 6. Conclusion…………………………………………………………………………...67 Bibliography ................................................................................................................................. 71 ii LIST OF FIGURES Figure 1.1. Abundances of primitive material in the inner solar system [4]……………………..4 Figure 1.2. Lunar sample return yields for the Apollo and Luna programs [9]………....……….6 Figure 1.3. Artist’s concept of the Philae lander after separating from the Rosetta spacecraft [11]……………………………………………………..6 Figure 1.4. Artist’s concept of the OSIRIS-REx spacecraft deploying the TAGSAM [14][15]…………………………………………………....8 Figure 1.5. Artist’s concept of Hayabusa2 during touch-and-go sampling [18]………………....9 Figure 1.6. Artist’s concept of Genesis with its collection arrays deployed [19]……………….10 Figure 1.7. Artist’s concept of the Stardust spacecraft approaching Comet81P/ Wild 2 [20]…..10 Figure 1.8. The T-12 “Cloudmaker” and instrumented penetrators [21]……………...………...12 Figure 1.9. Schematic for the Mars-96 penetrator [22]; schematic for the DS-2 probe [24]……13 Figure 1.10. JAXA’s LUNAR-A spacecraft [21][25][26]………………………………………13 Figure 2.1. Artist’s concept of the spacecraft deploying a tethered penetrator…………………16 Figure 2.2 Artist's concept of sampling during the impact process……………………………..17 Figure 2.3 Artist’s concept showing the SRC extraction……………………………………….17 Figure 2.4. Mass ratio comparisons between fly-by and orbital sampling [30]………………...19 Figure 2.5. Artist's concept of possible spacecraft configurations……………………………...19 Figure 2.6. The Aluminum Rocket Prototype…………………………………………………..20 Figure 2.7. Simple schematic of the SaRSEE penetrator……………………………………......21 Figure 2.8. Aluminum honeycomb cells collapse in concertina-like manner…………………...22 Figure 2.9. A plot of compression testing results……………………………………………….23 Figure 2.10. A machined nose cone and crumple zone…………………………………………24 Figure 2.11. Comparison diagram showing the nose cone design for the first and second flight series…………………………………………….…25 Figure 2.12. Relative flow model created in SolidWorks……………………………………....26 Figure 2.13. The first two-stage penetrator………………………………………………….….27 Figure 2.14. The two-stage penetrator showing the out-board motors……………………….…28 Figure 3.1. The first SaRSEE penetrator…………………………………………………….….31 iii Figure 3.2. Gravedigger 1 post impact……………………………………………………….….31 Figure 3.3. The test flight of Gravedigger 2…………………………………………………….32 Figure 3.4. The nose cone from Gravedigger 2…………………………………………………32 Figure 3.5. The center-bored feed port, steel nose cone………………………………………...34 Figure 3.6. The triple feed ports, steel nose cone…………………………………………….....35 Figure 3.7. Launch of the clustered, two-stage penetrator………………………………………36 Figure 3.8. The penetrator embedded to a depth of ~0.9 meters……………………………….36 Figure 3.9. The third evolution of penetrating nose cones…………………………………...…37 Figure 3.10. A Google Earth view of the impact area……………………………………….….39 Figure 3.11. The impact site…………………………………………………………………….40 Figure 3.12. The removal of the main body of the penetrator……………………………...…..41 Figure 3.13. The recovered penetrator………………………………………………………….41 Figure 3.14. The recovered penetrator cross sectioned…………………………………………43 Figure 3.15. Crumple zone and SRC deformation……………………………………………..44 Figure 3.16. The exposed core sample……………………………………………………….…45 Figure 3.17. A portion of the core sample removed from the penetrator………………………45 Figure 3.18. The redesigned penetrator…………………………………………………...……46 Figure 3.19. The penetrator system ready for flight……………………………………………47 Figure 3.20. The impact site and ejected SRC……………………………………………...….48 Figure 3.21. Still frames from a video of the impact………………………………………...…48 Figure 3.22. The recovered SRC………………………………………………………………..49 Figure 3.23. The SRC opened revealing the stratified sample………………………………….49 Figure 4.1. Metamorphic facies diagrams…………………………………………………….…51 Figure 4.2. Impact velocity estimates for the sandstone shot…………………………………...54 Figure 4.3. Google Earth image and geologic map of the impact site……………………….….56 Figure 4.4. Thin sections from the control and sampled sandstone…………………………......58 Figure 4.5. Magnified regions of the same thin sections………………………………….….…59 Figure 5.1. The orange ring observed in the core sample…………………………………….