A Study of Xanthium Insects to Be Used in the Biological
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
1 1 DNA Barcodes Reveal Deeply Neglected Diversity and Numerous
Page 1 of 57 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France. 12 3Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, 13 CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France. 14 4 Landesmuseum für Kärnten, Abteilung Zoologie, Museumgasse 2, 9020 Klagenfurt, Austria 15 5 Department of Entomology, University of Antananarivo, Antananarivo 101, Madagascar 16 6 Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road E., Guelph, ON 17 N1G2W1, Canada 18 7Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Genome Downloaded from www.nrcresearchpress.com by UNIV GUELPH on 10/03/18 19 Montpellier–Université Paul-Valéry Montpellier–EPHE), 1919 Route de Mende, F-34293 20 Montpellier, France. 21 8Department of Life Sciences, Natural History Museum, Cromwell Road, SW7 5BD, UK. 22 23 24 Email for correspondence: [email protected] For personal use only. This Just-IN manuscript is the accepted prior to copy editing and page composition. It may differ from final official version of record. 1 Page 2 of 57 25 26 Abstract 27 Madagascar is a prime evolutionary hotspot globally, but its unique biodiversity is under threat, 28 essentially from anthropogenic disturbance. -
Xanthium Strumarium, on Species Diversity and Composition of Invaded Plant Communities in Borena Zone, Ethiopia
Biodiversity International Journal Research Article Open Access Impact of invasive alien plant, Xanthium strumarium, on species diversity and composition of invaded plant communities in Borena zone, Ethiopia Abstract Volume 1 Issue 1 - 2017 Biological invasion is considered as the second greatest global threat to biodiversity. Amare Seifu, Nigussie Seboka, Manaye An IAPS, Xanthium strumarium, is widely spread in the agricultural land, roadside, near stagnant water and disturbed land of Borena Zone, Oromia Region. However, its Misganaw, Tesfaye Bekele, Edget Merawi, impact on diversity and floristic composition of the invaded plant communities has not Ashenafi Ayenew, Girum Faris been determined. Therefore, the objective of this study was to determine the impact Genetic Resources Access and Benefit Sharing Directorate, of Xanthium strumarium, on the species diversity and composition of invaded plant Ethiopian Biodiversity Institute, Ethiopia communities in Borena Zone. Accordingly, to examine its effects of invasions on the Correspondence: Amare Seifu, Genetic Resources Access species diversity and composition of invaded communities, ninety six 1m2 quadrats and Benefit Sharing Directorate, Ethiopian Biodiversity Institute, were sampled (48 quadrats for invaded and 48 for non-invaded or control).There were Addis Ababa, Ethiopia, Tel +251916595709, 70 species found in the non-invaded areas as compared to 31 in the invaded areas. Email [email protected] The number of species decreased by 55.71% in Xanthium strumarium invaded area as compared to control. The mean evenness value of the entire invaded sampled study Received: May 26, 2017 | Published: June 30, 2017 sites was 0.27 indicated that 27% of the plant communities had uniform distribution while the mean evenness value of the controls samples was 0.74 indicated that 74% of the plant communities had uniform distribution. -
DNA Barcodes Reveal Deeply Neglected Diversity and Numerous Invasions of Micromoths in Madagascar
Genome DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar Journal: Genome Manuscript ID gen-2018-0065.R2 Manuscript Type: Article Date Submitted by the 17-Jul-2018 Author: Complete List of Authors: Lopez-Vaamonde, Carlos; Institut National de la Recherche Agronomique (INRA), ; Institut de Recherche sur la Biologie de l’Insecte (IRBI), Sire, Lucas; Institut de Recherche sur la Biologie de l’Insecte Rasmussen,Draft Bruno; Institut de Recherche sur la Biologie de l’Insecte Rougerie, Rodolphe; Institut Systématique, Evolution, Biodiversité (ISYEB), Wieser, Christian; Landesmuseum für Kärnten Ahamadi, Allaoui; University of