1997. the Journal of Arachnology 25:11-19 NOTES on THE
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vol. 16, No. 2 Summer 1983 the GREAT LAKES ENTOMOLOGIST
MARK F. O'BRIEN Vol. 16, No. 2 Summer 1983 THE GREAT LAKES ENTOMOLOGIST PUBLISHED BY THE MICHIGAN EN1"OMOLOGICAL SOCIErry THE GREAT LAKES ENTOMOLOGIST Published by the Michigan Entomological Society Volume 16 No.2 ISSN 0090-0222 TABLE OF CONTENTS Seasonal Flight Patterns of Hemiptera in a North Carolina Black Walnut Plantation. 7. Miridae. J. E. McPherson, B. C. Weber, and T. J. Henry ............................ 35 Effects of Various Split Developmental Photophases and Constant Light During Each 24 Hour Period on Adult Morphology in Thyanta calceata (Hemiptera: Pentatomidae) J. E. McPherson, T. E. Vogt, and S. M. Paskewitz .......................... 43 Buprestidae, Cerambycidae, and Scolytidae Associated with Successive Stages of Agrilus bilineatus (Coleoptera: Buprestidae) Infestation of Oaks in Wisconsin R. A. Haack, D. M. Benjamin, and K. D. Haack ............................ 47 A Pyralid Moth (Lepidoptera) as Pollinator of Blunt-leaf Orchid Edward G. Voss and Richard E. Riefner, Jr. ............................... 57 Checklist of American Uloboridae (Arachnida: Araneae) Brent D. Ope II ........................................................... 61 COVER ILLUSTRATION Blister beetles (Meloidae) feeding on Siberian pea-tree (Caragana arborescens). Photo graph by Louis F. Wilson, North Central Forest Experiment Station, USDA Forest Ser....ice. East Lansing, Michigan. THE MICHIGAN ENTOMOLOGICAL SOCIETY 1982-83 OFFICERS President Ronald J. Priest President-Elect Gary A. Dunn Executive Secretary M. C. Nielsen Journal Editor D. C. L. Gosling Newsletter Editor Louis F. Wilson The Michigan Entomological Society traces its origins to the old Detroit Entomological Society and was organized on 4 November 1954 to " ... promote the science ofentomology in all its branches and by all feasible means, and to advance cooperation and good fellowship among persons interested in entomology." The Society attempts to facilitate the exchange of ideas and information in both amateur and professional circles, and encourages the study of insects by youth. -
Theridiidae): a Web That Is Not a Snare* B' William G
ARG YRODES A TTENUA TUS (THERIDIIDAE): A WEB THAT IS NOT A SNARE* B' WILLIAM G. EBERIaARr) Smithsonian Tropical Research Institute and Escuela de Biologia, Universidad de Costa Rica, Ciudad Universitaria, Costa Rica INTRODUCTION Spiders of the large theridiid genus Argyrodes, whose natural history was reviewed by Exline and Levi (1962), seem to have generally abandoned the usual theridiid habit of spinning webs to capture insect prey. A few spin their own webs, but more often they live in the webs of other, larger web-building spiders where they remove prey from the host's web (e.g. Kullmann 1959, Vollrath 1978). The apparently kleptoparasitic species A. trigonum .(trigon- um species group) actually preys on its hosts on occasion. Argyrodes species in the Rhomphaea group have also been found feeding on web spiders, but some in circumstances which suggest a strict predator-prey relationship rather than kleptoparasitism. Exline and Levi (1962) note two observations of A. (R.)fictilium preying on web weavers although fictilium "often make small theridiid webs of their own". I have found an A. (R.)projiciens (O.P. Camb.) feeding on a Metazygia sp. which leaves its web up only during the night, thus making kleptoparasitism unlikely; the state of the prey's web indicated that it was attacked as it was building its web early in the evening. I have also seen an unidentified species feeding on an Araneus (?) sp., a species which leaves its web up only two to three hours in the early evening and then removes it completely. Clyne (1979) showed that a species from the Ariamnes group, Argyrodes colubrinus, uses still another tactic. -
