5 Optical Sources.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

5 Optical Sources.Pdf Photonics and Optical Communication, Spring 2007, Dr. D. Knipp Photonics and Optical Communication (Course Number 300352) Spring 2007 Optical Source Dr. Dietmar Knipp Assistant Professor of Electrical Engineering http://www.faculty.iu-bremen.de/dknipp/ Optical Sources 1 Photonics and Optical Communication, Spring 2007, Dr. D. Knipp Photonics and Optical Communication 5 Optical Sources 5.1 Introduction 5.2 Absorption and Emission of light 5.2.1 Spontaneous Emission 5.2.2 Stimulated Emission 5.3 Light emitting diodes versus laser diodes 5.4 Introduction to semiconductors 5.4.1 Structural Properties of Semiconductors 5.4.2 Energy Bands in Semiconductors 5.4.3 The pn-junction 5.4.4 Diodes under forward bias 5.5 Light emitting diodes (LEDs) 5.5.1 Direct and indirect Semiconductors 5.5.2 Device structures 5.5.3 Application of Light emitting Diodes 5.6 Lasers 5.6.1 Spontaneous Emission 5.6.2 Population inversion 5.6.3 Three and four energy level systems 5.6.4 Optical feedback and laser resonators Optical Sources 2 Photonics and Optical Communication, Spring 2007, Dr. D. Knipp 5.6.5 Threshold condition for laser oscillation 5.6.6 Requirements for lasing 5.7 Semiconductor Lasers 5.7.1 Stimulated emission and lasing in Semiconductors 5.7.2 Semiconductor Materials for lasing applications 5.7.3 Efficiency of LEDs and laser diodes 5.7.4 Laser Diode structures 5.7.4.1 Fabry Perot Homojunction laser diode 5.7.4.2 Double heterostructure laser diode 5.7.4.3 Quantum well lasers 5.7.4.4 Distributed Feedback (DFB) Lasers 5.7.4.5 Vertical Cavity Surface Emitting Lasers (VCSELs) References Optical Sources 3 Photonics and Optical Communication, Spring 2007, Dr. D. Knipp 5.1 Introduction The success of optical communication technology is stimulated by the development of optical fibers and optical fiber technology on one side and the invention of solid state lasers and laser diodes on the other side. Solid state lasers are compact, reliable and inexpensive. Optical communication systems with very high bandwidth-distance products can only be implemented by using lasers or laser diodes. Laser diode package and micrograph of inside of a laser package. Ref.: Infineon Optical Sources 4 Photonics and Optical Communication, Spring 2007, Dr. D. Knipp 5.1 Introduction In general the generation of light is caused by the transition of an electron form an energetically higher energy state to a lower energy state. The energy difference due to the transition of the electron leads to a radiative or a non- radiative process. We are of course interested in radiative processes as we like to “build” an optical source. The non-radiative processes typically lead to the creating of heat. The energy is simply dissipated by heat. In the case of a radiative process photons are emitted. The emission of light, can take place either spontaneously or it can be stimulated by the presence of another photon of the “right” energy. In order to understand the processes of light-generation, it is necessary to consider fundamental processes like structural and optical properties and energy levels in materials and the electronic device concepts. An understanding of the structural and optical properties is needed to actually understand the process of light generation and an understanding of the devices is needed to make use of such an effect. Optical Sources 5 Photonics and Optical Communication, Spring 2007, Dr. D. Knipp 5.2 Absorption and Emission of light The interaction of light and matter in the form of absorption and emission requires a transition from one discrete energy level to another energy level. The frequency and the wavelength of the emitted or absorbed photon is related to the difference in energy E, between the two energetic states, where h is the Planck constant h=6.626 x 10-34J, f is the frequency and λ is wavelength of the absorbed or emitted light. hc E = E − E = hf = Photon energy 2 1 λ Optical Sources 6 Photonics and Optical Communication, Spring 2007, Dr. D. Knipp 5.2 Absorption and Emission of light The figure illustrates transitions between two energy states. When a photon with the energy (E2-E1) is incident on the material an electron may be excited from the energy state E1 into an higher energy state E2 through the absorption of the photon. Alternatively, when the electron is initially on a higher energy level it can make a transition to a energetically lower state and the provided energy loss leads to the emission of a photon. Here the transition is assumed to be a radiative transition. Energy state diagram showing (a) absorption, (b) spontaneous emission, (c) stimulated emission. Ref.: J.M. Senior, Optical Fiber Communications Optical Sources 7 Photonics and Optical Communication, Spring 2007, Dr. D. Knipp 5.2 Absorption and Emission of light We have to distinguish between radiative and non-radiative processes. In the case of a