Dimension, Tangent Space and Smoothness Week 4 Mar 30, Apr 1, 3

Total Page:16

File Type:pdf, Size:1020Kb

Dimension, Tangent Space and Smoothness Week 4 Mar 30, Apr 1, 3 Dimension, Tangent space and Smoothness Week 4 Mar 30, Apr 1, 3 Here we give the definition of dimension, tangent space and smooth points for an algebraic set. These concepts come from geometry but their definitions (at first) seems unrelated to it. We then show that they have indeed a more intuitive presentation. Here the organization of the notes. - Section1: we recall some facts about field extensions. Apart from the the first two definitions, the rest of the section is just a preparation for the proof of the main result of Section3. - Section2: we give the definition of dimension of an algebraic set Z as the transcendence degree of the field extension k ⊂ k(Z). - Section3: we show that any quasi-projective variety is birational to an hypersurface. - Section4: we introduce and study the Zariski Tangent Space at a point. The definition will be given in Subsection 4.3, using derivations. Then in Subsection 4.4, we give an alternative description for affine case, which is more explicit and helpful during exercises and computations. In Subsection 4.5, we present an alternative description using the maximal ideal of the local ring of germs of regular functions. - Section5: we explain the relationship between the dimension and the tangent space. And then we define what is a smooth/singular point. 1 Some facts about field extensions The aim of this section is to recall some facts about field extensions and proving a stronger version of Noether Normalisation Lemma for integral domains (see Proposition 10). Most of the effort here is needed for dealing with the separability of a field extension. It is a phenomenon appearing exclusively in positive characteristic. If you feel that characteristic zero is more than enough for you, my suggestion is to skip the parts about separability and go to the next section (and maybe come back later). Here a road map for the characteristic zero case: • Definition1 and Example2. • Definition3 and Example4. • Noether Normalisation Lemma for integral domains, i.e. Proposition 10. The proof in characteristic 0 follows immediately from NNL. Here K denotes an arbitrary field and K its algebraic closure. Definition 1. Let K ⊂ L be a field extension (i.e. an inclusion of fields). An element α 2 L is algebraic over K if there exists a polynomial f 2 K[x] such that f(α) = 0. An element α 2 L is transcendental over K if for any polynomial f 2 K[x] we have f(α) 6= 0. 1 Example 2. (a) Let Q ⊂ C. Then i is algebraic, because f(x) = x2 + 1 2 Q[x]. Instead, π and e are transcendental. (b) Let K ⊂ K(x), then x is transcendental over K. Definition 3. Let K ⊂ L be a field extension, the transcendence degree of L over K is the maximum number of transcendental elements with respect to K ⊂ L. We denote this number by tr: degK (L). We leave to the reader to check that the transcendence degree is a well-defined number, i.e. given to maximal sets ff1; : : : ; frg and fg1; : : : ; gsg of K-algebraically independent elements of L, then r = s. Example 4. tr: degk(k(x1; : : : ; xn)) = n. Let K ⊂ L be a field extension and α 2 L be an algebraic element over K. Then the kernel of the homomorphism of rings π : K[x] ! L : f 7! f(α) is a principal ideal, i.e I := ker(π) = (h) for some h 2 K[x]. The generator of I is well-defined up to scalar. In particular, there exists a unique monic generator h for I. We call h the minimal polynomial of α with respect to K ⊂ L. Equivalently: The minimal polynomial of α with respect to K ⊂ L is the unique monic polynomial h of least degree among all the polynomial f 2 K[x] such that f(α) = 0. Note that any α 2 L algebraic over K admits a minimal polynomial. Example 5. Assume K = Q, L = C and α = i. Then x2 + 1 2 Q[x] is the minimal polynomial of i. Definition 6. Let K ⊂ L be a field extension. (i) A polynomial f 2 K[x] is separable if it has distinct roots over K. (ii) Given α 2 L algebraic over K, we say α separable over K if its minimal polynomial is separable. Example 7. (a) If K have characteristic 0 (e.g. Q; R; C; C(x1; : : : ; xn)) then any algebraic element in L is separable. ∼ (b) If K is a finite field (e.g. K = Fp = Z=pZ with p prime), the any algebraic element in L is separable. (c) The interesting