Antananarivo, Department Entomology Minet, Joël; Institut de Systematique Evolution Biodiversite deWaard, Jeremy; Biodiversity Institute of Ontario, University of Guelph, Decaëns, Thibaud; Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Montpellier–Université Paul-Valéry Montpellier–EPHE), , CEFE UMR 5175 CNRS Lees, David; Natural History Museum London Keyword: Africa, invasive alien species, Lepidoptera, Malaise trap, plant pests Is the invited manuscript for consideration in a Special 7th International Barcode of Life Issue? : https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 57 Genome 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France. -
RECORDS of the HAWAII BIOLOGICAL SURVEY for 1995 Part 2: Notes1
RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1995 Part 2: Notes1 This is the second of two parts to the Records of the Hawaii Biological Survey for 1995 and contains the notes on Hawaiian species of plants and animals including new state and island records, range extensions, and other information. Larger, more compre- hensive treatments and papers describing new taxa are treated in the first part of this Records [Bishop Museum Occasional Papers 45]. New Hawaiian Pest Plant Records for 1995 PATRICK CONANT (Hawaii Dept. of Agriculture, Plant Pest Control Branch, 1428 S King St, Honolulu, HI 96814) Fabaceae Ulex europaeus L. New island record On 6 October 1995, Hawaii Department of Land and Natural Resources, Division of Forestry and Wildlife employee C. Joao submitted an unusual plant he found while work- ing in the Molokai Forest Reserve. The plant was identified as U. europaeus and con- firmed by a Hawaii Department of Agriculture (HDOA) nox-A survey of the site on 9 October revealed an infestation of ca. 19 m2 at about 457 m elevation in the Kamiloa Distr., ca. 6.2 km above Kamehameha Highway. Distribution in Wagner et al. (1990, Manual of the flowering plants of Hawai‘i, p. 716) listed as Maui and Hawaii. Material examined: MOLOKAI: Molokai Forest Reserve, 4 Dec 1995, Guy Nagai s.n. (BISH). Melastomataceae Miconia calvescens DC. New island record, range extensions On 11 October, a student submitted a leaf specimen from the Wailua Houselots area on Kauai to PPC technician A. Bell, who had the specimen confirmed by David Lorence of the National Tropical Botanical Garden as being M. -
Ehrlichiosis and Anaplasmosis Are Tick-Borne Diseases Caused by Obligate Anaplasmosis: Intracellular Bacteria in the Genera Ehrlichia and Anaplasma
Ehrlichiosis and Importance Ehrlichiosis and anaplasmosis are tick-borne diseases caused by obligate Anaplasmosis: intracellular bacteria in the genera Ehrlichia and Anaplasma. These organisms are widespread in nature; the reservoir hosts include numerous wild animals, as well as Zoonotic Species some domesticated species. For many years, Ehrlichia and Anaplasma species have been known to cause illness in pets and livestock. The consequences of exposure vary Canine Monocytic Ehrlichiosis, from asymptomatic infections to severe, potentially fatal illness. Some organisms Canine Hemorrhagic Fever, have also been recognized as human pathogens since the 1980s and 1990s. Tropical Canine Pancytopenia, Etiology Tracker Dog Disease, Ehrlichiosis and anaplasmosis are caused by members of the genera Ehrlichia Canine Tick Typhus, and Anaplasma, respectively. Both genera contain small, pleomorphic, Gram negative, Nairobi Bleeding Disorder, obligate intracellular organisms, and belong to the family Anaplasmataceae, order Canine Granulocytic Ehrlichiosis, Rickettsiales. They are classified as α-proteobacteria. A number of Ehrlichia and Canine Granulocytic Anaplasmosis, Anaplasma species affect animals. A limited number of these organisms have also Equine Granulocytic Ehrlichiosis, been identified in people. Equine Granulocytic Anaplasmosis, Recent changes in taxonomy can make the nomenclature of the Anaplasmataceae Tick-borne Fever, and their diseases somewhat confusing. At one time, ehrlichiosis was a group of Pasture Fever, diseases caused by organisms that mostly replicated in membrane-bound cytoplasmic Human Monocytic Ehrlichiosis, vacuoles of leukocytes, and belonged to the genus Ehrlichia, tribe Ehrlichieae and Human Granulocytic Anaplasmosis, family Rickettsiaceae. The names of the diseases were often based on the host Human Granulocytic Ehrlichiosis, species, together with type of leukocyte most often infected. -
