PDF: Releasing Multiple Biological Control Agents

Total Page:16

File Type:pdf, Size:1020Kb

PDF: Releasing Multiple Biological Control Agents dr. bugs BY RAYMOND A. CLOYD Releasing Multiple Biological Control Agents Question: What are your thoughts about releasing more than one biological control agent to regulate an arthropod (insect and/or mite) pest population? Answer: You ask a very good question. To properly address the question, it is important to provide some introductory information. First, there are two types of biological control agents: specialists and generalists. Specialists attack or feed on one or only a few at most different arthropod pests. Generalists tend to attack or feed on several different arthropod pests. Furthermore, generalists will feed and reproduce on alternative food sources including pollen (as will some specialists). In general, parasitoids tend to be specialists, whereas predators tend to be generalists. An inadvertent effect of releasing different species of generalist predators in a biological control Raymond A. Cloyd Green lacewing larva. program is that the released predators may prey is professor and upon each other or another biological control agent; this that have been parasitized by the parasitoid, Leptomastix Extension specialist is called intraguild predation. dactylopii; and 4) the predatory mite, Amblyseius swirskii, will in horticultural Intraguild predation occurs when one biological control prey upon the larvae of the aphid predatory midge, Aphidoletes entomology/ agent feeds on another biological control agent. Consequently, aphidomyza, and will also feed on the eggs, larvae, and nymphs plant protection intraguild predation can negatively impact or disrupt biological of P. persmilis. at Kansas State control. There are numerous examples of intraguild predation The effect of intraguild predation, based on releasing University. He occurring under greenhouse conditions, including the following: multiple biological control agents, may be associated with the can be reached at 1) the predatory mite, [email protected]. formulation or how biological Neoseiulus californicus, will control agents are packaged. feed on another predatory For instance, ‘breeder piles’ mite, Phytoseiulus persimilis, Intraguild are small piles (1 to 3 grams) when the targeted pest is containing the predatory mite, absent, in this case, the predation occurs Neoseiulus cucumeris, and twospotted spider mite, bran mold mite, Tyrophagus Tetranychus urticae; 2) putrescentiae, that are adults of the predatory bug, when one biological placed on the surface of Orius majusculus, will feed the growing medium. These on sweet potato whitefly, control agent feeds breeder piles should not be Bemisia tabaci, nymphs that used in conjunction with the have been parasitized by the rove beetle, Dalotia (formally parasitoid, Encarsia formosa. on another biological Atheta) coriaria, because rove As a result, the interactions beetle adults and larvae feed between O. majusculus control agent. on predatory mites in the and E. formosa can disrupt breeder piles. biological control of the sweet It is important to note potato whitefly; 3) the "mealybug destroyer," Cryptolaemus that releasing multiple biological control agents does not montrouzieri, will feed on citrus mealybugs, Planococcus citri, always result in a disruption of biological control or intraguild 18 JANUARY 2021 GPNMAG.COM DR. BUGS BOOTH #0106 www.ipmlabs.com • 315 497 2063 [email protected] Mealybug destroyer (Cryptolaemus montrouzieri) adult. Biological controlsGreenhouse for Grower 2021 Aphids, Thrips, Fungus Gnats, APHID GUARDTM Spider Mites, Whiteflies and more… Banker Plant NEW! Predatory mite (Neoseiulus cucumeris). predation. For instance, greatly influence intraguild simultaneously releasing two predation. whitefly parasitoids; E. formosa Intraguild predation is an and E. pergandiella, and a interaction that occurs when predator, Delphastus pusillus multiple biological control agents (=catalinae), did not negatively are released simultaneously with affect regulation of silverleaf one of the biological control whitefly, Bemisia argentifolii, agent inducing mortality on populations. another biological control agent. Life stage may influence This can influence the success ALYSSUM (AURINIA) saxatile ’Gold Kobold’ intraguild predation because of biological control programs, individuals are typically more although this may not always the susceptible when small and/ case. Therefore, for a biological Exciting New Perennial or in certain life stages such control program to succeed, as eggs, larvae, nymphs, and/ it is critical to avoid releasing Varieties from Seed or pupae. For example, green multiple biological control agents lacewing, Chrysoperla carnea, or determine those biological www.jelitto.com larvae prey upon ladybird beetle, control agents that can be used Hippodamia convergens, larvae together to regulate arthropod and immatures of the parasitoid, pest populations without Aphidius smithi. Therefore, life resulting in reduced arthropod stage, which is associated with mortality caused by intraguild Production · Breeding · Seed Technology body size, is a factor that can predation. USA Office: 125 Chenoweth Ln. · Louisville, KY 40207 Phone (502) 895-08 07 · Fax (502) 895-39 34 · www.jelitto.com · [email protected] German Headquarters: P. O. Box 1264 · D-29685 Schwarmstedt Phone 01149-5071-98 29-0 · Fax 01149-50 71-98 29-27 · [email protected] .
