Evolutionary Trends of the Carboniferous Ostracod Velatomorpha Altilis, Joggins Fossil Cliffs, Unesco World Heritage Site

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary Trends of the Carboniferous Ostracod Velatomorpha Altilis, Joggins Fossil Cliffs, Unesco World Heritage Site EVOLUTIONARY TRENDS OF THE CARBONIFEROUS OSTRACOD VELATOMORPHA ALTILIS, JOGGINS FOSSIL CLIFFS, UNESCO WORLD HERITAGE SITE by Regan Maloney Thesis submitted in partial fulfillment of the requirements for the Degree of Bachelor of Science with Honours in Biology Acadia University April, 2016 © Copyright by Regan Maloney, 2016 This thesis by Regan Maloney is accepted in its present form by the Department of Biology as satisfying the thesis requirements for the degree of Bachelor of Science with Honours Approved by the Thesis Supervisor __________________________ ____________________ Peir Pufahl Date Approved by the Head of the Department __________________________ ____________________ Brian Wilson Date Approved by the Honours Committee __________________________ ____________________ Anna Redden Date ii I, Regan Maloney, grant permission to the University Librarian at Acadia University to reproduce, loan or distribute copies of my thesis in microform, paper or electronic formats on a non-profit basis. I, however, retain the copyright in my thesis. _________________________________ Regan Maloney _________________________________ Date iii Acknowledgements I received a lot of support while writing this thesis. Neil Tibert was instrumental to this project. He guided me with enthusiasm in the early stages. His passing is a loss well beyond his research. He always had time for my questions and his excitement about ostracods and life was infectious. Melissa Grey and Peir Pufahl were always encouraging along way and helped me a great deal. This project was made possible with a NSERC USRA grant. iv Table of Contents Acknowledgements ......................................................................................................................... iv List of Tables .................................................................................................................................. vi List of Figures ................................................................................................................................ vii Abstract ......................................................................................................................................... viii 1. Introduction .......................................................................................................................... 1 1.1 Study site .......................................................................................................................... 1 1.2 Facies Associations .......................................................................................................... 2 1.3 Limestone Lithofacies ...................................................................................................... 3 1.4 Ostracods ......................................................................................................................... 7 1.5 Evolutionary Modes ......................................................................................................... 9 1.6 Purpose ........................................................................................................................... 11 2. Materials and Methods ........................................................................................................... 12 2.1 Extraction ....................................................................................................................... 12 2.2 Measurement .................................................................................................................. 15 2.3 Multivariate Analysis ..................................................................................................... 17 2.4 Evolutionary Mode ........................................................................................................ 17 2.5 Abundance and population structure.............................................................................. 18 3. Results .................................................................................................................................... 20 3.1 Multivariate analysis ...................................................................................................... 20 2.2 Evolutionary Mode .............................................................................................................. 23 3.3 Thin Sections ....................................................................................................................... 24 4. Discussion .................................................................................................................................. 29 4.1 Evolutionary Mode ........................................................................................................ 29 4.2 Population Structure and Environmental Interpretations ............................................... 33 5. Conclusions ................................................................................................................................ 35 References ...................................................................................................................................... 36 Appendix ........................................................................................................................................ 39 v List of Tables Table 1. Location of limestones used for ostracod sampling and thin sectionanalysis…………19 Table 2. Confusion matrix derived from the CVA……………………………………………… 22 Table 3. Results of Hunt’s (2008) “fit 3 models” tests.................................................................. 