Spiny Cocklebur Row Crop (Xanthium Spinosum L.) Gary N
Spiny cocklebur Row Crop (Xanthium spinosum L.) Gary N. Ervin, Ph.D., Department of Biological Sciences, Mississippi State University John D. Madsen, Ph.D., Geosystems Research Institute, Mississippi State University Ryan M. Wersal, Geosystems Research Institute, Mississippi State University Fig. 1. Spiny cocklebur spreads by seeds Fig. 2. Spiny cocklebur has male and female flowers Fig. 3. Spiny cocklebur plants grow to clinging to animal fur or human clothing. on the same plant. five feet tall. Introduction Problems Created Spiny cocklebur is an annual plant found in highly disturbed habitats and farm areas. The burs (fruits) of this species become tangled in the fur of livestock, increasing costs to the consumers of wool products. It competes with crops and is a nuisance when growing with hand-harvested crops. The seeds and seedlings of spiny cocklebur are poisonous if consumed, and they are particularly toxic to swine and horses. Regulations Spiny cocklebur is listed as a “B” designated quarantine weed in Oregon and a class “C” noxious weed in Washington. In Arkan- sas, the genus Xanthium is listed as noxious weeds, likely more for spiny cocklebur’s congener Xanthium strumarium (rough cocklebur), which has a much wider distribution in the state. Description Vegetative Growth Spiny cocklebur is an annual plant that blooms in summer. It grows to 5’ tall with striate stems that are yellowish or brownish gray. The leaves may be entire or toothed or lobed. The lower surface of the leaves is covered with white hairs, and the upper leaf surface is white-veined. Leaves are 1’’to 3’’ long and have a 3-forked spine at the leaf base, giving this species the common name “spiny” cocklebur. -
The Microlepidopterous Fauna of Sri Lanka, Formerly Ceylon, Is Famous
ON A COLLECTION OF SOME FAMILIES OF MICRO- LEPIDOPTERA FROM SRI LANKA (CEYLON) by A. DIAKONOFF Rijksmuseum van Natuurlijke Historie, Leiden With 65 text-figures and 18 plates CONTENTS Preface 3 Cochylidae 5 Tortricidae, Olethreutinae, Grapholitini 8 „ „ Eucosmini 23 „ „ Olethreutini 66 „ Chlidanotinae, Chlidanotini 78 „ „ Polyorthini 79 „ „ Hilarographini 81 „ „ Phricanthini 81 „ Tortricinae, Tortricini 83 „ „ Archipini 95 Brachodidae 98 Choreutidae 102 Carposinidae 103 Glyphipterigidae 108 A list of identified species no A list of collecting localities 114 Index of insect names 117 Index of latin plant names 122 PREFACE The microlepidopterous fauna of Sri Lanka, formerly Ceylon, is famous for its richness and variety, due, without doubt, to the diversified biotopes and landscapes of this beautiful island. In spite of this, there does not exist a survey of its fauna — except a single contribution, by Lord Walsingham, in Moore's "Lepidoptera of Ceylon", already almost a hundred years old, and a number of small papers and stray descriptions of new species, in various journals. The authors of these papers were Walker, Zeller, Lord Walsingham and a few other classics — until, starting with 1905, a flood of new descriptions 4 ZOOLOGISCHE VERHANDELINGEN I93 (1982) and records from India and Ceylon appeared, all by the hand of Edward Meyrick. He was almost the single specialist of these faunas, until his death in 1938. To this great Lepidopterist we chiefly owe our knowledge of all groups of Microlepidoptera of Sri Lanka. After his death this information stopped abruptly. In the later years great changes have taken place in the tropical countries. We are now facing, alas, the disastrously quick destruction of natural bio- topes, especially by the reckless liquidation of the tropical forests. -
Host Plant Records for North American Ragweed Flies (Diptera: Tephritidae) 1