cases (where algebraic > separable) appear when K is infinite and of positive character- istic. The standard example is the (algebraic) extension p K := Fp(t ) ⊂ Fp(t) =: L: The element t 2 L is algebraic over K with minimal polynomial h := xp − tp 2 K[x] ) (X − t)p 2 K[x]: Hence the polynomial h is not separable and so neither t as an element over K. Definition 8. Let K ⊂ L be a field extension. (i) A field extension K ⊂ L is algebraic if any element in L is algebraic over K. (ii) A field extension K ⊂ L is separable if any element in L is separable over K. Example 9. By the previous example. (a) If K has characteristic 0 any algebraic field extension K ⊂ L is separable. (b) If K is a finite field, any algebraic field extension K ⊂ L is separable. 2 (c) If K is infinite and of positive characteristic, then it may be possible that algebraic6=separable. Indeed, p the algebraic field extension Fp(t ) ⊂ Fp(t) is not separable. We now show a stronger version of the Noether Normalisation Lemma for integral domains. Proposition 10. Assume k algebraically closed field. Let A be a finitely generated k-algebra with n gen- erators. Assume that A is an integral domain with field of fractions F . Then there exists m ≤ n and y1; : : : ; ym 2 A such that (i) y1; : : : ; ym are algebraically independent over k, i.e. it does not exists f 2 k[x1; : : : ; xm] such that f(y1; : : : ; ym) = 0. (ii) A is a finite k[y1; : : : ym]-algebra. (iii) k(y1; : : : ; ym) ⊂ F is a separable extension. Proof. Let p the characteristic of the field k. We distinguish two cases. p = 0 By Noether Normalisation Lemma points (i) and (ii) hold. In particular, point (ii) implies that the field extension k(y1; : : : ; ym) ⊂ F must be algebraic. Since p = 0, then it must be separable (see Example 9). p > 0 The plan is to repeat the proof of NSS with some modifications. We declare the following Claim: there exists a subring A0 ⊂ A such that: (a) A0 is a finitely generated k-algebra with n − 1 generators, (b) A is a finite A0-algebra, (c) the extension of fields of fractions Q(A0) ⊂ F is separable. 0 Assume the claim holds, by induction there exists y1; : : : ; ym 2 A ⊂ A with m ≤ n − 1 satisfying Thm(i). 0 Furthermore, A is a finite k[y1; : : : ; ym]-algebra. We recall that if A ⊂ B and B ⊂ C are finite algebras, then A ⊂ C is a finite algebra. Point (b) in the claim implies that A is a finite k[y1; : : : ; ym]-algebra (see 0 Prop. 26 Week 1), i.e. Thm(ii). Again by induction, k(y1; : : : ; ym) ⊂ Q(A ) is a separable extension. We remark that if K ⊂ L and L ⊂ Q are separable extensions, then K ⊂ Q is a separable extension (exercise). Hence, by point (c) in the claim, we get Thm(iii). It remains to show the claim. By assumptions there exists a surjective homomorphism π : k[x1; : : : ; xn] ! A; with ker(π) =: I prime ideal. Assume I 6= 0, otherwise the proposition is obvious. Fix a non-zero irreducible (it is possible because I prime) polynomial f 2 I. For any i, we can write d f = adxi + ::: + a0; ai 2 Ki where Ki is the subring of k[x1; : : : ; xn] of those polynomials with the degree zero with respect to xi (e.g. if i = 0 then K0 = k[x2; : : : ; xn]). Let Fi be the field of fractions of Ki. Then one (and only one) of the following two cases happens: 1. f is separable in Fi[xi], p 2. f 2 Fi[xi ] ⊂ Fi[x]. We want to show that there exists a choice of i, such that 1: holds. We argue by contradiction. Assume that f is not separable for any i, then p p f 2 k[x1; : : : ; xn]: Then using the identity (a + b)p = ap + bp in k, one can show that f = gp for some polynomial g. But this is in contradiction with the irreducibility of f. Hence, f is separable for some i, say i = n. Arguing as in the proof of NNL (see proof of Theorem 25 Week 1), we get that 0 0 f(x1 + c1xn; : : : ; xn−1 + cn−1xn; xn) 0 0 0 gives a (monic) separable relation for π(xn) over A = π(k[x1; : : : ; xn−1]). Proving the claim. 3 2 Dimension We now finally define the dimension of a quasi-projective algebraic set. n Definition 11. Let Z ⊂ Pk be a quasi-projective algebraic set. If Z is irreducible, the dimension of Z is the transcendence degree of the extension of the field k(Z) of rational functions of Z over k. We set dim Z := tr: degk(k(Z)): For a general Z with Z1;:::;Zr irreducible components, we set dim Z := maxifdim Zig: The dimension of Z at p is the number dimp Z := maxfdim Zi s.t.
