The effect of permafrost, vegetation, and lithology on Mg and Si isotope composition of the Yenisey River and its tributaries at the end of the spring flood Vasileios Mavromatisa,b*, Thomas Rindera, Anatoly S. Prokushkinc, Oleg S. Pokrovskya,d,e, Mikhail A. Koretsc, Jérôme Chmeleffa, Eric H. Oelkersa.f a Géosciences Environnement Toulouse (GET), CNRS, UMR 5563, Observatoire Midi- Pyrénées, 14 Av. E. Belin, 31400 Toulouse, France b Institute of Applied Geosciences, Graz University of Technology, Rechbauerstrasse 12, A- 8010 Graz, Austria. c V.N. Sukachev Institute of Forest, SB RAS, Akademgorodok 50/28, Krasnoyarsk 660036, Russia d BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, Russia e Institute of Ecological Problems of the North, RAS, 23 Naber. Sev. Dviny, Arkhangelsk fEarth Sciences, University College London, WC1E 6BT, United Kingdom *Corresponding author: E-mail address:
[email protected] 1 Abstract This work focuses on the behavior of the stable Mg and Si isotope compositions of the largest Arctic river, the Yenisey River and 28 of its major and minor tributaries during the spring flood period. Samples were collected along a 1500 km latitudinal profile covering a wide range of permafrost, lithology, and vegetation. Despite significant contrasts in the main physico-geographical, climate, and lithological parameters of the watersheds, the isotope composition of both dissolved Mg and Si was found to be only weakly influenced by the degree of the permafrost coverage, type of vegetation (forest vs. tundra), and lithology (granites, basalts, carbonates or terrigenous rocks). This observation is generally consistent with the lack of chemical uptake of Mg and Si by soil mineral formation and vegetation during the early spring.