24 Table 4. Results of thin section analysis. ...................................................................................... 25 Table 5. Akaike and AICC of Hunt’s (2008) “fit 3 models”.......................................................... 39 vi List of Figures Figure 1. Dark, organic rich limestone beach outcrop at the Joggins Fossil Cliffs site (Aziz, 2010).Figure 1 .................................................................................................................................. 5 Figure 2. Wave rippled limestone outcrop on beach at the Joggins Fossil Cliffs site (Aziz, 2010).Figure 2 .................................................................................................................................. 6 Figure 3. Location of the Joggins Fossil Cliffs UNESCO World Heritage Site on the Bay of Fundy, in the Cumberland Basin (blue star).Figure 3 .................................................................... 13 Figure 4. Stratigraphic column of formations at the Joggins Fossil Cliffs ................................... 14 Figure 5. Example of V.altilis in left lateral view. ........................................................................ 16 Figure 6. Example of V.altilis in dorsal view. .............................................................................. 16 Figure 7. Principal component analysis results ............................................................................. 20 Figure 8. Canonical variate analysis results .................................................................................. 21 Figure 9. Example of a thin section from Boss Point 2 ................................................................ 26 Figure 10. Joggins Formation thin section (Joggins 4t) ................................................................ 27 Figure 11. Thin section from the Joggins 5T (Table 1) limestone ................................................ 28 vii Abstract The ostracod Velatomorpha altilis thrived in brackish coastal environments of the Carboniferous. Especially well preserved examples occur in strata exposed at the Joggins Fossil Cliffs World Heritage Site, Cumberland Basin, Nova Scotia, providing an opportunity to investigate the link between evolutionary mode and temporal changes in depositional environment. The relationship between the evolutionary mode of V. altilis and its environment is especially important because few other studies have examined the evolutionary mode of organisms living in marginal environments. The evolutionary mode of V. altilis was analyzed by measuring the length, height, width, area, and perimeter of valves from 332 specimens from limestone at five stratigraphic levels in the Boss Point and overlying Joggins formations. Interpretations of depositional environment in this study were based in part on ostracod population structure with no statistical treatment of the data. After quantitative model-based analysis, an unbiased random walk was supported as the evolutionary mode when ostracods from all five stratigraphic levels were included. Stasis was the suggested evolutionary mode only when ostracods from each formation were considered separately. This is consistent with previous research on V. altilis from the Joggins Formation. Stasis is expected in fluctuating, stressed environments, such as the brackish coastal paleoenvironments of the Boss Point and Joggins formations. This is because organisms that inhabit those environments are usually tolerant to changing conditions. It is possible that between the formations an environmental threshold was reached that triggered rapid change in shell size. Ostracod population structure analysis supports this interpretation and suggests shell size may record a difference in hydrologic regime of limestone between the Boss Point and viii Joggins formations. This represents a classic example of punctuated equilibrium model of evolutionary
Recommended publications
  • Ostracoda of the Limestones of the Permian System
    OSTRACODA OF TEE / . SY, .D DAVIS . ., Aanaas State Colic of .~'C and Applied Science, 1950 A THESIS submitted in partial fulf illnent of tlie re, - I -ts for the decree [ Department of Geology and Geography K . : COLLEGE OP AGRICUL LIED SCIENCE • :' LO T4 i Pua i or t i Area Covered h .3 Irrv nation ••••••• 1 Stra ;!it ••••••••«•••••• 3 Pi. ads La • Methods* ••••• •• Identification of the - % *•#*«•*# ll|, . , 17 . Stra c DIstx- • . ..-oi'ossiln. « . s . 9k . .rposo o I Xxxvefl tion This investigation of the ostracode r.iicrofauna C . 10 line stones of the WoIfcamp seizes In Kansas v;as undertaken to obtain data on the abundance, and the strati/graphic and paloo- ccolocical distribution of the ostracodes. pus Studies of microfaunas have been devoted almost exclusively to bods of shale with only scattered sampling of the limestone..; of ore, it was felt that an investigation of this nature would add to our know- ledge of the micropaleontology of ostracodes. The spars ity of information on techniques of samolinr and prepax^ing limestones for mieropaleontological examination were other factors which posed a problem. It was fully realised that this problem would necessitate various trial and error methods both in the field and laboratory before a satisfactory technique could be developed. Although the main emphasis of the study was to be . ;n to the ostracodes of the limestones, other mierofossiis were not to be die . _'ded; on the contrary, they night yield valuable strat- -•aphic information, She forms, other than ostracodes, consid- ered to be most valuable stratigraphlcally were the foraminifers and the conodonts.