Recommended publications
  • High Energy and Smoothness Asymptotic Expansion of the Scattering Amplitude
    HIGH ENERGY AND SMOOTHNESS ASYMPTOTIC EXPANSION OF THE SCATTERING AMPLITUDE D.Yafaev Department of Mathematics, University Rennes-1, Campus Beaulieu, 35042, Rennes, France (e-mail : [email protected]) Abstract We find an explicit expression for the kernel of the scattering matrix for the Schr¨odinger operator containing at high energies all terms of power order. It turns out that the same expression gives a complete description of the diagonal singular- ities of the kernel in the angular variables. The formula obtained is in some sense universal since it applies both to short- and long-range electric as well as magnetic potentials. 1. INTRODUCTION d−1 d−1 1. High energy asymptotics of the scattering matrix S(λ): L2(S ) → L2(S ) for the d Schr¨odinger operator H = −∆+V in the space H = L2(R ), d ≥ 2, with a real short-range potential (bounded and satisfying the condition V (x) = O(|x|−ρ), ρ > 1, as |x| → ∞) is given by the Born approximation. To describe it, let us introduce the operator Γ0(λ), −1/2 (d−2)/2 ˆ 1/2 d−1 (Γ0(λ)f)(ω) = 2 k f(kω), k = λ ∈ R+ = (0, ∞), ω ∈ S , (1.1) of the restriction (up to the numerical factor) of the Fourier transform fˆ of a function f to −1 −1 the sphere of radius k. Set R0(z) = (−∆ − z) , R(z) = (H − z) . By the Sobolev trace −r d−1 theorem and the limiting absorption principle the operators Γ0(λ)hxi : H → L2(S ) and hxi−rR(λ + i0)hxi−r : H → H are correctly defined as bounded operators for any r > 1/2 and their norms are estimated by λ−1/4 and λ−1/2, respectively.
    [Show full text]
  • Bertini's Theorem on Generic Smoothness
    U.F.R. Mathematiques´ et Informatique Universite´ Bordeaux 1 351, Cours de la Liberation´ Master Thesis in Mathematics BERTINI1S THEOREM ON GENERIC SMOOTHNESS Academic year 2011/2012 Supervisor: Candidate: Prof.Qing Liu Andrea Ricolfi ii Introduction Bertini was an Italian mathematician, who lived and worked in the second half of the nineteenth century. The present disser- tation concerns his most celebrated theorem, which appeared for the first time in 1882 in the paper [5], and whose proof can also be found in Introduzione alla Geometria Proiettiva degli Iperspazi (E. Bertini, 1907, or 1923 for the latest edition). The present introduction aims to informally introduce Bertini’s Theorem on generic smoothness, with special attention to its re- cent improvements and its relationships with other kind of re- sults. Just to set the following discussion in an historical perspec- tive, recall that at Bertini’s time the situation was more or less the following: ¥ there were no schemes, ¥ almost all varieties were defined over the complex numbers, ¥ all varieties were embedded in some projective space, that is, they were not intrinsic. On the contrary, this dissertation will cope with Bertini’s the- orem by exploiting the powerful tools of modern algebraic ge- ometry, by working with schemes defined over any field (mostly, but not necessarily, algebraically closed). In addition, our vari- eties will be thought of as abstract varieties (at least when over a field of characteristic zero). This fact does not mean that we are neglecting Bertini’s original work, containing already all the rele- vant ideas: the proof we shall present in this exposition, over the complex numbers, is quite close to the one he gave.
