Identification of the Causal Agent of Leaf and Crown Rot of Liriope In

Total Page:16

File Type:pdf, Size:1020Kb

Identification of the Causal Agent of Leaf and Crown Rot of Liriope In Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2015 Identification of the Causal Agent of Leaf and Crown Rot of Liriope in Louisiana Carla Milena Proano Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Recommended Citation Proano, Carla Milena, "Identification of the Causal Agent of Leaf and Crown Rot of Liriope in Louisiana" (2015). LSU Master's Theses. 70. https://digitalcommons.lsu.edu/gradschool_theses/70 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. IDENTIFICATION OF THE CAUSAL AGENT OF LEAF AND CROWN ROT OF LIRIOPE IN LOUISIANA A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The School of Plant, Environmental and Soil Sciences By Carla Milena Proano Herrera B.S., Pan American School of Agriculture Zamorano, 2010 August 2015 ACKNOWLEDGEMENTS First of all I would like to thank God and my family for giving me the strength, support, love, and being the reason that encouraged me to keep pursuing and finish my degree. I would like to give my special thanks to Dr. Kuehny for giving me the opportunity to work with him, for his time, knowledge, guidance, patience and help during this process. Also, I would like to thank to my committee members Dr. Raghuwinder Singh, Dr. Edward Bush and Dr. Don Labonte for providing me their knowledge, help and guidance. I am also really thankful to the Botanic Gardens staff and student workers for being really helpful during my project and Timothy Burks for teaching me the laboratory methods needed for my research. My special gratitude to the LSU AgCenter and Dr. William Richardson for providing financial support which allowed me to study at Lousiana State University. Finally, I would like to thank my friends of ZAS (Zamorano Agricultural Society), for being my adopted family, for their unconditional support and friendship during all this time. My special gratitude to my friends that helped me any time I needed them: Fabián Díaz, Damir Torrico, José Brandao, to help me finish my project. This work would not have been possible without them. I am also thankful to Katherine Rubio and José Alonso for their unconditional support. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................................ ii LIST OF TABLES .......................................................................................................................... v LIST OF FIGURES ....................................................................................................................... vi ABSTRACT ................................................................................................................................. viii CHAPTER 1: INTRODUCTION ................................................................................................... 1 1.1 Ornamental industry in the United States and Louisiana ...................................................... 1 1.2 Ground Covers ...................................................................................................................... 1 1.3 Liriope in the United States and Louisiana ........................................................................... 2 1.4 Leaf and Crown Rot of Liriope ............................................................................................. 3 1.5 Objectives .............................................................................................................................. 6 CHAPTER 2: LITERATURE REVIEW ........................................................................................ 7 2.1 Liriope ................................................................................................................................... 7 2.1.1 Morphology or Phytography of Liriopogons.................................................................. 7 2.1.2 Culture ............................................................................................................................ 9 2.1.3 Insects and Diseases ..................................................................................................... 10 2.2 Phytophthora spp. ............................................................................................................... 12 2.2.1 Phytophthora palmivora: Biology, Ecology, Taxonomy ............................................. 16 2.2.2 Disease Cycle of Phytophthora Root Rot and Crown Rot ........................................... 17 2.2.3 Spread and Control ....................................................................................................... 18 2.2.3.1 Biological Control .................................................................................................. 19 2.2.3.2 Chemical Control ................................................................................................... 20 2.3 Fusarium spp. ...................................................................................................................... 20 2.3.1 Fusarium oxysporum: Biology, Ecology, Taxonomy .................................................. 23 2.3.2 Control .......................................................................................................................... 25 CHAPTER 3: IDENTIFICATION OF PHYTOPHTHORA PALMIVORA AND FUSARIUM OXYSPORUM ON SYMPTOMATIC LIRIOPE PLANTS .......................................................... 27 3.1 Introduction ......................................................................................................................... 27 3.2 Materials and Methods ........................................................................................................ 28 3.2.1 Isolation and Identification of Causal Organisms ........................................................ 28 3.2.1.1 Phytophthora spp. .................................................................................................. 28 3.2.1.2 Fusarium spp. ........................................................................................................ 29 3.2.2 Long Term Storage of Phytophthora and Fusarium .................................................... 30 3.2.3 DNA Extraction ............................................................................................................ 31 3.2.3.1 Phytophthora palmivora ........................................................................................ 