    [Show full text]
  • Palaeoecology of a Hypersaline Carboniferous Ostracod Fauna
    J.rnicropalueontol., 6(2): 29-33, November 1987 Palaeoecology of a hypersaline Carboniferous ostracod fauna Chris P. Dewey Department of Geology and Geography, Mississippi State University, Mississippi State, MS 39762, U.S.A. ABSTRACT- A high abundance, low diversity ostracod fauna has been collected from the Lower Carboniferous Dimock and Phillips limestones in Nova Scotia, Canada. The ostracod fauna consists of Paraparchites sp. aff. P. kellettae Sohn and Beyrichiopsis lophota Copeland, as well as rare specimens of Acratia acuta (Jones & Kirkby), Bythocypris aequalis (Jones & Kirkby), and Chamishaella sirborbiculata (Munster). Growth parameters for the dominant ostracod, Paraparchites sp. aff. P. kellettae, show that a multi-generation, progenetic, parthenogenetic population developed. This reproduc- tive strategy caused rapid population growth and thereby allowed the species to take advantage of the available environmental resources. When considered together, the ostracod fauna and the sedimentology indicate that physiologically stressful hypersaline conditions prevailed. The combined data therefore provide evidence for hypersalinity tolerance and heterochronous development amongst Carboniferous ostracods. INTRODUCTION (Dewey, 1983, 1985, in press). Most of the assemblages Lower Carboniferous deposits in the Maritime Basin are dominated by paraparchitacean ostracods, which of Nova Scotia, Canada, document a series of eustati- are often considered to be indicative of nearshore cally controlled, transgressive-regressive cycles (Giles, environments (van Ameron ef d..1Y70; Becker et af., 1981). Tectonic activity resulted in the development of 1974; Bless, 1983). several interconnected sub-basins (Howie & Barss, This paper exam i n e s t 11 e para parch i t a c ea n - 1975; Bradley, 1982). Consequently. the complex dominated ostracod fauna of a carbonate sabkha interaction of eustacy, tectonism and climate resulted environment from the Windsor Group of the Minas- in a range of palaeoenvironments that include alluvial Shubenacadie Sub-Basin in Nova Scotia (Fig.
    [Show full text]
  • A Passion for Palaeontology September 22, 2012-March 17, 2013
    BACK COVER PAGE COVER PAGE Bearing Witness Inside the ROM Governors A dark chapter in ROM NEWSLETTER OF THE Cambodia’s history ROM GOVERNORS The Institute for Contemporary FALL/WINTER 2 012 Summer at the ROM has been a whirlwind of activity. Culture (ICC) presents Observance Exciting new initiatives such as Friday Night Live and our and Memorial: Photographs from family weekend programming have been extremely popular S-21, Cambodia, featuring over 100 and we have seen many new visitors and partners come photographs developed from original through our doors. Also hugely successful has been our negatives abandoned by the Khmer Special thanks to Susan Crocker and INSIDER groundbreaking exhibition Ultimate Dinosaurs: Giants from Rouge in January 1979, at the S-21 secret John Hunkin, Ron Graham, the Gondwana, which pioneers the use of Augmented Reality prison in Phnom Penh, Cambodia. Honourable William C. Graham and and includes the largest dinosaur ever mounted in Canada. Curated by Photo Archive Group, and Cathy Graham, Deanna Horton, Dr. Carla Shapiro from the Munk School Richard W. Ivey, and Sarah and Tom This month, it is a great pleasure to welcome Robert Pierce of Global Affairs, University of Toronto, Milroy for their generous support of this as the new chairman of the Board of Governors. As a this exhibition calls attention to the exhibition. For information on how you long-time volunteer, Board member for more than 12 years, atrocities in Cambodia in the 1970s can support Observance and Memorial and supporter of the ROM, Rob has served in a leadership or to make a donation to the ICC, BIG and human rights issues.