Vol. 95, No. 2. March & April 1984 51 HOST PLANT RECORDS FOR NORTH AMERICAN RAGWEED FLIES (DIPTERA: TEPHRITIDAE) 1 B.A. Foote2 ABSTRACT: Information is given on host plants and infestation rates for 7 of the 8 North American species of Euaresta. The host plants are either ragweeds of the genus Ambrosia or cockleburs of the genus Xanthium, 2 genera of the tribe Ambrosieae (Compositae). The genus Euaresta is a relatively small taxon within the family Tephritidae of the acalyptrate Diptera. It includes 8 species from America north of Mexico (Quisenberry, 1950; Foote, 1965), as well as several from south of the United States; however, virtually no host data are available for these latter species and some doubt exists as to whether they actually belong to the genus (R.H. Foote, in litt.). Relatively little is known of the life histories or larval feeding habits of the Nearctic species except that they seem to be associated either with cockleburs of the genus Xanthium or ragweeds of the genus Ambrosia (Compositae: Ambrosieae). Marlatt 1 1 the ( 89 ) discussed natural history of E. aequalis(Loew), a seed predator of cocklebur (X. strumarium L.). Foote (1965) reported that larvae of E. bella(Loew) and E. festiva (Loew) attacked the seeds of common ragweed (A. artemisiifolia L.) and giant ragweed (A. trifida L.), respectively. He also listed host plants for selected species of Euaresta and discussed briefly the life cycles of E. bella and E. festiva. Batra (1979) described in considerable detail the courtship behavior and oviposition habits of these two species. Goeden and Ricker (1974a, 1974b, 1976) recorded host for plants E. -
A Scanning Electron Microscope Study1
Türk. entomol. derg., 2018, 42 (2): 109-116 ISSN 1010-6960 DOI: http://dx.doi.org/10.16970/entoted.371182 E-ISSN 2536-491X Original article (Orijinal araştırma) Spermathecae morphology of some Tephritinae (Diptera: Tephritidae) species: A scanning electron microscope study1 Bazı Tephritinae (Diptera: Tephritidae) türlerinin spermateka morfolojisi: Bir taramalı elektron mikroskop çalışması Murat KÜTÜK2* Mehmet YARAN3 Ekrem ASLAN2 Filiz ÖZBAŞ GERÇEKER2 Abstract Spermathecal structure of five species [Campiglossa producta (Loew, 1844), Campiglossa tessellata (Loew, 1844), Euaresta bullans (Wiedemann, 1830), Tephritis formosa (Loew, 1844), Tephritis nigricauda (Loew, 1856)] from subfamily Tephritinae were examined using light and scanning electron microscopy. The specimens were collected between 1999 and 2013 from various provinces of Turkey. Spermathecae were coated in gold/palladium with a Emitech SC 7620 Sputter Coater and examined with a Jeol 6390 LV scanning electron microscope (SEM) operated at 10 kV. Spermathecal structures were characterized as spermathecal bulb, pumping region and spermathecal channel. Descriptions of the spermathecal structures, size of spermathecal bulb, aspect ratio of spermathecal bulb and SEM micrographs of spermathecae are presented for each species. Keywords: SEM, spermathecae, Tephritidae, Tephritinae Öz Tephritinae altfamilyasına ait beş türün [Campiglossa producta (Loew, 1844), Campiglossa tessellata (Loew, 1844), Euaresta bullans (Wiedemann, 1830), Tephritis formosa (Loew, 1844), Tephritis nigricauda (Loew, 1856)] spermateka yapıları ışık ve taramalı elektron mikroskopu (SEM) kullanılarak incelenmiştir. Türler 1999 ve 2013 yılları arasında Türkiye’nin çeşitli illerinden toplanmıştır. Spermateka örneklerine Emitech SC 7620 Sputter Coater ile altın/paladyum kaplaması yapılarak Jeol 6390 LV SEM ile 10 kV’ da incelendi. Spermateka yapıları spermatekal bulb, pompalama bölgesi ve spermateka kanalı olarak karakterize edilmiştir. -
Ecological and Phytochemical Studies on Some Asteraceous Plants of Hanumangarh District, Rajasthan ( Xanthium Strumarium)