31 3.2.3.2 Fusarium oxysporum ............................................................................................. 31 3.2.4 PCR (polymerase chain reaction) Amplification and Sequencing ............................... 32 3.3 Results ................................................................................................................................. 33 3.3.1 Phytophtora palmivora Sequence Analysis ................................................................. 34 3.3.2 Fusarium oxysporum Sequence Analysis ..................................................................... 36 iii 3.4 Discussion ........................................................................................................................... 36 CHAPTER 4: PATHOGENICITY TESTS ON LIRIOPE CULTIVARS .................................... 39 4.1 Introduction ......................................................................................................................... 39 4.2 Materials and Methods ........................................................................................................ 40 4.2.1 Plant Production and Experiment Design ..................................................................... 40 4.2.2 Experimental Design .................................................................................................... 41 4.2.3 Inoculum preparation .................................................................................................... 42 4.2.3.1 Phytophthora palmivora ........................................................................................ 42 4.2.3.2 Fusarium oxysporum ............................................................................................. 43 4.2.4 Inoculation Method....................................................................................................... 43 4.2.5 Data Analysis ................................................................................................................ 43 4.2.6 Re-isolation of Phytophthora palmivora and Fusarium oxysporum ............................ 44 4.2.7 Statistical Analysis ....................................................................................................... 44 4.3 Results ................................................................................................................................. 45 4.3.1 Leaf and Root Fresh and Dry Weight ........................................................................... 45 4.3.2 Percent of Disease Incidence ........................................................................................ 46 4.3.3 Root Rot Incidence
Recommended publications
  • APPROVED PLANT LIST Midtown Alliance Tree Well Adoption Program
    APPROVED PLANT LIST Midtown Alliance Tree Well Adoption Program Midtown Alliance launched the Tree Well Adoption program with the primary goal of enriching the experience of Midtown’s workers and residents while encouraging sustainability through the use of low-water, urban tolerant plant species. This list of plants was created to aid individuals and organizations in selecting plant material to plant in their adopted tree wells. This plant list is intended to encourage individual character in the tree wells, rather than restrict creativity in the selection of plants. The plants on the approved list were selected based on the following criteria: • Perennial. All plants listed are perennial, meaning they last for two or more growing seasons. Once established, these plants will require less water to maintain than annuals. • Heat tolerant. Plants in tree wells are exposed to high temperatures caused by vehicles and heat reflected from surrounding buildings, asphalt, and other urban surfaces. They must also be tolerant to high daytime temperatures, typical of Atlanta’s summer months, and cold hardy in the winter months. Atlanta is located in USDA Plant Hardiness Zone 7b/8a. • Water wise. Urban tree wells are surrounded by impervious surfaces and thus, are highly susceptible to periods of drought. Suitable plants must be able to survive periods of low rainfall. • Pollution tolerant. Vehicle exhaust may leave deposits and pollutants on plant foliage, which can kill sensitive plants. • Encourage wildlife. Flowering plants attract insects such as butterflies while others provide food sources for birds and other wildlife. • Grown locally. Many of the plants listed are native to the Atlanta area, and all can be found at local nurseries.
    [Show full text]
  • Clemson University Plant Problem Clinic, Nematode Assay Lab and Molecular Plant Pathogen Detection Lab Semi-Annual Report for 2013 (January – June)
    Clemson University Plant Problem Clinic, Nematode Assay Lab and Molecular Plant Pathogen Detection Lab Semi-Annual Report For 2013 (January – June) 1 Part 1: General Information Information 3 Diagnostic Input 4 Consultant Input 4 Monthly Sample Numbers 2013 5 Monthly Sample Numbers since 2007 6 Yearly Sample Numbers since 2007 7 Nematode Monthly Sample Numbers 2013 8 Nematode Yearly Sample Numbers since 2003 9 MPPD Monthly Sample Numbers 2013 10 MPPD Yearly Sample Numbers since 2010 11 Client Types 12 Submitter Types 13 Diagnoses/Identifications Requested 14 Sample Categories 15 Sample State Origin 16 Methods Used 17 Part 2: Diagnoses and Identifications Ornamentals and Trees 18 Turf 30 Vegetables and Herbs 34 Fruits and Nuts 36 Field Crops, Pastures and Forage 38 Plant and Mushroom Identifications 39 Insect Identifications 40 Regulatory Concern 42 2 Clemson University Plant Problem Clinic, Nematode Assay Lab and Molecular Plant Pathogen Detection Lab Semi-Annual Report For 2013 (January-June) The Plant Problem Clinic serves the people of South Carolina as a multidisciplinary lab that provides diagnoses of plant diseases and identifications of weeds and insect pests of plants and structures. Plant pathogens, insect pests and weeds can significantly reduce plant growth and development. Household insects can infest our food and cause structural damage to our homes. The Plant Problem Clinic addresses these problems by providing identifications, followed by management recommendations. The Clinic also serves as an information resource for Clemson University Extension, teaching, regulatory and research personnel. As a part of the Department of Plant Industry in Regulatory Services, the Plant Problem Clinic also helps to detect and document new plant pests and diseases in South Carolina.