…61 Figure 5.2. Close up of material missing from the nose cone……………………………….….63 Figure 5.3. The evolution of discoloration and ring formation………………………………....63 iv LIST OF TABLES Table 1.1. Representative compositions of select extraterrestrial bodies [2]… .......... .…..2 Table 2.1. Representative comparison of escape and orbital velocities of select minor bodies [30]………………………………….…..…15 Table 2.2. Test sample modification descriptions………………...………………...……23 v ACKNOWLEDGEMENTS Funding for this study was provided by NASA Innovative Advanced Concepts under grants NNX12AR02G and NNX13AR37G. As with all efforts in space exploration, the completion of these
Recommended publications
  • Matematikken Viser Vej Til Mars
    S •Matematikken The viser vej til Mars Kim Plauborg © The Terma Group 2016 THE BEGINNING Terma has been in Space since man walked on the Moon! © The Terma Group 2016 FROM ESRO TO EXOMARS Terma powered the first comet landing ever! BREAKING NEWS The mission ends today when the Rosetta satellite will set down on the surface In 2014 the Rosetta satellite deployed the small lander Philae, which landed on the cometof 67P morethe than 10 comet years after Rosetta was launched. © The Terma Group 2016 FROM ESRO TO EXOMARS Rosetta Mars Express Technology Venus Express evolution and Galileo enhancement Small GEO BepiColombo ExoMars © The Terma Group 2016 Why go Mars? Getting to and landing on Mars is difficult ! © The Terma Group 2016 THE EXOMARS PROGRAMME Two ESA missions to Mars in cooperation with Roscosmos with the main objective to search for evidence of life 2016 Mission Trace Gas Orbiter Schiaparelli 2020 Mission Rover Surface platform © The Terma Group 2016 EXOMARS 2016 14th March 2016 Launched from Baikonur cosmodrome, Kazakhstan © The Terma Group 2016 EXOMARS 2016 16th October 2016 Separation of Schiaparelli from the orbiter © The Terma Group 2016 SCHIAPARELLI Schiaparelli (EDM) - an entry, descent and landing demonstrator module © The Terma Group 2016 EXOMARS 2016 19th October 2016 Landing of Schiaparelli the surface of Mars © The Terma Group 2016 EXOMARS 2016 19th October 2016 Landing of Schiaparelli the surface of Mars © The Terma Group 2016 EXOMARS 2020 © The Terma Group 2016 TERMA AND EXOMARS Terma deliveries to the ExoMars 2016 mission • Remote Terminal Power Unit for Schiaparelli • Mission Control System • Spacecraft Simulator • Support for the Launch and Early Orbit Phase © The Terma Group 2016 ExoMars RTPU The RTPU is a central unit in the Schiaparelli lander.
    [Show full text]
  • Mars Reconnaissance Orbiter
    Chapter 6 Mars Reconnaissance Orbiter Jim Taylor, Dennis K. Lee, and Shervin Shambayati 6.1 Mission Overview The Mars Reconnaissance Orbiter (MRO) [1, 2] has a suite of instruments making observations at Mars, and it provides data-relay services for Mars landers and rovers. MRO was launched on August 12, 2005. The orbiter successfully went into orbit around Mars on March 10, 2006 and began reducing its orbit altitude and circularizing the orbit in preparation for the science mission. The orbit changing was accomplished through a process called aerobraking, in preparation for the “science mission” starting in November 2006, followed by the “relay mission” starting in November 2008. MRO participated in the Mars Science Laboratory touchdown and surface mission that began in August 2012 (Chapter 7). MRO communications has operated in three different frequency bands: 1) Most telecom in both directions has been with the Deep Space Network (DSN) at X-band (~8 GHz), and this band will continue to provide operational commanding, telemetry transmission, and radiometric tracking. 2) During cruise, the functional characteristics of a separate Ka-band (~32 GHz) downlink system were verified in preparation for an operational demonstration during orbit operations. After a Ka-band hardware anomaly in cruise, the project has elected not to initiate the originally planned operational demonstration (with yet-to-be­ used redundant Ka-band hardware). 201 202 Chapter 6 3) A new-generation ultra-high frequency (UHF) (~400 MHz) system was verified with the Mars Exploration Rovers in preparation for the successful relay communications with the Phoenix lander in 2008 and the later Mars Science Laboratory relay operations.