Recommended publications
  • Contrasting Ladybird Beetle Responses to Urban Environments Across Two US Regions
    sustainability Article Context Matters: Contrasting Ladybird Beetle Responses to Urban Environments across Two US Regions Monika Egerer 1,* ID , Kevin Li 2 and Theresa Wei Ying Ong 3,4 ID 1 Environmental Studies Department, University of California, Santa Cruz, Santa Cruz, CA 95064, USA 2 Department of Plant Sciences, University of Göttingen, Göttingen NI 37077, Germany; [email protected] 3 Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; [email protected] 4 Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA * Correspondence: [email protected]; Tel.: +1-734-775-8950 Received: 8 April 2018; Accepted: 30 May 2018; Published: 1 June 2018 Abstract: Urban agroecosystems offer an opportunity to investigate the diversity and distribution of organisms that are conserved in city landscapes. This information is not only important for conservation efforts, but also has important implications for sustainable agricultural practices. Associated biodiversity can provide ecosystem services like pollination and pest control, but because organisms may respond differently to the unique environmental filters of specific urban landscapes, it is valuable to compare regions that have different abiotic conditions and urbanization histories. In this study, we compared the abundance and diversity of ladybird beetles within urban gardens in California and Michigan, USA. We asked what species are shared, and what species are unique to urban regions. Moreover, we asked how beetle diversity is influenced by the amount and rate of urbanization surrounding sampled urban gardens. We found that the abundance and diversity of beetles, particularly of unique species, respond in opposite directions to urbanization: ladybirds increased with urbanization in California, but decreased with urbanization in Michigan.
    [Show full text]
  • Introductions for Biological Control in Hawaii: 1979 and 1980
    Vol. 24, No. 1, September 15, 1982 109 Introductions for Biological Control in Hawaii: 1979 and 1980 PY. LAI, G.Y. FUNASAKI, S Y. HIGA1 The Plant Pest Control Branch (formerly Entomology Branch) of the Hawaii Department of Agriculture has maintained a beneficial organism introduction program for many years. This paper provides notes on the status of some pests and their purposely introduced natural enemies and a list of insects introduced and released for biological control during 1979 and 1980 (Table 1). All benefi cial introductions are thoroughly screened and studied in a quarantine facility and must go through a clearance process prior to being released. WEED PEST CONTROL Ageratina riparia (Regel) K. & R. (Hamakua pamakani) Three organisms contributing to the control of Hamakua pamakani are the stem galling tephritid, Procecidochares alani Steyskal, the leaf defoliating ptero- phorid, Oidaematophorus sp., and the leaf spotting fungus, Cercosporella sp. (introduced by Dr. E.E. Trujillo, Univeristy of Hawaii Plant Pathologist). P. alani was initially released on Hawaii Island in 1974, Oidaematophorus sp. in 1973 andC. sp.in 1975. The combined activities of these purposely introduced beneficial organisms have contributed by severely reducing thickets of Hamakua pamakani on the island of Hawaii. Desirable forage grasses have replaced pamakani in 16,000 to 20,000 ha of pasture lands. Many of these previously heavily infested lands have been restored to productive use. Salsola pestifer A. Nelson (Russian thistle) Through the cooperation of the USDA Biological Control of Weeds Labora tory, Albany, California, two beneficial coleophorids, Coleophora parthenica Meyrick and C. klimeschiella Toll, were introduced to aid in the control of Rus sian thistle, a noxious weed that infests about 320 ha of rangelands on Hawaii.