    [Show full text]
  • Late Carboniferous Tropical Dryland Ecosystem, Joggins, Nova Scotia1
    Report of Activities 2002 181 Late Carboniferous Tropical Dryland Ecosystem, 1 Joggins, Nova Scotia H. J. Falcon-Lang and J. H. Calder Museum dioramas usually depict the Late Carboniferous tropical zone as being covered by humid rainforests composed of densely spaced tree-sized lycopsids. However, new evidence from the Langsettian fossil cliffs of Joggins, Nova Scotia suggests that this may only be half the story. At this classic site, grey coal-bearing units deposited in humid wetland coastal plain environments and containing 'normal' lycopsid-dominated rainforest vegetation are interbedded with red bed units. The red bed units, which are the focus of this paper, were deposited in seasonal dryland alluvial environment and contain an unusual floral and faunal assemblage. Depauperate floral remains in the deposits of anastomosing river channels, crevasse splays, and overbank muds are dominated by cordaite gymnosperms (Cordaites leaves, Artisia pith casts, and woody Dadoxylon trunks and branches; >80% of specimens). Present in subordinate numbers are pteridosperms (Eusphenopteris), sphenopsids (Calamites) and lycopsids (Sigillaria). A high proportion of this plant material has been charred in wildfires. Faunal remains associated with waterhole deposits in seasonally dry channels include land snails (Dendropupa), giant freshwater clams (Asterodonta) and the pelvic girdle and jaw of loxomatid reptiles. These data indicate that Late Carboniferous dryland tropical environments supported low diversity, fire-prone gymnospermous vegetation consisting mostly of shrubs or small trees inhabited by a unique fauna. At Joggins, gymnospermous dryland ecosystems repeatedly alternated with lycopsid wetland ecosystems, perhaps in response to glacial-interglacial climate rhythms. 16th European Palaeobotany and Palynology Conference, Athens, Greece; in Abstracts with Programs, p.
    [Show full text]
  • The Canadian Experience by Rebecca Kennedy
    World Heritage nominations – the Canadian experience February 2020 Killarney, Ireland 1 • The World Heritage Convention in Canada • Canadian Tentative List process • Heart’s Content Cable Station, Newfoundland • Lessons learned in development of Canadian nominations • Transboundary and serial nominations • Looking ahead 2 Rebecca Kennedy, “focal point” for World Heritage programme in Canada Who is this person?! 3 Why is Parks Canada Our national involved in Canada’s World office Heritage? Parks Canada has many responsibilities that extend beyond management of National Historic Sites and National Parks 4 Why is Parks Canada involved in Canada’s World Heritage? Given its expertise in cultural and natural heritage, Parks Canada was designated as the lead for World Heritage on behalf of the Government of Canada in 1976 • In 1978, Nahanni National Park and L’Anse aux Meadows National Historic Site were in the first group of 11 sites put on the World Heritage List 5 Canada and World Heritage • Canada is well respected for its expertise and credibility in our work on World Heritage • Elected member of the World Heritage Committee from 1976 to 1978, from 1985 to 1991, from 1995 to 2001 and from 2005 to 2009 • Committee meeting host in 1990 (Banff) and 2008 (Québec City) 6 Canada and World Heritage As the Government of Canada’s representative for the Convention, Parks Canada… • leads the Canadian delegation at Committee meetings • manages Canada’s official participation in relevant international workshops and provides policy input as requested
    [Show full text]
  • The Joggins Fossil Cliffs UNESCO World Heritage Site: a Review of Recent Research
    The Joggins Fossil Cliffs UNESCO World Heritage site: a review of recent research Melissa Grey¹,²* and Zoe V. Finkel² 1. Joggins Fossil Institute, 100 Main St. Joggins, Nova Scotia B0L 1A0, Canada 2. Environmental Science Program, Mount Allison University, Sackville, New Brunswick E4L 1G7, Canada *Corresponding author: <[email protected]> Date received: 28 July 2010 ¶ Date accepted 25 May 2011 ABSTRACT The Joggins Fossil Cliffs UNESCO World Heritage Site is a Carboniferous coastal section along the shores of the Cumberland Basin, an extension of Chignecto Bay, itself an arm of the Bay of Fundy, with excellent preservation of biota preserved in their environmental context. The Cliffs provide insight into the Late Carboniferous (Pennsylvanian) world, the most important interval in Earth’s past for the formation of coal. The site has had a long history of scientific research and, while there have been well over 100 publications in over 150 years of research at the Cliffs, discoveries continue and critical questions remain. Recent research (post-1950) falls under one of three categories: general geol- ogy; paleobiology; and paleoenvironmental reconstruction, and provides a context for future work at the site. While recent research has made large strides in our understanding of the Late Carboniferous, many questions remain to be studied and resolved, and interest in addressing these issues is clearly not waning. Within the World Heritage Site, we suggest that the uppermost formations (Springhill Mines and Ragged Reef), paleosols, floral and trace fossil tax- onomy, and microevolutionary patterns are among the most promising areas for future study. RÉSUMÉ Le site du patrimoine mondial de l’UNESCO des falaises fossilifères de Joggins est situé sur une partie du littoral qui date du Carbonifère, sur les rives du bassin de Cumberland, qui est une prolongation de la baie de Chignecto, elle-même un bras de la baie de Fundy.