    [Show full text]
  • Jia 84 (1958) 0125-0165
    INSTITUTE OF ACTUARIES A MEASURE OF SMOOTHNESS AND SOME REMARKS ON A NEW PRINCIPLE OF GRADUATION BY M. T. L. BIZLEY, F.I.A., F.S.S., F.I.S. [Submitted to the Institute, 27 January 19581 INTRODUCTION THE achievement of smoothness is one of the main purposes of graduation. Smoothness, however, has never been defined except in terms of concepts which themselves defy definition, and there is no accepted way of measuring it. This paper presents an attempt to supply a definition by constructing a quantitative measure of smoothness, and suggests that such a measure may enable us in the future to graduate without prejudicing the process by an arbitrary choice of the form of the relationship between the variables. 2. The customary method of testing smoothness in the case of a series or of a function, by examining successive orders of differences (called hereafter the classical method) is generally recognized as unsatisfactory. Barnett (J.1.A. 77, 18-19) has summarized its shortcomings by pointing out that if we require successive differences to become small, the function must approximate to a polynomial, while if we require that they are to be smooth instead of small we have to judge their smoothness by that of their own differences, and so on ad infinitum. Barnett’s own definition, which he recognizes as being rather vague, is as follows : a series is smooth if it displays a tendency to follow a course similar to that of a simple mathematical function. Although Barnett indicates broadly how the word ‘simple’ is to be interpreted, there is no way of judging decisively between two functions to ascertain which is the simpler, and hence no quantitative or qualitative measure of smoothness emerges; there is a further vagueness inherent in the term ‘similar to’ which would prevent the definition from being satisfactory even if we could decide whether any given function were simple or not.
    [Show full text]
  • Chapter 2 Affine Algebraic Geometry
    Chapter 2 Affine Algebraic Geometry 2.1 The Algebraic-Geometric Dictionary The correspondence between algebra and geometry is closest in affine algebraic geom- etry, where the basic objects are solutions to systems of polynomial equations. For many applications, it suffices to work over the real R, or the complex numbers C. Since important applications such as coding theory or symbolic computation require finite fields, Fq , or the rational numbers, Q, we shall develop algebraic geometry over an arbitrary field, F, and keep in mind the important cases of R and C. For algebraically closed fields, there is an exact and easily motivated correspondence be- tween algebraic and geometric concepts. When the field is not algebraically closed, this correspondence weakens considerably. When that occurs, we will use the case of algebraically closed fields as our guide and base our definitions on algebra. Similarly, the strongest and most elegant results in algebraic geometry hold only for algebraically closed fields. We will invoke the hypothesis that F is algebraically closed to obtain these results, and then discuss what holds for arbitrary fields, par- ticularly the real numbers. Since many important varieties have structures which are independent of the field of definition, we feel this approach is justified—and it keeps our presentation elementary and motivated. Lastly, for the most part it will suffice to let F be R or C; not only are these the most important cases, but they are also the sources of our geometric intuitions. n Let A denote affine n-space over F. This is the set of all n-tuples (t1,...,tn) of elements of F.
    [Show full text]
  • Lecture 2 — February 25Th 2.1 Smooth Optimization
    Statistical machine learning and convex optimization 2016 Lecture 2 — February 25th Lecturer: Francis Bach Scribe: Guillaume Maillard, Nicolas Brosse This lecture deals with classical methods for convex optimization. For a convex function, a local minimum is a global minimum and the uniqueness is assured in the case of strict convexity. In the sequel, g is a convex function on Rd. The aim is to find one (or the) minimum θ Rd and the value of the function at this minimum g(θ ). Some key additional ∗ ∗ properties will∈ be assumed for g : Lipschitz continuity • d θ R , θ 6 D g′(θ) 6 B. ∀ ∈ k k2 ⇒k k2 Smoothness • d 2 (θ , θ ) R , g′(θ ) g′(θ ) 6 L θ θ . ∀ 1 2 ∈ k 1 − 2 k2 k 1 − 2k2 Strong convexity • d 2 µ 2 (θ , θ ) R ,g(θ ) > g(θ )+ g′(θ )⊤(θ θ )+ θ θ . ∀ 1 2 ∈ 1 2 2 1 − 2 2 k 1 − 2k2 We refer to Lecture 1 of this course for additional information on these properties. We point out 2 key references: [1], [2]. 2.1 Smooth optimization If g : Rd R is a convex L-smooth function, we remind that for all θ, η Rd: → ∈ g′(θ) g′(η) 6 L θ η . k − k k − k Besides, if g is twice differentiable, it is equivalent to: 0 4 g′′(θ) 4 LI. Proposition 2.1 (Properties of smooth convex functions) Let g : Rd R be a con- → vex L-smooth function. Then, we have the following inequalities: L 2 1.