A Review of the Anti-Predator Devices of Spiders* Invaders Away Or Kill and Eat Them
Bull. Br. arachnol. Soc. (1995) 10 (3), 81-96 81 A review of the anti-predator devices of spiders* invaders away or kill and eat them. The pirate spiders (Mimetidae) that have been studied feed almost J. L. Cloudsley-Thompson exclusively on other spiders, whilst certain Salticidae 10 Battishill Street, (Portia spp.) feed not only upon insects, but sometimes London Nl 1TE also on other jumping spiders, and even tackle large orb-weavers in their webs (see below). Several other Summary families and genera, including Archaeidae, Palpimanus (Palpimanidae), Argyrodes and Theridion (Theridiidae), The predators of spiders are mostly either about the and Chorizopes (Araneidae) contain species that include same size as their prey (arthropods) or much larger (vertebrates), against each of which different types of de- other spiders in their diet. Sexual cannibalism has been fence have evolved. Primary defences include anachoresis, reviewed by Elgar (1992). Other books in which the phenology, crypsis, protective resemblance and disguise, enemies of spiders are discussed include: Berland (1932), spines and warning coloration, mimicry (especially of ants), Bristowe (1958), Cloudsley-Thompson (1958, 1980), cocoons and retreats, barrier webs, web stabilimenta and Edmunds (1974), Gertsch (1949), Main (1976), Millot detritus, and communal webs. Secondary defences are flight, dropping to the ground, colour change and thanatosis, (1949), Preston-Mafham, R. & K. (1984), Savory (1928), web vibration, whirling and bouncing, autotomy, venoms Thomas (1953) and Wise (1993). (For earlier references, and defensive fluids, urticating setae, warning sounds and see Warburton, 1909). deimatic displays. The anti-predator adaptations of spiders The major predators of spiders fall into two cate- are extremely complex, and combinations of the devices gories: (a) those about the same size as their prey (mainly listed frequently occur. -
A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views. -
SA Spider Checklist
REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region. -
Spider Community Composition and Structure in a Shrub-Steppe Ecosystem: the Effects of Prey Availability and Shrub Architecture
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2012 Spider Community Composition and Structure In A Shrub-Steppe Ecosystem: The Effects of Prey Availability and Shrub Architecture Lori R. Spears Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Philosophy Commons Recommended Citation Spears, Lori R., "Spider Community Composition and Structure In A Shrub-Steppe Ecosystem: The Effects of Prey Availability and Shrub Architecture" (2012). All Graduate Theses and Dissertations. 1207. https://digitalcommons.usu.edu/etd/1207 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. SPIDER COMMUNITY COMPOSITION AND STRUCTURE IN A SHRUB-STEPPE ECOSYSTEM: THE EFFECTS OF PREY AVAILABILITY AND SHRUB ARCHITECTURE by Lori R. Spears A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Ecology Approved: ___________________________ ___________________________ James A. MacMahon Edward W. Evans Major Professor Committee Member ___________________________ ___________________________ S.K. Morgan Ernest Ethan P. White Committee Member Committee Member ___________________________ ___________________________ Eugene W. Schupp Mark R. McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2012 ii Copyright © Lori R. Spears 2012 All Rights Reserved iii ABSTRACT Spider Community Composition and Structure in a Shrub-Steppe Ecosystem: The Effects of Prey Availability and Shrub Architecture by Lori R. -