    [Show full text]
  • Delphastus Pusillus Raymond A
    Floriculture Indiana Vol. 8 No. 4 Fall 1994 Page 4 Delphastus pusillus Raymond A. Cloyd Entomology Department, Purdue University Whiteflies are major greenhouse pests, are longer than they are wide. The fourth instar and the two most commonly encountered are: the eventually crawls down a plant stalk and pupates greenhouse whitefly, Trialeurodes vaporariorum, inside driedup leaves. Newly emerged adults are and the silver-leaf whitefly, Bemisia argentifolii pale-brown to almost white, but they eventually (formerly known as strain 'B' ofthe sweet potato turn black. Development from egg to adult takes whitefly, Bemisia tabaci). One method ofwhite about 3 weeks at 80° F. Females live for about 50 fly control is reliance on chemical insecticides. daysandcanlay approximately3to4 eggs perday. Though chemical insecticides have been some Bothlarvaeand adults areactive predators that can what effective in controlling whiteflies they are consume over 300 eggs or 100nymphsofsilverleaf becoming more difficult to use because of strin whitefly per day. Adults and larvae feed by gent rules and regulations. An alternative control piercingthe insect integument (covering) and ex method is the use ofbeneficial organisms or bio tractingout the contents. Release ofD. pusillus is logical control. Control of greenhouse whitefly compatible with other biological control organ has been very successful with the parasitoid, isms becauseitavoidsparasitizedwhiteflies. Some Encarsia formosa. This parasitoid,however, is not thing to be aware ofwhen using D. pusillus is that as effective in controlling silverleaf whitefly. In trichomes (hairs)on plantleaves can deter feeding contrast, Delphastus pusillus, a predatory beetle and egg laying. shows more potential for controlling this pest. Considerations for Use Biology Releases must be concentrated near areas Delphastus pusillus is a native lady bird ofhighwhitefly populations.
    [Show full text]
  • Biological Pest Controls: Possibilities for Improved Implementation in Iowa David B
    Proceedings of the Integrated Crop Management Proceedings of the 1990 Crop Production and Conference Protection Conference Dec 19th, 12:00 AM Biological Pest Controls: Possibilities for Improved Implementation in Iowa David B. Orr Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/icm Part of the Agriculture Commons, and the Entomology Commons Orr, David B., "Biological Pest Controls: Possibilities for Improved Implementation in Iowa" (1990). Proceedings of the Integrated Crop Management Conference. 23. https://lib.dr.iastate.edu/icm/1990/proceedings/23 This Event is brought to you for free and open access by the Conferences and Symposia at Iowa State University Digital Repository. It has been accepted for inclusion in Proceedings of the Integrated Crop Management Conference by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. BIOLOGICAL PEST CONTROLS: POSSIBILITIES FOR IMPROVED IMPLEMENTATION IN IOWA David B. orr Temporary Assistant Professor Department of Entomology Introduction Chemical insecticides are the standard means for reducing populations of insect pests in agricultural and horticultural settings. However, government regulations are restricting the use of a variety of pesticides for many agricultural uses. The requirement of registration for all pesticides labelled before 1984 has already resulted in the cancellation of approximately 20,000 pesticide registrations in 1989. In addition, pest resistance to insecticides (over 400 species), and an increased sensitivity in the general public to possible environmental and health hazards are forcing the agricultural industry to search for alternatives to chemical control. Integrated Pest Management (IPM) offers the possibility of reduced pesticide use, and more sustainable pest management systems.