non-radiative process the energy is dissipated as heat. The question whether a transition is non-radiative or radiative depends on the involved species of carriers, the material itself, the level of impurities in the material, the temperature and the device structure. In the case of radiative emission we can than distinguish between spontaneous and stimulated emission. Optical Sources 8 Photonics and Optical Communication, Spring 2007, Dr. D. Knipp 5.2.1 Spontaneous Emission For most of the light sources the photons are emitted spontaneously (sun light, light bulb, halogen lamp). In a first step an electron is elevated to an energetically higher state which is usually unstable. In the second step the electron will spontaneously return to an energetically more stable state (which is typically the energetically lower state). This process is a statistical process which can happen very fast. As a consequence the spontaneously (or randomly) emitted photons are incoherent (very short coherence time) and the emitted spectrum has broad spectral width. Energy state diagram for spontaneous emission of a photon. Ref.: J.M. Senior, Optical Fiber Communications Optical Sources 9 Photonics and Optical Communication, Spring 2007, Dr. D. Knipp 5.2.2 Stimulated Emission The operating principle of a laser is based on stimulated emission. We speak about stimulated emission if the electron which enters an energetically higher state (excited state) remains in this state until it is “stimulated” by the presence of a photon to leave this higher energetically state and return to the more stable lower energetically state (ground state). One of the requirements for stimulated emission is that the electron can stay in its excited state a relatively long period of time (a few microseconds) before it changes its state spontaneously. In the case of spontaneous emission the electron stays in this excited state usually for a shorter period of time (picoseconds). In the case of stimulated emission the electron can be “stimulated” by the presence of a photon to emit its energy in the form of another photon. Energy state diagram for stimulated emission. Ref.: J.M. Senior, Optical Fiber Communications Optical Sources 10 Photonics and Optical Communication, Spring 2007, Dr. D. Knipp 5.2.2 Stimulated Emission In this case the energy of the incident photon has to be very close to the energy of the excited electron. Stimulated emission takes place when the emitted photon has the same energy (the same wavelength), phase and direction as that of the photon which stimulated it! Stimulated emission is the inverse process of absorption! 5.3 Light emitting diodes versus laser diodes In order to observe spontaneous or stimulated emission we have to excite the electrons first before they can return to a lower energetic states. Of course energy has to be provided to excite the electron. The energy can be provided by heat, absorption of photons (photoluminescence) or electrical current (electroluminescent). We are interested in the later case, where the energy is provided by an electrical current. Optical Sources 11 Photonics and Optical Communication, Spring 2007, Dr. D. Knipp 5.3 Light emitting diodes versus laser diodes In both types of devices the recombination of carrier is used to provide a photon flux. However, the emission of light in a light emitting diode is a spontaneous process, whereas it is a stimulated process in a laser diode. Therefore, the description of an LED (light emitting diode) is different from the description of a laser diode. The description of an LED is by far simpler than the description of a laser diode. In both cases a semiconductor diode is used, which operates under forward bias conditions. Furthermore, the same structure can be used to build an optical amplifier. Forward biased pn-diode operating as (a) LED, (b) semiconductor amplifier, (c) semiconductor injection laser. Ref.: Saleh & Teich, Fundamentals of Photonics Optical Sources 12 Photonics and Optical Communication, Spring 2007, Dr. D. Knipp 5.4 Introduction to semiconductors In order to get an understanding of semiconductor based optical light sources we have to review some of the basic semiconductor properties. We will concentrate in this lecture on the description of the basic operating principle of a pn-junction (pn diode) as the light emitting diode (LED) and the laser diode are based on such structure. 5.4.1 Structural Properties of Semiconductors First the structural properties of semiconductors will be discussed. The structural properties have a strong effect on the electronic and the optical properties of the material. In general we can distinguish semiconductors in terms of their structural properties. Semiconductors exist as crystalline or amorphous materials. Crystalline material exhibit a high degree of structural order, whereas amorphous materials are characterized by a random or partly random distribution of the atoms or molecules in the solid.