    [Show full text]
  • A New Eudesmane Sesquiterpene Glucoside from Liriope Muscari Fibrous Roots
    Molecules 2011, 16, 9017-9024; doi:10.3390/molecules16119017 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article A New Eudesmane Sesquiterpene Glucoside from Liriope muscari Fibrous Roots Hai Ming Zhang 1, Gang Li Wang 2, Chun Qi Bai 3, Peng Liu 4, Zi Mu Liu 1, Qi Zhi Liu 3, Yong Yan Wang 1, Zhi Long Liu 3,*, Shu Shan Du 1,* and Zhi Wei Deng 4 1 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China 2 National Institutes for Food and Drug Control, Beijing 100050, China 3 Department of Entomology, China Agricultural University, Haidian District, Beijing 100193, China 4 Analytical and Testing Center, Beijing Normal University, Beijing 100875, China * Authors to whom correspondence should be addressed; E-Mails: [email protected] (Z.L.L.); [email protected] (S.S.D.); Tel.: +86-10-62732800; Fax: +86-10-62208032. Received: 16 September 2011; in revised form: 20 October 2011 / Accepted: 24 October 2011 / Published: 26 October 2011 Abstract: The screening of several Chinese medicinal herbs for nematocidal properties showed that the ethanol extract of Liriope muscari fibrous roots possessed significant nematocidal activity against the pine wood nematode (Bursaphelenchus xylophilus). From the ethanol extract, a new constituent (1,4-epoxy-cis-eudesm-6-O-β-D-glucopyranoside) and three known glycosides [1β,6α-dihydroxy-cis-eudesm-3-ene-6-O-β-D-glucopyranoside (liriopeoside A), 1β,6β-dihydroxy-cis-eudesm-3-ene-6-O-β-D-glucopyranoside, and 1α,6β- dihydroxy-5,10-bis-epi-eudesm-4(15)-ene-6-O-β-D-glucopyranoside] were isolated by bioassay-guided fractionation.
    [Show full text]
  • (Liriope Muscari) and Four Perennial Ornamental Grasses to Preemergent Herbicides
    Journal of Applied Horticulture, 9(1): 31-36, January-June, 2007 Appl Tolerance of lilyturf (Liriope muscari) and four perennial ornamental grasses to preemergent herbicides James T. Cole and Janet C. Cole Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK 74078-6027, USA, E-mail: [email protected]. Abstract Tolerance of eld- and container-grown lilyturf (Liriope muscari (Decne.)), (Liliaceae) and four species of ornamental grasses (Poaceae), perennial quaking grass (Briza media L.), Japanese bloodgrass (Imperata cylindrica (L.) Beauv. ‘Red Baron’), river oats (Chasmanthium latifolium (Michx.) Yates) and dwarf fountain grass (Pennisetum alopecuroides (L.) Spreng. ‘Hameln’), to ve preemergent herbicides (isoxaben, oryzalin, oxadiazon, oxy uorfen, and prodiamine) was evaluated. Grasses were planted in the fall of 1997 and in the spring of 1998. Herbicides were applied to the fall planting in the spring of 1998. The April, 1998 plantings received herbicide applications within two or 45 days after planting. Herbicides were applied within two days of planting in May and June of 1998. All species in the eld and containers were damaged most by oxy uorfen, followed by oxadiazon; however, injury was not as severe with oxadiazon as with oxy uorfen. The oxadiazon-treated plants recovered more quickly than oxy uorfen-treated plants. Plants were least damaged by prodiamine, oryzalin, and isoxaben. Field-grown Japanese bloodgrass, dwarf fountain grass and lilyturf were generally less damaged when herbicide was applied in June, regardless of planting date or herbicide applied than by the April herbicide application. Prodiamine, oryzalin, or isoxaben caused few phytotoxicity symptoms in the species tested, but oxy uorfen and oxadiazon caused unacceptable injury.