    [Show full text]
  • How a Cartoon Series Helped the Public Care About Rosetta and Philae 13 How a Cartoon Series Helped the Public Care About Rosetta and Philae
    How a Cartoon Series Helped the Public Care about Best Practice Rosetta and Philae Claudia Mignone Anne-Mareike Homfeld Sebastian Marcu Vitrociset Belgium for European Space ATG Europe for European Space Design & Data GmbH Agency (ESA) Agency (ESA) [email protected] [email protected] [email protected] Carlo Palazzari Emily Baldwin Markus Bauer Design & Data GmbH EJR-Quartz for European Space Agency (ESA) European Space Agency (ESA) [email protected] [email protected] [email protected] Keywords Karen S. O’Flaherty Mark McCaughrean Outreach, space science, public engagement, EJR-Quartz for European Space Agency (ESA) European Space Agency (ESA) visual storytelling, fairy-tale, cartoon, animation, [email protected] [email protected] anthropomorphising Once upon a time... is a series of short cartoons1 that have been developed as part of the European Space Agency’s communication campaign to raise awareness about the Rosetta mission. The series features two anthropomorphic characters depicting the Rosetta orbiter and Philae lander, introducing the mission story, goals and milestones with a fairy- tale flair. This article explores the development of the cartoon series and the level of engagement it generated, as well as presenting various issues that were encountered using this approach. We also examine how different audiences responded to our decision to anthropomorphise the spacecraft. Introduction internet before the spacecraft came out of exciting highlights to come, using the fairy- hibernation (Bauer et al., 2016). The four tale narrative as a base. The hope was that In late 2013, the European Space Agency’s short videos were commissioned from the video would help to build a degree of (ESA) team of science communicators the cross-media company Design & Data human empathy between the public and devised a number of outreach activ- GmbH (D&D).
    [Show full text]
  • Penetration of Fast Projectiles Into Resistant Media: from Macroscopic
    Penetration of fast projectiles into resistant media: from macroscopic to subatomic projectiles Jos´e Gaite Applied Physics Dept., ETSIAE, Universidad Polit´ecnica de Madrid, E-28040 Madrid, Spain∗ (Dated: July 21, 2017) The penetration of a fast projectile into a resistant medium is a complex process that is suitable for simple modeling, in which basic physical principles can be profitably employed. This study connects two different domains: the fast motion of macroscopic bodies in resistant media and the interaction of charged subatomic particles with matter at high energies, which furnish the two limit cases of the problem of penetrating projectiles of different sizes. These limit cases actually have overlapping applications; for example, in space physics and technology. The intermediate or mesoscopic domain finds application in atom cluster implantation technology. Here it is shown that the penetration of fast nano-projectiles is ruled by a slightly modified Newton’s inertial quadratic force, namely, F ∼ v2−β , where β vanishes as the inverse of projectile diameter. Factors essential to penetration depth are ratio of projectile to medium density and projectile shape. Keywords: penetration dynamics; energy loss; collisions; supersonic motion. I. INTRODUCTION Between subatomic and macroscopic projectiles, there is a mesoscopic range of nano-projectiles, with important technological applications.23 The few studies of their re- The analytical study of the resistance to the motion of lation to macroscopic projectiles24,25 only treat particu- projectiles begins with Book Two of Newton’s Principia, lar aspects of the problem. Here we study the problem entitled The motion of bodies (in resisting mediums).1 of resistance to projectile penetration within a unified Other classics have studied this subject, which has obvi- conceptual framework that applies to the full ranges of ous applications, for example, military applications.