    [Show full text]
  • Dendrochronological Dating of Coal Mine Workings at the Joggins Fossil Cliffs, Nova Scotia, Canada Sarah L
    Document generated on 09/23/2021 1 p.m. Atlantic Geology Dendrochronological dating of coal mine workings at the Joggins Fossil Cliffs, Nova Scotia, Canada Sarah L. Quann, Amanda B. Young, Colin P. Laroque, Howard J. Falcon-Lang and Martin R. Gibling Volume 46, 2010 Article abstract Joggins, Nova Scotia, was one of the first places in North America where coal URI: https://id.erudit.org/iderudit/ageo46art11 was mined. Dendrochronological methods were employed to date timber pit props preserved within relic coal mine workings on the closely adjacent Fundy See table of contents and Dirty seams. These remains comprise a system of "openings" that represent formerly underground mines, now exposed by cliff retreat. Of the seventy-three samples collected, forty-eight were successfully cross-dated into Publisher(s) floating chronologies and then compared against a local red spruce (Picea rubens) master chronology, thereby establishing the year in which each Atlantic Geoscience Society individual sample was cut as a live tree where bark was present. Results indicate cutting dates of 1849–1875, which are generally consistent with ISSN archival records of mining activity. Analysis of the 14 openings allows differentiation of two phases of mining. Most openings (1–9 and 11–12 with cut 0843-5561 (print) dates of 1849–1868) represent "adits" driven into the cliff from the beach, and 1718-7885 (digital) associated "levels", which comprise an initial drift mine by the General Mining Association (1865–1871). Dendrochronological dates from trees with bark that Explore this journal precede the opening of this first mine suggest that timber stockpiled from the nearby Joggins Mine (opened 1847) was used in its construction.
    [Show full text]
  • The Joggins Cliffs of Nova Scotia: B2 the Joggins Cliffs of Nova Scotia: Lyell & Co's "Coal Age Galapagos" J.H
    GAC-MAC-CSPG-CSSS Pre-conference Field Trips A1 Contamination in the South Mountain Batholith and Port Mouton Pluton, southern Nova Scotia HALIFAX Building Bridges—across science, through time, around2005 the world D. Barrie Clarke and Saskia Erdmann A2 Salt tectonics and sedimentation in western Cape Breton Island, Nova Scotia Ian Davison and Chris Jauer A3 Glaciation and landscapes of the Halifax region, Nova Scotia Ralph Stea and John Gosse A4 Structural geology and vein arrays of lode gold deposits, Meguma terrane, Nova Scotia Rick Horne A5 Facies heterogeneity in lacustrine basins: the transtensional Moncton Basin (Mississippian) and extensional Fundy Basin (Triassic-Jurassic), New Brunswick and Nova Scotia David Keighley and David E. Brown A6 Geological setting of intrusion-related gold mineralization in southwestern New Brunswick Kathleen Thorne, Malcolm McLeod, Les Fyffe, and David Lentz A7 The Triassic-Jurassic faunal and floral transition in the Fundy Basin, Nova Scotia Paul Olsen, Jessica Whiteside, and Tim Fedak Post-conference Field Trips B1 Accretion of peri-Gondwanan terranes, northern mainland Nova Scotia Field Trip B2 and southern New Brunswick Sandra Barr, Susan Johnson, Brendan Murphy, Georgia Pe-Piper, David Piper, and Chris White The Joggins Cliffs of Nova Scotia: B2 The Joggins Cliffs of Nova Scotia: Lyell & Co's "Coal Age Galapagos" J.H. Calder, M.R. Gibling, and M.C. Rygel Lyell & Co's "Coal Age Galapagos” B3 Geology and volcanology of the Jurassic North Mountain Basalt, southern Nova Scotia Dan Kontak, Jarda Dostal,
    [Show full text]
  • MAY 2014 VOLUME 41, ISSUE 05 Canadian Publication Mail Contract – 40070050 MORE THAN MAPPING WANT to LIFT YOUR PETREL® WORKFLOWS to NEW HEIGHTS?