    [Show full text]
  • Chapter 16 the Tangent Space and the Notion of Smoothness
    Chapter 16 The tangent space and the notion of smoothness We will always assume K algebraically closed. In this chapter we follow the approach of ˇ n Safareviˇc[S]. We define the tangent space TX,P at a point P of an affine variety X A as ⇢ the union of the lines passing through P and “ touching” X at P .Itresultstobeanaffine n subspace of A .Thenwewillfinda“local”characterizationofTX,P ,thistimeinterpreted as a vector space, the direction of T ,onlydependingonthelocalring :thiswill X,P OX,P allow to define the tangent space at a point of any quasi–projective variety. 16.1 Tangent space to an affine variety Assume first that X An is closed and P = O =(0,...,0). Let L be a line through P :if ⇢ A(a1,...,an)isanotherpointofL,thenageneralpointofL has coordinates (ta1,...,tan), t K.IfI(X)=(F ,...,F ), then the intersection X L is determined by the following 2 1 m \ system of equations in the indeterminate t: F (ta ,...,ta )= = F (ta ,...,ta )=0. 1 1 n ··· m 1 n The solutions of this system of equations are the roots of the greatest common divisor G(t)of the polynomials F1(ta1,...,tan),...,Fm(ta1,...,tan)inK[t], i.e. the generator of the ideal they generate. We may factorize G(t)asG(t)=cte(t ↵ )e1 ...(t ↵ )es ,wherec K, − 1 − s 2 ↵ ,...,↵ =0,e, e ,...,e are non-negative, and e>0ifandonlyifP X L.The 1 s 6 1 s 2 \ number e is by definition the intersection multiplicity at P of X and L.
    [Show full text]
  • Convergence Theorems for Gradient Descent
    Convergence Theorems for Gradient Descent Robert M. Gower. October 5, 2018 Abstract Here you will find a growing collection of proofs of the convergence of gradient and stochastic gradient descent type method on convex, strongly convex and/or smooth functions. Important disclaimer: Theses notes do not compare to a good book or well prepared lecture notes. You should only read these notes if you have sat through my lecture on the subject and would like to see detailed notes based on my lecture as a reminder. Under any other circumstances, I highly recommend reading instead the first few chapters of the books [3] and [1]. 1 Assumptions and Lemmas 1.1 Convexity We say that f is convex if d f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y); 8x; y 2 R ; t 2 [0; 1]: (1) If f is differentiable and convex then every tangent line to the graph of f lower bounds the function values, that is d f(y) ≥ f(x) + hrf(x); y − xi ; 8x; y 2 R : (2) We can deduce (2) from (1) by dividing by t and re-arranging f(y + t(x − y)) − f(y) ≤ f(x) − f(y): t Now taking the limit t ! 0 gives hrf(y); x − yi ≤ f(x) − f(y): If f is twice differentiable, then taking a directional derivative in the v direction on the point x in (2) gives 2 2 d 0 ≥ hrf(x); vi + r f(x)v; y − x − hrf(x); vi = r f(x)v; y − x ; 8x; y; v 2 R : (3) Setting y = x − v then gives 2 d 0 ≤ r f(x)v; v ; 8x; v 2 R : (4) 1 2 d The above is equivalent to saying the r f(x) 0 is positive semi-definite for every x 2 R : An analogous property to (2) holds even when the function is not differentiable.