    [Show full text]
  • DLR Developments and Application Ideas for Interplanetary Cubesats
    DLR developments and application ideas for interplanetary cubesats iCubeSat, Milano 2019 Jens Biele1, Michael Maibaum1, Caroline Lange2, Thimo Grundmann2, Stephan Ulamec1, Marcus Thomas Knopp3, Frank-Cyrus Roshani3 1DLR German Aerospace Center, RB-MUSC, Cologne, Germany 2DLR German Aerospace Center, Bremen, Germany 3DLR German Aerospace Center, GSOC, Munich, Germany www.DLR.de • Chart 3 > Lecture > Author • Document > Date SKAD-Study [FRANK, MARCUS] • Orbiter as relais station for Mars-Rover • ………. Designs flown or studied (DLR) Hopper(10-25 kg) MASCOT (30, 70 kg) Philae (100 kg) Leonard MASCOT (10 kg) Folie 4 > Vortrag > Autor Folie 5 > Vortrag > Autor Study Flow of MASCOT („how to shrink a lander..“) • December 2008 – September 2009: feasibility study, with CNES, in context of Marco Polo and Hayabusa-2, with common requirements: • 3 iterations of different mass (95kg, 35kg & 10kg) and P/L • Settled on 10 kg lander package including 3 kg of P/L • Ho, T.-M., et al. (2016). "MASCOT—The Mobile Asteroid Surface Scout Onboard the Hayabusa2 Mission." Space Science Reviews 208(1-4): 339– 374. • ➔ Design of MASCOT 10 kg: a nanosat (30x30*20 cm³) . Could be a 18 U cubesat! Large ~ 95 kg, Philae hertitage Middle ~ 35 kg, Xtra Small ~ 10 kg, No post-landing Up-righting + mobility mobility MASCOT Payload (25% of total mass!) Instrument Science Goals Heritage Institute; PI/IM Mass [kg] MAG magnetization of the NEA MAG of ROMAP on Rosetta TU Braunschweig Lander (Philae), ESA VEX, 0,15 → formation history Themis K.H. Glassmeier / U. Auster mineralogical composition ESA ExoMars, Russia and characterize grains Phobos GRUNT, ESA size and structure of Rosetta, ESA ExoMars IAS Paris µOmega surface soil samples at μ- rover 2018, Rosetta / Philae J.P.
    [Show full text]
  • Argops) Solution to the 2017 Astrodynamics Specialist Conference Student Competition
    AAS 17-621 THE ASTRODYNAMICS RESEARCH GROUP OF PENN STATE (ARGOPS) SOLUTION TO THE 2017 ASTRODYNAMICS SPECIALIST CONFERENCE STUDENT COMPETITION Jason A. Reiter,* Davide Conte,1 Andrew M. Goodyear,* Ghanghoon Paik,* Guanwei. He,* Peter C. Scarcella,* Mollik Nayyar,* Matthew J. Shaw* We present the methods and results of the Astrodynamics Research Group of Penn State (ARGoPS) team in the 2017 Astrodynamics Specialist Conference Student Competition. A mission (named Minerva) was designed to investigate Asteroid (469219) 2016 HO3 in order to determine its mass and volume and to map and characterize its surface. This data would prove useful in determining the necessity and usefulness of future missions to the asteroid. The mission was designed such that a balance between cost and maximizing objectives was found. INTRODUCTION Asteroid (469219) 2016 HO3 was discovered recently and has yet to be explored. It lies in a quasi-orbit about the Earth such that it will follow the Earth around the Sun for at least the next several hundred years providing many opportunities for relatively low-cost missions to the body. Not much is known about 2016 HO3 except a general size range, but its close proximity to Earth makes a scientific mission more feasible than other near-Earth objects. A Request For Proposal (RFP) was provided to university teams searching for cost-efficient mission design solutions to assist in the characterization of the asteroid and the assessment of its potential for future, more in-depth missions and possible resource utilization. The RFP provides constraints on launch mass, bus size as well as other mission architecture decisions, and sets goals for scientific mapping and characterization.