Recommended publications
  • Light Sources and Photodetectors for OBS® Sensors Application Note
    APPLICATION NOTE APPLICATION App. Note Code: 2Q-R Written by John Downing Light Sources and Photo- detectors for OBS® Sensors ® CAMPBELL SCIENTIFIC, INC. WHENW H E N MEASUREMENTSM E A S U R E M E N T S MMATTERA T T E R Copyright (C) April 2008 Campbell Scientifi c, Inc. Light Sources and Photodetectors for OBS® Sensors Sensors that use the OBS® method have narrow- or intermediate-band illumination systems, depending on whether a laser diode (LD) or infrared-emitting diode (IRED) is used in their construction. This application note describes infrared-emitting diodes and laser diodes, as well as photodiodes, daylight fi lters, and operating spectra. Laser Diodes Laser diodes have narrow, multimode emission spectra resembling the one shown in Figure 1. The LD bandwidth is about 2 nm at half power (FWHM). They have built-in photodiodes to monitor the light output of the laser chip so that photocur- rent can be used to control the illumination of the sample. In this way, fluctuations in light power caused by sensor temperature and laser aging are virtually elimi- nated. The drift of our OBS-4 LD-based sensor, for example, is less than 2% per year of continuous operation. The two disadvantages of lasers are that they emit coherent light, which because of interferences can fluctuate in intensity in a sample volume by as much as 50%, and they are less efficient in converting electrical current to light than IREDs. Figure 1. Graph shows the relative power, transmission and responsivity of a laser diode. Laser diodes have narrow, multimode emission spectra.
    [Show full text]
  • Semiconductor Light Sources
    Laser Systems and Applications Couse 2020-2021 Semiconductor light sources Prof. Cristina Masoller Universitat Politècnica de Catalunya [email protected] www.fisica.edu.uy/~cris SCHEDULE OF THE COURSE Small lasers, biomedical Semiconductor light sources lasers and applications . 1 (11/12/2020) Introduction. 7 (19/1/2021) Small lasers. Light-matter interactions. 8 (22/1/2021) Biomedical lasers. 2 (15/12/2020) LEDs and semiconductor optical amplifiers. Laser models . 3 (18/12/2020) Diode lasers. 9 (26/1/2021) Laser turn-on and modulation response. Laser Material Processing . 10 (29/1/2021) Optical injection, . 4 (22/12/2020) High power laser optical feedback, polarization. sources and performance improving novel trends . 11 (2/2/2021) Students’ . 5 (12/1/2021) Laser-based presentations. material macro processing. 12 (5/2/2021) Students’ . 6 (15/1/2020) Laser-based presentations. material micro processing. 9/2/2021: Exam Lecturers: C. Masoller, M. Botey 2 Learning objectives . Understand the physics of semiconductor materials and the electron-hole recombination mechanisms that lead to the emission of light. Learn about the operation principles of light emitting diodes (LEDs) and semiconductor optical amplifiers (SOAs). Become familiar with the operation principles and characteristics of laser diodes (LDs). 3 Outline: Semiconductor light sources . Introduction . Light-matter interactions in semiconductor materials . Light Emitting Diodes (LEDs) . Semiconductor optical amplifiers (SOAs) . Laser diodes (LDs) The start of the laser diode story: the invention of the transistor Nobel Prize in Physics 1956 “For their research on semiconductors and their discovery of the transistor effect”. The invention of the transistor in 1947 lead to the development of the semiconductor industry (microchips, computers and LEDs –initially only green, yellow and red).