    [Show full text]
  • Online Methods in Machine Learning: Recitation 1
    Online Methods in Machine Learning: Recitation 1. As seen in class, many offline machine learning problems can be written as: n 1 X min `(w, (xt, yt)) + λR(w), (1) w∈C n t=1 where C is a subset of Rd, R is a penalty function, and ` is the loss function that measures how well our predictor, w, explains the relationship between x and y. Example: Support Vector λ 2 w Machines with R(w) = ||w|| and `(w, (xt, yt)) = max(0, 1 − ythw, xti) where h , xti is 2 2 ||w||2 the signed distance to the hyperplane {x | hw, xi = 0} used to classify the data. A couple of remarks: 1. In the context of classification, ` is typically a convex surrogate loss function in the sense that (i) w → `(w, (x, y)) is convex for any example (x, y) and (ii) `(w, (x, y)) is larger than the true prediction error given by 1yhw,xi≤0 for any example (x, y). In general, we introduce this surrogate loss function because it would be difficult to solve (1) computationally. On the other hand, convexity enables the development of general- purpose methods (e.g. Gradient Descent) that are fast, easy to implement, and simple to analyze. Moreover, the techniques and the proofs generalize very well to the online setting, where the data (xt, yt) arrive sequentially and we have to make predictions online. This theme will be explored later in the class. 2. If ` is a surrogate loss for a classification problem and we solve (1) (e.g with Gradient Descent), we cannot guarantee that our predictor will perform well with respect to our original classification problem n X min 1yhw,xi≤0 + λR(w), (2) w∈C t=1 hence it is crucial to choose a surrogate loss function that reflects accurately the classifi- cation problem at hand.
    [Show full text]
  • Be a Smooth Manifold, and F : M → R a Function
    LECTURE 3: SMOOTH FUNCTIONS 1. Smooth Functions Definition 1.1. Let (M; A) be a smooth manifold, and f : M ! R a function. (1) We say f is smooth at p 2 M if there exists a chart f'α;Uα;Vαg 2 A with −1 p 2 Uα, such that the function f ◦ 'α : Vα ! R is smooth at 'α(p). (2) We say f is a smooth function on M if it is smooth at every x 2 M. −1 Remark. Suppose f ◦ 'α is smooth at '(p). Let f'β;Uβ;Vβg be another chart in A with p 2 Uβ. Then by the compatibility of charts, the function −1 −1 −1 f ◦ 'β = (f ◦ 'α ) ◦ ('α ◦ 'β ) must be smooth at 'β(p). So the smoothness of a function is independent of the choice of charts in the given atlas. Remark. According to the chain rule, it is easy to see that if f : M ! R is smooth at p 2 M, and h : R ! R is smooth at f(p), then h ◦ f is smooth at p. We will denote the set of all smooth functions on M by C1(M). Note that this is a (commutative) algebra, i.e. it is a vector space equipped with a (commutative) bilinear \multiplication operation": If f; g are smooth, so are af + bg and fg; moreover, the multiplication is commutative, associative and satisfies the usual distributive laws. 1 n+1 i n Example. Each coordinate function fi(x ; ··· ; x ) = x is a smooth function on S , since ( 2yi −1 1 n 1+jyj2 ; 1 ≤ i ≤ n fi ◦ '± (y ; ··· ; y ) = 1−|yj2 ± 1+jyj2 ; i = n + 1 are smooth functions on Rn.
    [Show full text]
  • Differentials and Smoothness
    Differentials and Smoothness February 17, 2017 We present a supplement, and in some cases alternative, to Hartshorne's Chapter II,x8 and Chapter II,x10. These notes are not meant to be self- contained, and will required reading Hartshorne for some definitions, some statements, and many important examples. We often do not include detailed proofs. 1 Derivations and deformations Definition 1 Let n be a natural number. An \nth order thickening" is a closed immersion i: S ! T which is defined by an ideal I such that In+1 = 0. A \nilpotent thickening" is a closed immersion which is an nth order thickening for some n > 0. If Y is a scheme, a thickening in the category of Y -schemes means a thickening i: S ! T of Y -schemes. Sometimes to emphasize this we may want to write i: S=Y ! T=Y . The underlying map of topological spaces of a nilpotent thickening is a homeomorphism, and we will sometimes identify the underlying spaces of S and T . First order thickening are especially convenient to work with. If I is the ideal of a first order thickening i: S ! T , then I2 = 0, and this means that if a is a local section of OT and x of I, then the product ax depends only on the image of a in OS. Thus I has a natural structure of an OS-module: ∗ the natural map I! i∗i (I) is an isomorphism. We will sometimes ourselves to identify I with i∗(I). Example 2 If M is a quasi-coherent sheaf of OS-modules, there is a scheme D(M) whose underlying topological space is S and whose structure sheaf 1 is OS ⊕ M, with the obvious OS-module structure and with multiplication defined by (a; x)(b; y) := (ab; ay+bx).