    [Show full text]
  • GREENHOUSE WHITEFLY SCIENTIFIC NAME: Trialeurodes Vaporariorum (Westwood) CLASS: Insecta ORDER: Hemiptera FAMILY: Alerodidae
    OneStop | Directories | Search CUES: Center for Urban U of M Ecology and Sustainability Back to Pest Identification and Diagnosis FROM: Introduction to Whiteflies Ke to Whiteflies Silverleaf Whitefl Sweetpotato Whitefl Bandedwinged Whitefl Greenhouse Whitefl Citrus Whitefl Aalea Whitefl GREENHOUSE WHITEFLY SCIENTIFIC NAME: Trialeurodes vaporariorum (Westwood) CLASS: Insecta ORDER: Hemiptera FAMILY: Alerodidae A. Adult B. Egg C. Crawler D. Pupa Greenhouse Whitefl Life Ccle From: Universit of California From: NC E“tension DESCRIPTION Adults: About 1.5 mm long, the adult is a white insect that resembles a tin moth. Eggs: The small oblong eggs, pale green to purple, are deposited on the lower leaf surface, often in a circle or a crescent. Nmphs: The first instar nmph is mobile and similar to a scale insect crawler. Later nmphal stages are ellowish with red ees, and are immobile. The resemble soft scale insects, but have an orifice on the back through which honedew is e“pelled. Pupae: The oval pupa is pale green to black when parasitied. The normal color, when empt, is clear-glass with a fringe of glass setae, and with some long glass setae on the dorsal surface. The pupal case sits upon a vertical palisade of closel appressed wa“ rods (these are readil visible in side view). BIOLOGY Distribution: Greenhouse whiteflies are worldwide pests of greenhouse-grown ornamentals and vegetables. First discovered in England in 1856, the were found in the northeastern United States in 1870. Tropical Central or South America are suggested origins of the greenhouse whitefl. Host Plants: Greenhouse whiteflies infest a wide variet of ornamental and vegetable crops, and the can survive outdoors during the growing season, particularl in sheltered locations.
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • Compatibility of the Predatory Beetle, Delphastus Catalinae, with An
    insects Article Compatibility of the Predatory Beetle, Delphastus catalinae, with an Entomopathogenic Fungus, Cordyceps fumosorosea, for Biocontrol of Invasive Pepper Whitefly, Aleurothrixus trachoides, in Florida 1 2, , 3 4 Pasco B. Avery , Vivek Kumar * y , Antonio Francis , Cindy L. McKenzie and Lance S. Osborne 2 1 Indian River Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 2199 South Rock Road, Fort Pierce, FL 34945, USA; pbavery@ufl.edu 2 IFAS, Mid-Florida Research and Education Center, University of Florida, 2725 S. Binion Road, Apopka, FL 32703, USA; lsosborn@ufl.edu 3 Florida Department of Agriculture and Consumer Services, UF/IFAS Mid-Florida Research and Education Center Division of Plant Industry, 915 10th Street E, Palmetto, FL 34221, USA; Antonio.Francis@freshfromflorida.com 4 Horticultural Research Laboratory, Subtropical Insect Research Unit, USDA-ARS, U.S., 2001 South Rock Road, Fort Pierce, FL 34945, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-636-383-2665 Current address: Bayer Crop Science, Chesterfield, MO 63017, USA. y Received: 26 July 2020; Accepted: 30 August 2020; Published: 1 September 2020 Simple Summary: The solanum whitefly, Aleurothrixus trachoides, is a polyphagous pest known to attack > 70 crops worldwide. Endemic to the Neotropical region, in the past few years, it has emerged as a significant pest of several horticultural crops including pepper in the United States. To develop an eco-friendly sustainable management strategy for this pest, in this study, we evaluated the efficacy and compatibility of two commercially available biological control agents, predatory beetle Delphastus catalinae (Dc) and entomopathogenic fungi Cordyceps fumosorosea (Cfr) under laboratory conditions.