    [Show full text]
  • Liriope and Ophiopogon (Ruscaceae) Naturalized in Alabama
    Spaulding, D., W. Barger, and G.L. Nesom. 2010. Liriope and Ophiopogon (Ruscaceae) naturalized in Alabama. Phytoneuron 2010-55: 1–10. LIRIOPE AND OPHIOPOGON (RUSCACEAE) NATURALIZED IN ALABAMA DAN SPAULDING Curator of Collections Anniston Museum of Natural History 800 Museum Drive/P.O. Box 1587 Anniston, Alabama 36202 www.annistonmuseum.org WAYNE BARGER State Botanist Department of Conservation and Natural Resources State Lands Division, Natural Heritage Section 64 North Union Street Montgomery, Alabama 36130 [email protected] GUY L. N ESOM 2925 Hartwood Drive Fort Worth, Texas 76109 www.guynesom.com ABSTRACT Liriope muscari , L. spicata , and Ophiopogon japonicus are documented as naturalized in Alabama, where they occur on wooded slopes, in floodplains and riparian habitats, and in disturbed sites. The occurrences of O. japonicus are the only known instances of naturalization of that species in the USA. Each species is documented by photos of one or more vouchers. KEY WORDS: Liriope , Ophiopogon , naturalized, Alabama Published documentation for the naturalization of Liriope and Ophiopogon in the USA is essentially lacking, although species of both genera are reported to grow outside of cultivation (e.g., Kartesz 2010; USDA, NRCS 2010). To accompany an overview of these genera as cultivated and naturalized in the USA (Nesom 2010), collections of plants naturalized in Alabama are here placed on record. Specimens are from ANNISTON, JSU, and VDB. Many of the Alabama sites with naturalized Liriope (“monkey grass”) and Ophiopogon (“mondo grass”) are wooded slopes with residential or commercial development above. Habitats of naturalized plants are mostly undisturbed along the Cahaba River in Jefferson and Shelby counties (in the middle of Birmingham), along Black Creek at Noccalula Falls (downstream from the park where they were grown in the garden area) in Etowah County, and along the Tennessee River with residential development above in the town of Sheffield in Colbert County.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Liriope Spicata1
    Fact Sheet FPS-350 October, 1999 Liriope spicata1 Edward F. Gilman2 Introduction Thin green leaves and attractive, violet-blue flowers give this plant its charm, although flowers are not as showy as those of Liriope muscari (Fig. 1). It forms a dense, uniform cover, unlike Liriope muscari which forms clumps until well- established several years after planting. Creeping Lilyturf is a 6- to 10-inch-tall evergreen perennial that is useful in the landscape as a ground cover. This plant spreads quickly by rhizomes and can invade adjacent turf areas or other ground cover beds. Therefore, this Liriope may be best suited for planting in a bed surrounded by hardscape or confined with an edging (root barrier) that is 18-inches-deep. The small, purple flowers occur in terminal racemes that nest in with the foliage. These flowers appear in the summer and are followed by blue- black berrylike fruits. Fruits are not produced in abundance. General Information Scientific name: Liriope spicata Pronunciation: luh-RYE-oh-pee spy-KAY-tuh Common name(s): Creeping Lilyturf Figure 1. Creeping Lilyturf. Family: Liliaceae Plant type: perennial; herbaceous; ornamental grass Availablity: generally available in many areas within its USDA hardiness zones: 6 through 10 (Fig. 2) hardiness range Planting month for zone 7: year round Planting month for zone 8: year round Planting month for zone 9: year round Description Planting month for zone 10: year round Height: .5 to 1 feet Origin: not native to North America Spread: 1 to 2 feet Uses: mass planting; edging; naturalizing Plant habit: upright Plant density: moderate 1.This document is Fact Sheet FPS-350, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.