    [Show full text]
  • Operating the Pulsed Laser Diode SPL LL90 3 Application Note
    Operating the Pulsed Laser Diode SPL LL90_3 Application Note Introduction Optical peak power The SPL LL90_3 is a hybrid laser module. As shown in figure 2 the peak current and Additional to the laser chip the module therefore optical peak power is adjusted by contains two capacitors and a MOSFET the applied charge voltage. The SPL LL90_3 which act as a driver stage. The two typically delivers 70 W at 18.5 V (30 ns, 1 capacitors are connected in parallel to sum kHz). their individual capacitance of 47 nF. The The maximum rating of peak power is 80 W. emission wavelength is 905 nm. The By increasing of pulse repetition frequency specified optical peak power is 70 W. the peak optical power will be slightly decreased (as shown in fig 2). Principal of operation The capacitors are charged using a constant DC voltage. Each time the gate of the MOSFET is triggered, the capacitors are discharged via the laser chip leading to a short and high-amp current pulse. These high-amp current pulses are required to obtain the high peak power laser emission (at charge voltage of 18.5V a current pulse of up to 30A is possible) The pin configuration of the SPL LL90_3 laser diode is as follows: Pin 1: Trigger signal for the MOSFET gate Pin 2: Charge voltage Pin 3: Ground Figure 1: Hybrid pulsed laser diode SPL Variation of optical peak power LL90_3 with integrated driver stage. Figure 2: with charge voltage (pulse width 30 ns, PRF 1 kHz and 25kHz, gate voltage 15 V) for SPL LL90_3 using the MOSFET driver 3 Elantec EL7104C.
    [Show full text]
  • VCSEL Pulse Driver Designs for Tof Applications
    Vixar Application Note VCSEL Pulse Driver Designs for ToF Applications 1 Introduction ............................................................................................................................. 2 2 Design Theory ......................................................................................................................... 2 2.1 Schematic Components .................................................................................................... 2 2.2 Design Inductance ............................................................................................................ 3 2.3 Rise and Fall Time ........................................................................................................... 5 2.4 Timing Delay.................................................................................................................... 5 3 Low Power Driver Design ...................................................................................................... 5 4 High Power Driver Design...................................................................................................... 7 4.1 GaN FETs ......................................................................................................................... 7 4.2 Gate Drivers ..................................................................................................................... 7 5 VCSEL Performance .............................................................................................................. 8 6 Conclusions
    [Show full text]
  • Speed of Light with Nanosecond Pulsed 650 Nm Diode Laser M
    Speed of Light with Nanosecond Pulsed 650 nm Diode Laser M. Gallant May 23, 2008 The speed of light has been measured many different ways using many ingenious methods. The following note describes a method which is conceptually very easy to understand and fairly easy to implement. The technique is the simple time-of-flight optical pulse delay method using a fairly short (nanosecond) optical pulse and an oscilloscope with bandwidth between 50 - 100 MHz. THE LASER Common low power laser pointers, typically emit at a wavelength of 650 nm and operate from two to four 1.5 V button cells. Many of these lasers can be easily extracted from the pointer assembly and pulse-modulated to several hundred megahertz. The laser used here was removed from a low power (< 5mW) laser pointer assembly from a popular retail outlet. GENERATION OF SHORT OPTICAL PULSES The laser is prebiased below threshold, at 5 - 10 mA current (threshold current for the laser used here is 24 mA) using an inductor as a bias insertion element. A short (< 5 ns) electrical pulse modulates the laser. Since a very low duty cycle is used for pulsing the laser, fairly high current pulses are possible without degrading the laser. The actual forward current and voltage achieved during the drive pulse are dependent on the details of the I-V characteristic of the specific laser used, but are typically in the range of 50 - 100 mA and 6 - 10 V respectively. The short electrical pulse is generated using a simple avalanche transistor circuit. Due to the high frequency content of the short pulse, the actual shape of the current pulse driving the laser will depend on the circuit components (series resistors etc.) and parasitic electrical effects (series inductance of connection wires etc.) The circuit has been described by Jim Williams in a Linear Technology Measurement and Control Circuit Collection and has many other uses.