    [Show full text]
  • Dr. Frank G. Zalom
    Award Category: Lifetime Achievement The Lifetime Achievement in IPM Award goes to an individual who has devoted his or her career to implementing IPM in a specific environment. The awardee must have devoted their career to enhancing integrated pest management in implementation, team building, and integration across pests, commodities, systems, and disciplines. New for the 9th International IPM Symposium The Lifetime Achievement winner will be invited to present his or other invited to present his or her own success story as the closing plenary speaker. At the same time, the winner will also be invited to publish one article on their success of their program in the Journal of IPM, with no fee for submission. Nominator Name: Steve Nadler Nominator Company/Affiliation: Department of Entomology and Nematology, University of California, Davis Nominator Title: Professor and Chair Nominator Phone: 530-752-2121 Nominator Email: [email protected] Nominee Name of Individual: Frank Zalom Nominee Affiliation (if applicable): University of California, Davis Nominee Title (if applicable): Distinguished Professor and IPM specialist, Department of Entomology and Nematology, University of California, Davis Nominee Phone: 530-752-3687 Nominee Email: [email protected] Attachments: Please include the Nominee's Vita (Nominator you can either provide a direct link to nominee's Vita or send email to Janet Hurley at [email protected] with subject line "IPM Lifetime Achievement Award Vita include nominee name".) Summary of nominee’s accomplishments (500 words or less): Describe the goals of the nominee’s program being nominated; why was the program conducted? What condition does this activity address? (250 words or less): Describe the level of integration across pests, commodities, systems and/or disciplines that were involved.
    [Show full text]
  • Intraguild Interactions Between the Mealybug Predators Cryptolaemus Montrouzieri and Chrysoperla Carnea
    insects Article Intraguild Interactions between the Mealybug Predators Cryptolaemus montrouzieri and Chrysoperla carnea Laura Golsteyn 1, Hana Mertens 1, Joachim Audenaert 2, Ruth Verhoeven 2, Bruno Gobin 2 and Patrick De Clercq 1,* 1 Department of Plants and Crops, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; [email protected] (L.G.); [email protected] (H.M.) 2 PCS—Ornamental Plant Research, Schaessestraat 18, B-9070 Destelbergen, Belgium; [email protected] (J.A.); [email protected] (R.V.); [email protected] (B.G.) * Correspondence: [email protected]; Tel.: +32-92-646-158 Simple Summary: The ladybird Cryptolaemus montrouzieri is a widely commercialized biological control agent of mealybugs. The green lacewing Chrysoperla carnea is mainly released for aphid control, but also attacks mealybugs. Both species have shown potential to control various economically important species of mealybug pests of greenhouse crops. As these predators may be simultaneously present in a crop, the risk of negative interactions between both predators was evaluated in this laboratory study. Individuals of different life stages of either predator were placed together in petri dish arenas and predation was recorded. Attacks between individuals of both species were frequently observed, with lacewing larvae being the dominant predators in most combinations. When mealybug nymphs or lepidopteran eggs were added to the arena, the incidence of attacks between the predators was greatly diminished. The relevance of these observations for the use of the predators in the biological control of greenhouse pests is discussed. Citation: Golsteyn, L.; Mertens, H.; Audenaert, J.; Verhoeven, R.; Gobin, Abstract: The ladybird Cryptolaemus montrouzieri and the green lacewing Chrysoperla carnea have B.; De Clercq, P.
