HIGH ENERGY AND SMOOTHNESS ASYMPTOTIC EXPANSION OF THE SCATTERING AMPLITUDE D.Yafaev Department of Mathematics, University Rennes-1, Campus Beaulieu, 35042, Rennes, France (e-mail :
[email protected]) Abstract We find an explicit expression for the kernel of the scattering matrix for the Schr¨odinger operator containing at high energies all terms of power order. It turns out that the same expression gives a complete description of the diagonal singular- ities of the kernel in the angular variables. The formula obtained is in some sense universal since it applies both to short- and long-range electric as well as magnetic potentials. 1. INTRODUCTION d−1 d−1 1. High energy asymptotics of the scattering matrix S(λ): L2(S ) → L2(S ) for the d Schr¨odinger operator H = −∆+V in the space H = L2(R ), d ≥ 2, with a real short-range potential (bounded and satisfying the condition V (x) = O(|x|−ρ), ρ > 1, as |x| → ∞) is given by the Born approximation. To describe it, let us introduce the operator Γ0(λ), −1/2 (d−2)/2 ˆ 1/2 d−1 (Γ0(λ)f)(ω) = 2 k f(kω), k = λ ∈ R+ = (0, ∞), ω ∈ S , (1.1) of the restriction (up to the numerical factor) of the Fourier transform fˆ of a function f to −1 −1 the sphere of radius k. Set R0(z) = (−∆ − z) , R(z) = (H − z) . By the Sobolev trace −r d−1 theorem and the limiting absorption principle the operators Γ0(λ)hxi : H → L2(S ) and hxi−rR(λ + i0)hxi−r : H → H are correctly defined as bounded operators for any r > 1/2 and their norms are estimated by λ−1/4 and λ−1/2, respectively.