    20 Fossils Hunting for Provinces 28 Go Take a Hike 34 GeoConvention 2014: Focus 36 Bringing the Cretaceous Sea to Mount Royal University: A Proposal to Fund the East Gate Entrance Fossil Display $10.00 MAY 2014 VOLUME 41, ISSUE 05 Canadian Publication Mail Contract – 40070050 MORE THAN MAPPING WANT TO LIFT YOUR PETREL® WORKFLOWS TO NEW HEIGHTS? Seamlessly bring more data into the fold. Dynamically present your insight like never before. SOFTWARE SERVICES CONNECTIVITY DATA MANAGEMENT The Petrosys Plug-in for Petrel® gives you access to powerful Petrosys mapping, surface modeling and data exchange from right where you need it – inside Petrel. Now you have the power to effortlessly and meticulously bring your critical knowledge together on one potent mapping canvas. Work intuitively with your Petrel knowledge and, should you so require, simultaneously aggregate, map and model data direct from multiple other sources – OpenWorks®, ArcSDE®, IHS™ Kingdom®, PPDM™ and more. Refine, enhance and then present your results in beautiful, compelling detail. The result? Decision-making is accelerated through consistent mapping and surface modeling as focus moves from regional overview through to the field and reservoir scale. To learn more go to www.petrosys.com.au/petrel. Petrel is a registered trademark of Schlumberger Limited and/or its affiliates. OpenWorks is a registered trademark of Halliburton. ESRI trademarks provided under license from ESRI. IHS and Kingdom are trademarks or registered trademarks of IHS, Inc. PPDM is a trademark of the Professional Petroleum Data Management (PPDM) Association. MAY 2014 – VOLUME 41, ISSUE 05 ARTICLES Fossils Hunting for Provinces ..................................................................................................... 20 CSPG OFFICE Tools to Tackle the Riddle of the Sands ...............................................................................
    [Show full text]
  • Paleotectonic Investigations of the Permian System in the United States
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications of the US Geological Survey US Geological Survey 1967 Paleotectonic Investigations of the Permian System in the United States Edwin D. McKee Stephen S. Oriel Henry L. Berryhill Eleanor J. Crosby Donald A. Myers See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usgspubs Part of the Geochemistry Commons, Geology Commons, Geomorphology Commons, Hydrology Commons, and the Other Earth Sciences Commons This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications of the US Geological Survey by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Edwin D. McKee, Stephen S. Oriel, Henry L. Berryhill, Eleanor J. Crosby, Donald A. Myers, George H. Dixon, Marjorie E. MacLachlan, Melville R. Mudge, Edwin K. Maughan, Richard P. Sheldon, Earl R. Cressman, Thomas M. Cheney, Walter E. Hallgarth, and Keith B. Ketner Paleotectonic Investigations of the Permian System in the United States GEOLOGICAL SURVEY PROfESSIONAL PAPER 515 w- PALEOTECTONIC INVESTIGATIONS OF THE PERMIAN SYSTEM IN THE UNITED STATES RECONSTRUCTION OF SEASCAPE IN GLASS MOUNTAIN AREA, BREWSTER COUNTY, TEXAS, DURING MIDDLE PART (LEONARD) OF PERMIAN TIME The reconstruction is based on a diorama prepared by George Marchard for the U- S National Museum. Technical assistance for the reconstruction was fur­ nished by G. Arthur Cooper and G. Edward Lewis. Paleotectonic Investigations of the Permian System in the United States By E. D. McKEE, S. S. ORIEL, and others GEOLOGICAL SURVEY PROFESSIONAL PAPER 515 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1967 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L.