    [Show full text]
  • Space Sector Brochure
    SPACE SPACE REVOLUTIONIZING THE WAY TO SPACE SPACECRAFT TECHNOLOGIES PROPULSION Moog provides components and subsystems for cold gas, chemical, and electric Moog is a proven leader in components, subsystems, and systems propulsion and designs, develops, and manufactures complete chemical propulsion for spacecraft of all sizes, from smallsats to GEO spacecraft. systems, including tanks, to accelerate the spacecraft for orbit-insertion, station Moog has been successfully providing spacecraft controls, in- keeping, or attitude control. Moog makes thrusters from <1N to 500N to support the space propulsion, and major subsystems for science, military, propulsion requirements for small to large spacecraft. and commercial operations for more than 60 years. AVIONICS Moog is a proven provider of high performance and reliable space-rated avionics hardware and software for command and data handling, power distribution, payload processing, memory, GPS receivers, motor controllers, and onboard computing. POWER SYSTEMS Moog leverages its proven spacecraft avionics and high-power control systems to supply hardware for telemetry, as well as solar array and battery power management and switching. Applications include bus line power to valves, motors, torque rods, and other end effectors. Moog has developed products for Power Management and Distribution (PMAD) Systems, such as high power DC converters, switching, and power stabilization. MECHANISMS Moog has produced spacecraft motion control products for more than 50 years, dating back to the historic Apollo and Pioneer programs. Today, we offer rotary, linear, and specialized mechanisms for spacecraft motion control needs. Moog is a world-class manufacturer of solar array drives, propulsion positioning gimbals, electric propulsion gimbals, antenna positioner mechanisms, docking and release mechanisms, and specialty payload positioners.
    [Show full text]
  • Stardust Sample Return
    National Aeronautics and Space Administration Stardust Sample Return Press Kit January 2006 www.nasa.gov Contacts Merrilee Fellows Policy/Program Management (818) 393-0754 NASA Headquarters, Washington DC Agle Stardust Mission (818) 393-9011 Jet Propulsion Laboratory, Pasadena, Calif. Vince Stricherz Science Investigation (206) 543-2580 University of Washington, Seattle, Wash. Contents General Release ............................................................................................................... 3 Media Services Information ……………………….................…………….................……. 5 Quick Facts …………………………………………..................………....…........…....….. 6 Mission Overview …………………………………….................……….....……............…… 7 Recovery Timeline ................................................................................................ 18 Spacecraft ………………………………………………..................…..……...........……… 20 Science Objectives …………………………………..................……………...…..........….. 28 Why Stardust?..................…………………………..................………….....………............... 31 Other Comet Missions .......................................................................................... 33 NASA's Discovery Program .................................................................................. 36 Program/Project Management …………………………........................…..…..………...... 40 1 2 GENERAL RELEASE: NASA PREPARES FOR RETURN OF INTERSTELLAR CARGO NASA’s Stardust mission is nearing Earth after a 2.88 billion mile round-trip journey
    [Show full text]
  • Space Propulsion.Pdf
    Deep Space Propulsion K.F. Long Deep Space Propulsion A Roadmap to Interstellar Flight K.F. Long Bsc, Msc, CPhys Vice President (Europe), Icarus Interstellar Fellow British Interplanetary Society Berkshire, UK ISBN 978-1-4614-0606-8 e-ISBN 978-1-4614-0607-5 DOI 10.1007/978-1-4614-0607-5 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011937235 # Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) This book is dedicated to three people who have had the biggest influence on my life. My wife Gemma Long for your continued love and companionship; my mentor Jonathan Brooks for your guidance and wisdom; my hero Sir Arthur C. Clarke for your inspirational vision – for Rama, 2001, and the books you leave behind. Foreword We live in a time of troubles.