    [Show full text]
  • Notes on Smooth Manifolds
    UNIVERSITY OF SÃO PAULO Notes on Smooth Manifolds CLAUDIO GORODSKI December ii TO MY SON DAVID iv Foreword The concept of smooth manifold is ubiquitous in Mathematics. Indeed smooth manifolds appear as Riemannian manifolds in differential geom- etry, space-times in general relativity, phase spaces and energy levels in mechanics, domains of definition of ODE’s in dynamical systems, Riemann surfaces in the theory of complex analytic functions, Lie groups in algebra and geometry..., to name a few instances. The notion took some time to evolve until it reached its present form in H. Whitney’s celebrated Annals of Mathematics paper in 1936 [Whi36]. Whitney’s paper in fact represents a culmination of diverse historical de- velopments which took place separately, each in a different domain, all striving to make the passage from the local to the global. From the modern point of view, the initial goal of introducing smooth manifolds is to generalize the methods and results of differential and in- tegral calculus, in special, the inverse and implicit function theorems, the theorem on existence, uniqueness and regularity of ODE’s and Stokes’ the- orem. As usual in Mathematics, once introduced such objects start to atract interest on their own and new structure is uncovered. The subject of dif- ferential topology studies smooth manifolds per se. Many important results about the topology of smooth manifolds were obtained in the 1950’s and 1960’s in the high dimensional range. For instance, there exist topological manifolds admitting several non-diffeomorphic smooth structures (Milnor, 1956, in the case of S7), and there exist topological manifolds admitting no smooth strucuture at all (Kervaire, 1961).
    [Show full text]
  • PN 470 - 4/20/2007 – Thin Lift Asphalt Surface Smoothness Requirements
    PN 470 - 4/20/2007 – Thin Lift Asphalt Surface Smoothness Requirements Add the following requirements to 401.19: Determine the Profile Index and International Roughness Index (IRI) for each 0.10-mile (0.16- km) section of each asphalt pavement lane. Use equipment and computer printouts conforming to Supplement 1058 and that can provide both Profile Index (PI) and International Roughness Index (IRI) measurements. Notify the Engineer before beginning profile testing. Remove any dirt and debris from the pavement surface and then test the pavement surface in both wheel paths of the lane. The wheel paths are parallel to the centerline of the pavement and approximately 3.0 feet (1.0 m) measured transversely, from both lane edges. Provide all traffic control and survey stationing needed to perform the smoothness measurements. Develop the PI trace in accordance with California Test 526, 1978, using a 0.2-inch blanking band and the IRI in accordance with ASTM E1926 for each pavement section. Provide the Engineer with the two (2) copies of traces and calculations for determining pay. Include electronic copies of all longitudinal pavement profiles in the University of Michigan Transportation Research Institute’s Engineering Research Division [ERD] format. The Engineer will send a copy of all traces, electronic ERD files, evaluation results, and the project identification to the Pavement Management Section of the Office of Pavement Engineering. The Department will determine the unit price adjustment of the completed asphalt concrete pavement as follows: Pay Schedule Profile Index Price Adjust. Mean International (inches per mile Percent Roughness Index per 0.10 mile (1) (inches per mile) section) (IRI per 0.10 mile section) 1 or less 105 45 or less Over 1 to 2 103 Over 45 to 50 Over 2 to 3 102 Over 50 to 55 Over 3 to 4 101 Over 55 to 60 Over 4 100 Over 60 (1) The Department will determine the price adjustment percent using the IRI of the lane.
    [Show full text]