    [Show full text]
  • 08-Schneider Et Al. (Arthropleura).P65
    Lucas et al., eds., 2010, Carb-Permian transition in Cañon del Cobre. New Mexico Museum of Natural History and Science Bulletin 49. 49 EURAMERICAN LATE PENNSYLVANIAN / EARLY PERMIAN ARTHROPLEURID/TETRAPOD ASSOCIATIONS – IMPLICATIONS FOR THE HABITAT AND PALEOBIOLOGY OF THE LARGEST TERRESTRIAL ARTHROPOD JÖRG W. SCHNEIDER1, SPENCER G. LUCAS2, RALF WERNEBURG3 AND RONNY RÖßLER4 1 TU Bergakademie Freiberg, Institut für Geologie, B.v.Cotta-Strasse 2, D-09596 Freiberg, Germany; 2 New Mexico Museum of Natural History and Science, 1801 Mountain Road N.W., Albuquerque, New Mexico 87104; 3 Naturhistorisches Museum Schloss Bertholdsburg, Burgstrasse 6, D-98553 Schleusingen, Germany; 4 Museum für Naturkunde, Moritzstrasse 20, D-09111 Chemnitz, Germany Abstract—The giant arthropod Arthropleura was a common member of the late Paleozoic continental biota of paleo-equatorial biomes for more than 35 million years, from the Early Carboniferous late Visean (FOD; Middle Mississippian, Asbian/Brigantian) up to the Early Permian lower Rotliegend (LOD = ?LAD; Asselian). In Upper Pennsylvanian red beds in Cañon del Cobre of northern New Mexico, trackways of Arthropleura are present in strata that also yield body fossils of the amphibian Eryops. We review the Arthropleura tracksite from Cañon del Cobre, New Mexico, as well as other tracksites of this animal and arthropleurid/eryopid associations in order to better interpret the paleoenvironmental preference and the paleobiology of Arthropleura. This review supports the conclusion that Arthropleura was well adapted to alluvial environments of ever wet humid to seasonally dry and semihumid climates. Preferred habitats of semi-adult and adult Arthropleura were open, vegetated, river landscapes. They co-occurred in these habitats with semi-aquatic eryopid amphibians and terrestrial pelycosaurs.
    [Show full text]
  • JOGGINS RESEARCH SYMPOSIUM September 22, 2018
    JOGGINS RESEARCH SYMPOSIUM September 22, 2018 2 INTRODUCTION AND ACKNOWLEDGEMENTS The Joggins Fossil Cliffs is celebrating its tenth year as a UNESCO World Heritage Site! To acknowledge this special anniversary, the Joggins Fossil Institute (JFI), and its Science Advisory Committee, organized this symposium to highlight recent and current research conducted at Joggins and work relevant to the site and the Pennsylvanian in general. We organized a day with plenty of opportunity for discussion and discovery so we invite you to share, learn and enjoy your time at the Joggins Fossils Cliffs! The organizing committee appreciates the support of the Atlantic Geoscience Society for this event and in general. Sincerely, JFI Science Advisory Committee, Symposium Subcommittee: Elisabeth Kosters (Chair), Nikole Bingham-Koslowski, Suzie Currie, Lynn Dafoe, Melissa Grey, and Jason Loxton 3 CONTENTS Symposium schedule 4 Technical session schedule 5 Abstracts (arranged alphabetically by first author) 6 Basic Field Guide to the Joggins Formation______________________18 4 SYMPOSIUM SCHEDULE 8:30 – 9:00 am Registration 9:00 – 9:10 am Welcome by Dr. Elisabeth Kosters, JFI Science Advisory Committee Chair 9:10 – 10:30 am Talks 10:25 – 10:40 am Coffee Break and Discussion 10:45 – 12:00 pm Talks and Discussion 12:00 – 1:30 pm Lunch 1:30 – 4:30 pm Joggins Formation Field Trip 4:30 – 6:00 pm Refreshments and Wrap-up 5 TECHNICAL SESSION SCHEDULE Chair: Melissa Grey 9:10 – 9:20 am Peir Pufahl 9:20 – 9:30 am Nikole Bingham-Koslowski 9:30 – 9:40 am Michael Ryan 9:40 – 9:50 am Lynn Dafoe 9:50 – 10:00 am Matt Stimson 10:00 – 10:15 am Olivia King 10:15 – 10:25 am Hillary Maddin COFFEE BREAK Chair: Elisabeth Kosters 10:40 – 10:50 am Martin Gibling 10:50 – 11:00 am Todd Ventura 11:10 – 11:20 am Jason Loxton 11:20 – 11:30 am Nathan Rowbottom 11:30 – 11:40 am John Calder 11:40 – 12:30 Discussion led by Elisabeth Kosters LUNCH 6 ABSTRACTS Breaking down Late Carboniferous fish coprolites from the Joggins Formation NIKOLE BINGHAM-KOSLOWSKI1, MELISSA GREY2, PEIR PUFAHL3, AND JAMES M.
    [Show full text]