    [Show full text]
  • Analysis and Simulation of Hypervelocity Gouging Impacts
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-13-2006 Analysis and Simulation of Hypervelocity Gouging Impacts John D. Cinnamon Follow this and additional works at: https://scholar.afit.edu/etd Part of the Engineering Science and Materials Commons Recommended Citation Cinnamon, John D., "Analysis and Simulation of Hypervelocity Gouging Impacts" (2006). Theses and Dissertations. 3318. https://scholar.afit.edu/etd/3318 This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. Analysis and Simulation of Hypervelocity Gouging Impacts DISSERTATION John D. Cinnamon, Major, USAF AFIT/DS/ENY/06-01 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this work are those of the author and do not reflect the official policy or position of the Department of Defense or the United States Government. AFIT/DS/ENY/06-01 Analysis and Simulation of Hypervelocity Gouging Impacts DISSERTATION Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy John D. Cinnamon, B.S.E., M.S.E., P.E. Major, USAF June 2006 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/DS/ENY/06-01 Abstract Hypervelocity impact is an area of extreme interest in the research community.
    [Show full text]
  • Dawn Mission to Vesta and Ceres Symbiosis Between Terrestrial Observations and Robotic Exploration
    Earth Moon Planet (2007) 101:65–91 DOI 10.1007/s11038-007-9151-9 Dawn Mission to Vesta and Ceres Symbiosis between Terrestrial Observations and Robotic Exploration C. T. Russell Æ F. Capaccioni Æ A. Coradini Æ M. C. De Sanctis Æ W. C. Feldman Æ R. Jaumann Æ H. U. Keller Æ T. B. McCord Æ L. A. McFadden Æ S. Mottola Æ C. M. Pieters Æ T. H. Prettyman Æ C. A. Raymond Æ M. V. Sykes Æ D. E. Smith Æ M. T. Zuber Received: 21 August 2007 / Accepted: 22 August 2007 / Published online: 14 September 2007 Ó Springer Science+Business Media B.V. 2007 Abstract The initial exploration of any planetary object requires a careful mission design guided by our knowledge of that object as gained by terrestrial observers. This process is very evident in the development of the Dawn mission to the minor planets 1 Ceres and 4 Vesta. This mission was designed to verify the basaltic nature of Vesta inferred both from its reflectance spectrum and from the composition of the howardite, eucrite and diogenite meteorites believed to have originated on Vesta. Hubble Space Telescope observations have determined Vesta’s size and shape, which, together with masses inferred from gravitational perturbations, have provided estimates of its density. These investigations have enabled the Dawn team to choose the appropriate instrumentation and to design its orbital operations at Vesta. Until recently Ceres has remained more of an enigma. Adaptive-optics and HST observations now have provided data from which we can begin C. T. Russell (&) IGPP & ESS, UCLA, Los Angeles, CA 90095-1567, USA e-mail: [email protected] F.
    [Show full text]
  • RESULTS from the DEEP SPACE 1 TECHNOLOGY VALIDATION MISSION Marc D
    50th International Astronautical Congress, Amsterdam, The Netherlands, 4-8 October, 1999, IAA-99-IAA.11.2.01 Acta Astronautica 47, p. 475 (2000). RESULTS FROM THE DEEP SPACE 1 TECHNOLOGY VALIDATION MISSION Marc D. Rayman, Philip Varghese, David H. Lehman, and Leslie L. Livesay Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Dr. Pasadena, CA 91109 USA Launched on October 24, 1998, Deep Space 1 (DS1) is the first mission of NASA's New Millennium program, chartered to validate in space high-risk, new technologies important for future space and Earth science programs. The advanced technology payload that was tested on DS1 comprises solar electric propulsion, solar concentrator arrays, autonomous on-board navigation and other autonomous systems, several telecommunications and microelectronics devices, and two low-mass integrated science instrument packages. The technologies were rigorously exercised so that subsequent flight projects would not have to incur the cost and risk of being the first users of these new capabilities. The performances of the technologies are described as are the general execution of the mission and plans for future operations, including a possible extended mission that would be devoted to science. INTRODUCTION missions by developing and validating some of the high-risk, high-benefit technologies they need. NASA’s plans for its space and Earth NMP conducts deep space and Earth orbiting science programs call for many scientifically missions focused on the validation of these compelling, exciting missions. To make such technologies. The spacecraft flown by NMP are programs affordable, it is anticipated that small not intended to be fully representative of the spacecraft, launched on low-cost launch vehicles spacecraft to be used in future missions, but the and with highly focused objectives, will be used advanced technologies they incorporate are.
    [Show full text]