    [Show full text]
  • Listado De Todas Las Plantas Que Tengo Fotografiadas Ordenado Por Familias Según El Sistema APG III (Última Actualización: 2 De Septiembre De 2021)
    Listado de todas las plantas que tengo fotografiadas ordenado por familias según el sistema APG III (última actualización: 2 de Septiembre de 2021) GÉNERO Y ESPECIE FAMILIA SUBFAMILIA GÉNERO Y ESPECIE FAMILIA SUBFAMILIA Acanthus hungaricus Acanthaceae Acanthoideae Metarungia longistrobus Acanthaceae Acanthoideae Acanthus mollis Acanthaceae Acanthoideae Odontonema callistachyum Acanthaceae Acanthoideae Acanthus spinosus Acanthaceae Acanthoideae Odontonema cuspidatum Acanthaceae Acanthoideae Aphelandra flava Acanthaceae Acanthoideae Odontonema tubaeforme Acanthaceae Acanthoideae Aphelandra sinclairiana Acanthaceae Acanthoideae Pachystachys lutea Acanthaceae Acanthoideae Aphelandra squarrosa Acanthaceae Acanthoideae Pachystachys spicata Acanthaceae Acanthoideae Asystasia gangetica Acanthaceae Acanthoideae Peristrophe speciosa Acanthaceae Acanthoideae Barleria cristata Acanthaceae Acanthoideae Phaulopsis pulchella Acanthaceae Acanthoideae Barleria obtusa Acanthaceae Acanthoideae Pseuderanthemum carruthersii ‘Rubrum’ Acanthaceae Acanthoideae Barleria repens Acanthaceae Acanthoideae Pseuderanthemum carruthersii var. atropurpureum Acanthaceae Acanthoideae Brillantaisia lamium Acanthaceae Acanthoideae Pseuderanthemum carruthersii var. reticulatum Acanthaceae Acanthoideae Brillantaisia owariensis Acanthaceae Acanthoideae Pseuderanthemum laxiflorum Acanthaceae Acanthoideae Brillantaisia ulugurica Acanthaceae Acanthoideae Pseuderanthemum laxiflorum ‘Purple Dazzler’ Acanthaceae Acanthoideae Crossandra infundibuliformis Acanthaceae Acanthoideae Ruellia
    [Show full text]
  • Ornamental Grasses for the Midsouth Landscape
    Ornamental Grasses for the Midsouth Landscape Ornamental grasses with their variety of form, may seem similar, grasses vary greatly, ranging from cool color, texture, and size add diversity and dimension to season to warm season grasses, from woody to herbaceous, a landscape. Not many other groups of plants can boast and from annuals to long-lived perennials. attractiveness during practically all seasons. The only time This variation has resulted in five recognized they could be considered not to contribute to the beauty of subfamilies within Poaceae. They are Arundinoideae, the landscape is the few weeks in the early spring between a unique mix of woody and herbaceous grass species; cutting back the old growth of the warm-season grasses Bambusoideae, the bamboos; Chloridoideae, warm- until the sprouting of new growth. From their emergence season herbaceous grasses; Panicoideae, also warm-season in the spring through winter, warm-season ornamental herbaceous grasses; and Pooideae, a cool-season subfamily. grasses add drama, grace, and motion to the landscape Their habitats also vary. Grasses are found across the unlike any other plants. globe, including in Antarctica. They have a strong presence One of the unique and desirable contributions in prairies, like those in the Great Plains, and savannas, like ornamental grasses make to the landscape is their sound. those in southern Africa. It is important to recognize these Anyone who has ever been in a pine forest on a windy day natural characteristics when using grasses for ornament, is aware of the ethereal music of wind against pine foliage. since they determine adaptability and management within The effect varies with the strength of the wind and the a landscape or region, as well as invasive potential.