Volume II, Issue V,May 2013 IJLTEMAS ISSN 2278 - 2540 Ecological and phytochemical studies on some Asteraceous plants of hanumangarh district, Rajasthan ( Xanthium strumarium) B.B.S. Kapoor1, Mukesh Kumar Sharma2 1Herbal Research Laboratory,Dunger College,Bikaner- [email protected] 2Ph.D scholar J.J.T. University Jhunjhunu- [email protected] INTRODUCTION Hanumangarh is a city in northern Rajasthan state in western India, situated on the banks of the river Ghaggar. Hanumangarh district, situated at 29° 5' to 30° 6' North and 74° 3' to 75º 3' east, shares its boundaries with Haryana state in the east, Sriganganagar district in the west, Punjab state in the North and Churu district in the South. The geographical area of the district is 9656.09 Sq. Km. The climate of the district is semi-dry, extremely hot during the summer and extremely cold during winter. The maximum average temperature remains 18° to 48° and minimum average is 2° to 28° celcius. The average rainfall during the year is 225 to 300 mm. The Hanumangarh district also has a significant place in the ancient history. The remains found at Kalibanga [Pilibanga] in 1951 reveal that this area was a part of nearly 5000 years old "INDUS VALLEY" civilization. The remains of human skeleton, unknown scripts, stamps, coins, utensils, jewellary, toys, statues, wells, bathrooms, fort, streets, markets etc., found in excavation tell the story of well developed life style of our ancestors. Besides Kalibanga, more than 100 other places are also there in the district where evidences of this old civilization have been found. The remains found at these places have been kept at Museum at Kalibanga and National museum at Delhi. -
Butterflies of North America
Insects of Western North America 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University, Fort Collins, CO 80523-1177 2 Insects of Western North America. 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa by Boris C. Kondratieff, Luke Myers, and Whitney S. Cranshaw C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 August 22, 2011 Contributions of the C.P. Gillette Museum of Arthropod Diversity. Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523-1177 3 Cover Photo Credits: Whitney S. Cranshaw. Females of the blow fly Cochliomyia macellaria (Fab.) laying eggs on an animal carcass on Fort Sill, Oklahoma. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, 80523-1177. Copyrighted 2011 4 Contents EXECUTIVE SUMMARY .............................................................................................................7 SUMMARY AND MANAGEMENT CONSIDERATIONS -
First Observation of Field Dodder and Its Host Range in Meghalaya
Indian Journal of Weed Science 50(2): 192–194, 2018 Print ISSN 0253-8040 Online ISSN 0974-8164 First observation of field dodder and its host range in Meghalaya Nazir Ahmad Bhat, Licha Jeri, Yogendra Kumar and Aabid Hussain Mir* North-Eastern Hill University, Shillong, Meghalaya 793 022 Email: [email protected] Article information ABSTRACT DOI: 10.5958/0974-8164.2018.00046.1 The present paper reports the first observation of a field dodder, Cuscuta campestris Yuncker from Meghalaya, Northeast India. Detailed field study has Type of article: Research note revealed a total of 51 host plant species, with Mikania micrantha Kunth., Received : 30 June 2017 Parthenium hysterophorus L. and Duranta erecta L. being most favorable Revised : 1 April 2018 hosts. Anatomical study revealed that the parasite deteriorates the host plant Accepted : 6 April 2018 by infiltrating its haustoria deep into the vascular bundles. It may also act as an Key words economic threat to agricultural and horticultural sector in the state, as it largely Cuscuta campestris, Convolvulaceae, reduces the host vigour and crop production. Therefore, there is an urgent need Extended distribution, Parasitic weed to control its invasion in the state. Field dodder (Cuscuta campestris) is an annual the wind, water, birds and animals. The seeds remain obligate stem holoparasitic species belonging to the viable in the soil for about 10-30 years and may family Convolvulaceae (Cuscutaceae). The genus germinate throughout the year (Wisler and Norris Cuscuta comprises of about 200 parasitic plant 2005). Besides it behaves as a vector for numerous species, distributed throughout the tropical, plant pathogens, such as Cucumber Mosaic Virus and subtropical and temperate regions of the world with African Cassava Mosaic Virus (Wisler and Norris 2005).