    [Show full text]
  • Cryptolaemus Montrouzieri (395)
    Pacific Pests, Pathogens and Weeds - Online edition Cryptolaemus montrouzieri (395) Common Name Mealybug ladybird, also known by the nickname 'mealybug destroyer'. In Oceania, Australia, Cook Islands, Fiji, Guam, New Caledonia, Papua New Guinea. Scientific Name Cryptolaemus montrouzieri Distribution Asia, Africa, North, South and Central America, the Caribbean, Europe, Oceania. It is native to Australia, and occurs in many Pacific island countries: Cook Islands, Fiji, Guam, New Caledonia, and Papua New Guinea. Documented distributions from Australia to other countries include Photo 1. Larva of the mealybug ladybird, New Zealand (many times between 1897 and 1924), Fiji (1924), and US (late 19th century). Cryptolaemus montrouzieri, showing long, white, waxy filaments. Cryptolaemus montrouzieri is available from commercial biocontrol companies so it is likely to be in many countries of the world. Prey The ladybird beetle feeds mainly on mealybugs (Pseudococcidae) and some soft scales (Coccidae), including the cottony cushion scale (see Fact Sheet no. 343). Aphids are also prey. Description & Life Cycle Both larvae and adults eat mealybugs and scales at all stages - eggs, crawlers, larvae and adults. One beetle can eat about 250 mealybugs during its life. Photo 2. Larva of the mealybug ladybird, The female lays up to 10 eggs a day (about 500 in total) among the egg masses of mealybugs Cryptolaemus montrouzieri, feeding on and near scale insects. The larvae have yellowish-grey bodies covered in waxy filaments (long spiralling whitefly on guava. threads); they go through four stages and are up to 10 mm long when mature (Photos 1&2). The larva then pupates in a sheltered place on the stem.
    [Show full text]
  • Deciphering the Plant-Insect Phenotypic Arms Race
    Tongxian Liu Le Kang Recent Advances in Entomological Research From Molecular Biology to Pest Management sdfsdf Tongxian Liu Le Kang Recent Advances in Entomological Research From Molecular Biology to Pest Management With 87 figures, 3 of them in color Editors Tongxian Liu Le Kang Key Laboratory of Applied Entomology State Key Laboratory of Integrated Man- Northwest A & F University agement of Pest Insects and Rodents Yangling, Shaanxi, 712100, China; Institute of Zoology Email: [email protected] Chinese Academy of Sciences Beijing, 100101, China Email: [email protected] ISBN 978-7-04-028988-6 Higher Education Press, Beijing ISBN 978-3-642-17814-6 e-ISBN 978-3-642-17815-3 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011920986 © Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Product Information Sheet
    PRODUCT INFORMATION SHEET WHITEFLY PREDATORY BEETLE: Delphastus pusillus Product: Delphastus pusillus is a minute black lady beetle the size of the bottom half of the figure “8". Adult females live up to 65 days and lay 3-5 eggs per day. They require 100-150 whitefly eggs per day to maintain laying. Older larvae gradually stop feeding and move down the plant to search out protected places for pupation. Development time under greenhouse conditions, ie. temperatures of 25oC(75oF), is about 25 days. Delphastus are shipped as pre-fed adults in vials containing perching material. They are sold in amounts of 100 or 500. Target: The larva and adult beetles have a voracious appetite for all stages of whitefly (especially eggs), and will also feed on spider mites and scale if whitefly is not available. Adult beetles can eat several hundred whitefly per day. Release: Release these beetles at sundown the day of receipt. Very lightly mist the foliage of the plants to be treated just prior to release. Open the jar in the treatment area and gently tap out the beetles directly onto the foliage of the infested plants or evenly throughout the crop if the infestation is widespread. It is best not to release less than 10 Delphastus per release location. This will ensure proper mating. For any that will not readily come out of the jar, simply tuck the perching material from inside the jar into the foliage of a plant, preferably one with a heavy pest population. Supplying these beetles with Beneficial Insect Food ( available at NIC) at or near the release site may increase their egg production.
    [Show full text]