    [Show full text]
  • PLD-92 Laser Diode Datasheet
    PLD-92 Series: 915-970 nm, 80 W Multi-mode Fiber-coupled Diode Lasers Features Amplifier Pumping Direct Diode Lasers 915, 940, 970 nm Center Wavelength Stabilization Laser Pumping Material Processing Wavelengths and Dichroic Options Graphic Arts / Printing Medical & Dental 80 W Output Power 0.15 NA into 110 μm Fiber Core Diameter Illumination Photovoltaics High Reliability Robust Compact Package IPG Photonics’ PLD-92 fiber-coupled diode lasers provide up to 80 W of output power within 0.15 NA. PLD-92 diode are provided with a 110 μm fiber core and center wavelengths at 915 nm, 940 nm or 970 nm. Wavelength stabilization and dichroic options are also available. IPG’s best-in-class diode technology offers an ideal combination of power, reliability and form factor. We manufacture to rigorous telecom-grade standards in the world’s largest high power diode fab. Each wafer is individually qualified, which sets IPG apart from alternative industrial pump products using short-lived diode bars and bar-stack technologies. PLD-92 diode lasers are preferred for fiber amplifier and laser pumping, material processing, and direct diode applications. PLD-92 Series: 915-970 nm, 80 W Multi-mode Fiber-coupled Diode Lasers Optical and Electrical Characteristics* PLD-92 Center Wavelength**, nm 971 Center Wavelength Tolerance, nm ± 5 Output Power, W 80 Spectral Width (FWHM), nm 4 Slope Efficiency, W/A 5 Minimum Efficiency, % 52 Threshold Current (ITH), A 0.8 Operating Current (IOP), A 16 Forward Voltage, V 9.3 Recommended Case Temperature, ⁰C 25 Wavelength Shift with Temperature, nm/⁰C 0.35 Wavelength Shift with Operating Current, nm/A 0.6 *Typical performance data measured at 16 A, 25⁰C.
    [Show full text]
  • Portable Alignment Laser System
    OT - 4 0 4 0 Portable Alignment Laser System. ® The OT-4040. Portable, Two Dimensional Alignment. Introducing an easy, powerful way A typical system consists of a single Anyone Can Operate It. to perform accurate alignment measure- Model OT-4040 LL Alignment Laser, Concentrate on your work, not ments on the go. OT-4040 TTS4 Transparent Target, your alignment system. The OT-4040 The OT-4040 Alignment Laser OT-4040 TS4 Reference Target, and two couldn't be easier to operate. In fact, System enables instant measurement of OT-4040 Central Processing Units (one even first-time operators can be up-and- X-Y deviation, in real-time, at any point CPU for each target). Numerous running in less than five minutes on a visible laser reference line — a line options are also available. with hardly a glance at the instruc- extending up to 300 feet long. tion manual. The system is Dynamically monitor your project 0.001-Inch that simple and intuitive. as it unfolds. Simply drop a "transpar- Resolution At ent" measurement target into any stan- 300 Feet. Industrial Strength. dard NAS tooling sphere along the refer- Optimize precision Extreme industrial ence line, and take your reading with and gain a greater environments? No prob- Silicon Position Sensing Detector. the attached central processing unit. measure of confidence. lem. The OT-4040 CPU The OT-4040 Alignment Laser The OT-4040 provides conservatively- and OT-4040 Target are built to with- System is extensively proven by aircraft specified 0.001-inch resolution at dis- stand the rigors of day-to-day, on-the- manufacturers, shipbuilders, and the tances up to 300 feet.