    [Show full text]
  • Photosynthetic Performance and Growth Responses of Liriope Muscari (Decne.) L.H
    Zhang et al. BMC Ecol (2020) 20:25 https://doi.org/10.1186/s12898-020-00294-7 BMC Ecology RESEARCH ARTICLE Open Access Photosynthetic performance and growth responses of Liriope muscari (Decne.) L.H. Bailey (Asparagaceae) planted within poplar forests having diferent canopy densities J. J. Zhang1,2 , L. Zhu1,2, X. Zhang1,2 and J. Zhou1,2* Abstract Background: Liriope muscari (Decne.) L.H. Bailey is a valuable horticultural and medicinal plant that grows under a range of light intensities, from high to low, in the understories of shrubs. To understand how this species adapts to these various environments, we selected two groups of lilyturf growing under poplar trees at two diferent spacings. Each group was divided into three types, open feld, forest edge and shaded forest with high, medium and low irradi- ance levels, respectively, and then we examined their photosynthetic characteristics, physiology and biomasses. Results: Light saturation point, light compensation point and in situ net photosynthetic rate (PN) were highest in lilyturf growing under high light. In contrast, lilyturf growing under low light had a higher apparent quantum yield and Chl a and b contents, indicating that they adapted to low light. Although the leaves of lilyturf growing under low light were small, their root tubers were heavier. Conclusions: The research demonstrates the eco-physiological basis of lilyturf’s shade adaptation mechanism as indicated by photosynthetic activity, chlorophyll fuorescence, Chl a, Chl b and Car contents when grown under dif- ferent irradiances. We believe that lilyturf is a shade-tolerant plant suitable for planting in undergrowth, but attention should be paid to the canopy density of the forest when interplanting.
    [Show full text]
  • Groundcover Alternatives to Turf Grass
    Revision Date: 31 January 2009 Rebecca Pineo, Botanic Gardens Intern Susan Barton, Extension Specialist University of Delaware Bulletin #131 Sustainable Landscapes Series Groundcover Alternatives to Turf Grass Plants that spread over time to cover the ground are referred to as groundcovers. Usually this term denotes low-growing plants, but groundcovers can also refer to taller, spreading shrubs or trees that grow together to create a dense cover of vegetation. Though turf grass is certainly one of the most popular groundcovers and useful for pathways and play surfaces, it is also one that requires relatively high maintenance. The wide range of low-maintenance, highly attractive, wildlife-benefiting groundcovers beckons to home landscapers searching for an alternative to traditional lawn spaces. (For more information about the disadvantages of turf grass lawns, consult the fact sheet “Turf Grass Madness: Reasons to Reduce the Lawn in Your Landscape,” available at http://www.ag.udel.edu/udbg/sl/vegetation.html ). What are the benefits of replacing some of your turf grass lawn with groundcovers? Reduces maintenance requirements and associated pollution. Groundcovers whose requirements fit the existing conditions of the site will require less fertilizer, pesticides and mowing than traditional turf grass. Less fertilizer and pesticides means less potential for pollution of runoff stormwater, and reducing lawn mower use cuts down on a significant source of air pollution. Offers higher wildlife value than a monoculture of turf grass. Diversity of vegetation supports a diversity of insects, the basis of the food web for local and migrating birds, small mammals, amphibians and reptiles as well as a variety of other beneficial wildlife.
    [Show full text]
  • Home, Yard, and Garden Pest Newsletter
    Of UNIVERSE V NOTICE: Return or renew all Library Materjalsl The Minimum Fee for each Lost Book is $50.00. The person charging this material is responsible for its return to the library from which it was withdrawn on or before the Latest Date stamped below. Theft, mutilation, and underlining of books are reasons for discipli- nary action and ntay result in dismissal from the University. To renew call Telephone Center, 333-8400 UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN L16I—O-1096 DEC 1 3 1999 ^^RICULTURE LIBRARY —— ^ 5 :OOPERATIVE EXTENSION SERVICE HOME, YARD GARDF^^ I DrcT ^ '^-' ( f collegeliege of agricultural, consumer and environmental sciences, university ( Illinois at urbana-champaign A Illinois natural history survey, champaign NcvviLtriER (,PR25B97 ^G Ubrar^ No. 1» April 16, 1997 newsletter coordinator, at (217) 333-6650. If you wish issues the Home,Yard and Garden This is the first of 22 of to discuss a specific article in the newsletter, contact Pest Newsletter. It will be prepared by Extension specialists the author whose name appears in parentheses at the in plant pathology, agricultural entomology, horticulture, end of the article. The author's telephone number will and agricultural engineering. Timely, short paragraphs usually be listed at the end of the newsletter. (Phil about pests of the home and its surroundings will make up Nixon) the newsletter When control measures are given, both chemical and nonchemical suggestions (when effective) will be given. PLANT DISEASES Welcome Plant Clinic Opens May 1 Welcome to the first issue of the 1997 Home, Yard The plant clinic serves as a clearinghouse for plant and Garden Pest Newsletter.
    [Show full text]