    [Show full text]
  • 5 an Overview of Laser Diode Characteristics
    An Overview of Laser Diode Characteristics # 5 For application assistance or additional information on our products or services you can contact us at: ILX Lightwave Corporation 31950 Frontage Road, Bozeman, MT 59715 Phone: 406-556-2481 800-459-9459 Fax: 406-586-9405 Email: [email protected] To obtain contact information for our international distributors and product repair centers or for fast access to product information, technical support, LabVIEW drivers, and our comprehensive library of technical and application information, visit our website at: www.ilxlightwave.com Copyright 2005 ILX Lightwave Corporation, All Rights Reserved Rev01.063005 Measuring Diode Laser Characteristics Diode Lasers Approach Ubiquity, But They Still Can Be Frustrating To Work With By Tyll Hertsens Diode lasers have been called “wonderful little attempt at real-time equivalent-circuit mod- devices.” They are small and effi cient. They eling, mostly during device modulation. The can be directly modulated and tuned. These last two categories of Table 1 represent devices affect us daily with better clarity in our topics of other articles, for other authors. telephone system, higher fi delity in the music we play at home, and a host of other, less Electrical Characteristics obvious ways. The L/I Curve. The most common of the diode laser characteristics is the L/I curve But diode lasers can be frustrating to work (Figure 1). It plots the drive current applied with. The same family of characteristics that to the laser against the output light intensity. permit wide areas of application also make This curve is used to determine the laser’s diode lasers diffi cult to control.
    [Show full text]
  • Photodetectors for Lidar
    Oct. 2020 Photodetectors for LiDAR Hamamatsu offers solution for LiDAR applications with various devices MPPCR APD Photosensor with PIN photodiode (multi-pixel photo counter) front-end IC Schematic of a distance measurement system What is Time of Flight (TOF)? One of the methods to measure distance is time of flight (TOF). A direct TOF system calculates the distance by measuring the time for light emitted from a light source to be reflected at the target object and received by a photosensor. The system can be configured by combining a sensor, such as a MPPC, APD, or PIN photodiode, a timer circuit, and a time measurement circuit. Used in combination with a pulse modulated light source, the direct TOF system can obtain distance information by calculating the phase information of the light emission and reception timing. Other known distance measurement methods include the proximity method and triangulation distance measurement method. These methods are used to measure relatively close distances. In comparison, the TOF method allows long distance measurement. Depending on the selected device, a wide range of distances, from short to long distances, can be measured. TOF system Optical system Light source Reference light Photosensor Object (MPPC, APD, PIN photodiode) Reflected light Timer circuit Time measurement circuit Distance measurement Photosensors for TOF Triangulation TOF Proximity Measurement accuracy Short range Long range SiSi PD APD MPPC KMPDC0473EA 2 Photodetectors for LiDAR Detector demands for LiDAR applications ● High sensitivity, Low noise ● High speed response ● Usable under strong ambient light condition ● Wide dynamic range - Especially in automotive application - From a distance black target (very weak reflected light) ● Usable under wide temperature range to nearby shiny target (too much reflected light) ● Mass productivity and low cost ● Array capability Comparison MPPC (multi-pixel photon counter) The MPPC is one of the devices called silicon photomultipliers (SiPM).
    [Show full text]
  • Application Note - LTC-1141 in Laser Spectroscopy
    Application Note - LTC-1141 in Laser Spectroscopy Application note written in highly appreciated collaboration with IPM – Fraunhofer Institut Freiburg, Germany Meerstetter Engineering GmbH Schulhausgasse 12 CH-3113 Rubigen Switzerland Phone: +41 31 712 01 01 Email: [email protected] Meerstetter Engineering GmbH (ME) reserves the right to make changes without further notice to the product described herein. Information furnished by ME is believed to be accurate and reliable. However typical parameters can vary depending on the application and actual performance may vary over time. All operating parameters must be validated by the customer under actual application conditions. Release date: 28 August 2020 Developed, assembled and tested in Switzerland 5240C Meerstetter Engineering GmbH 1 5240C Meerstetter Engineering GmbH 2 Index 1 Abstract ...................................................................................................................... 4 2 Device Overview ........................................................................................................ 5 3 Application .................................................................................................................. 6 3.1 Application Theory ...................................................................................................... 6 3.2 Application Description ............................................................................................... 8 4 Results and Benefits ..................................................................................................
    [Show full text]
  • Design and Development of Discrete Laser Diode Driver
    International Journal of Engineering Sciences & Emerging Technologies, April 2012. ISSN: 2231 – 6604 Volume 2, Issue 1, pp: 16-23 ©IJESET DESIGN AND DEVELOPMENT OF DISCRETE LASER DIODE DRIVER Sheeja M.K. Assistant Professor, Dept. of Electronics and Communication Engineering, SCT College of Engineering, Pappanamcode, Trivandrum. [email protected] ABSTRACT Laser diode power supplies are power supplies that are required to provide a constant current output to the laser diode. Due to the dynamic LI characteristic of the laser diode, the control of current in the laser circuit is very complicated. The characteristic of laser diode defines a threshold current and a maximum current between which the current has to be fixed. The complicating aspect of this is that this range is just 10-20% of the threshold value. A power supply circuit for laser diodes, in general should account to numerous features. The features of the diode power supply can be classified on the basis of two factors, firstly its performance issues and secondly its protections issues. Performance and protection are the basic concerns for laser current sources. Performance issues include the current source’s magnitude and stability under all conditions, output- connection restrictions, voltage compliance, efficiency, programming interface, and power requirements. Protection features are necessary to prevent laser and optical component damage. The laser, which is an expensive and delicate device, must have protection under all conditions, including supply ramp-up and -down, improper control-input commands, open or intermittent load connections etc. A circuit that provides all the fundamental features is being done here. KEYWORDS: Laser diode, current driver, simulator, CAD, operating current.
    [Show full text]
  • Statement on Leds and Laser Diodes
    INTERNATIONAL COMMISSION ON NON‐IONIZING RADIATION PROTECTION ICNIRP STATEMENT ON LIGHT‐EMITTING DIODES AND LASER DIODES: IMPLICATIONS FOR HAZARD ASSESSMENT PUBLISHED IN: HEALTH PHYSICS 78(6):744‐752; 2000 ICNIRP PUBLICATION – 2000 ICNIRP Statement ICNIRP STATEMENT ON LIGHT-EMITTING DIODES (LEDS) AND LASER DIODES: IMPLICATIONS FOR HAZARD ASSESSMENT International Commission on Non-Ionizing Radiation Protection*† INTRODUCTION From a safety standpoint, LEDs have been treated both as lasers (e.g., in IEC standard 60825-1) (IEC 1998; ANSI BOTH VISIBLE and infrared laser diodes and light-emitting 1988) and as lamps (CIE 1999; ANSI/IESNA 1996a,b). diodes (LEDs, or sometimes referred to as IREDs in the Because of some confusion relating to the actual risk, infrared) are widely used in displays and in many home ICNIRP organized a panel of experts to review the entertainment systems, toys, signal lamps, optical fiber potential hazards of current DEs. communication, and optical surveillance systems. Col- Laser diodes are constructed with miniature reso- lectively these are referred to as diode emitters (DEs). nant cavities with gain, produce a very narrow spectral While the higher power laser diodes have routinely been bandwidth, can generally achieve shorter pulse durations, considered to be “eye hazards,” traditional LEDs have are not limited in radiance, and can emit much higher been regarded as safe. However, with the recent devel- radiant powers than LEDs. opment of higher power LEDs, there has been an effort to Light-emitting diodes of low to moderate brightness develop LED safety standards. There are a variety of (luminance) are used in many types of visual displays as LED types ranging from surface emitters to super- indicator lights and many related products.
    [Show full text]