PDF Herunterladen
Arachnologische Mitteilungen Heft 27/28 Basel, November 2004 ISSN 1018 - 4171 www.AraGes.de Arachnologische Mitteilungen Herausgeber: Arachnologische Gesellschaft e.V., Internet: www.AraGes.de Schriftleitung: Dipl.-Biol. Theo Blick, Heidloh 8, D-95503 Hummeltal E-mail: [email protected] Dr. Oliver-David Finch, Universität, Fk 5, Institut für Biologie, Geo- und Umwelt- wissenschaften, AG Terrestrische Ökologie, Postfach 2503, D-26111 Oldenburg E-Mail: [email protected] Redaktion: Theo Blick, Hummeltal Dr. Oliver-David Finch, Oldenburg Dr. Jason Dunlop, Berlin Dr. Detlev Cordes, Nürnberg Gestaltung: Naturhistorisches Museum Basel, E-Mail: [email protected] Wissenschaftlicher Beirat: Dr. Peter Bliss, Halle (D) Dr. sc. Dieter Martin, Waren (D) Prof. Dr. Jan Buchar, Prag (CZ) Dr. Ralph Platen, Berlin (D) Prof. Peter J. van Helsdingen, Leiden (NL) Dr. Uwe Riecken, Bonn (D) Dr. Volker Mahnert, Genf (CH) Prof. Dr. Wojciech Staręga, Bialystok (PL) Prof. Dr. Jochen Martens, Mainz (D) UD Dr. Konrad Thaler, Innsbruck (A) Erscheinungsweise: Pro Jahr 2 Hefte. Die Hefte sind laufend durchnummeriert und jeweils abgeschlossen- paginiert. Der Umfang je Heft beträgt ca. 60 Seiten. Erscheinungsort ist Basel. Auflage 450 Expl., chlorfrei gebleichtes Papier Schüling Verlag Münster, Druck: Kleyer, Münster Bezug: Im Mitgliedsbeitrag der Arachnologischen Gesellschaft enthalten (25.- Euro, Studierende 15.- Euro pro Jahr), ansonsten beträgt der Preis für das Jahresabonnement 25.- Euro. Bestellungen sind zu richten an: Dirk Kunz, Forschungsinstitut und Naturmuseum Senckenberg, Senckenberganlage 25, D-60325 Frankfurt, Tel. +49 69 7542 311, Fax +49 69 7462 38, e-mail: [email protected] oder via Homepage www.AraGes.de (Beitrittsformular) Die Bezahlung soll jeweils zu Jahresbeginn erfolgen auf das Konto: Arachnologische Gesellschaft e.V. -
How to Cite Complete Issue More Information About This Article
Acta zoológica mexicana ISSN: 0065-1737 ISSN: 2448-8445 Instituto de Ecología A.C. Campuzano Granados, Emmanuel Franco; Ibarra Núñez, Guillermo; Gómez Rodríguez, José Francisco; Angulo Ordoñes, Gabriela Guadalupe Spiders (Arachnida: Araneae) of the tropical mountain cloud forest from El Triunfo Biosphere Reserve, Mexico Acta zoológica mexicana, vol. 35, e3502092, 2019 Instituto de Ecología A.C. DOI: 10.21829/azm.2019.3502092 Available in: http://www.redalyc.org/articulo.oa?id=57564044 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative e ISSN 2448-8445 (2019) Volumen 35, 1–19 elocation-id: e3502092 https://doi.org/10.21829/azm.2019.3502092 Artículo científico (Original paper) SPIDERS (ARACHNIDA: ARANEAE) OF THE TROPICAL MOUNTAIN CLOUD FOREST FROM EL TRIUNFO BIOSPHERE RESERVE, MEXICO ARAÑAS (ARACHNIDA: ARANEAE) DEL BOSQUE MESÓFILO DE MONTAÑA DE LA RESERVA DE LA BIOSFERA EL TRIUNFO, MÉXICO EMMANUEL FRANCO CAMPUZANO GRANADOS, GUILLERMO IBARRA NÚÑEZ*, JOSÉ FRANCISCO GÓMEZ RODRÍGUEZ, GABRIELA GUADALUPE ANGULO ORDOÑES El Colegio de la Frontera Sur, Unidad Tapachula, Carr. Antiguo Aeropuerto km. 2.5, Tapachula, Chiapas, C. P. 30700, México. <[email protected]>; <[email protected]>; <[email protected]>; <[email protected]> *Autor de correspondencia: <[email protected]> Recibido: 09/10/2018; aceptado: 16/07/2019; publicado en línea: 13/08/2019 Editor responsable: Arturo Bonet Ceballos Campuzano, E. F., Ibarra-Núñez, G., Gómez-Rodríguez, J. F., Angulo-Ordoñes, G. G. -
Eggsac Differences in the Spider Family Uloboridae (Arachnida: Araneae)L
Eggsac Differences in the spider Family Uloboridae (Arachnida: Araneae)l BnrNr D. Oprll Department of Biology, Virginia Polytechnic Institute and State Universitv. Blacksburg, Virginia 2406I, U.S.A. Abstract' Scanning electron microscope study of eggsacsprocluced by representatives of the genera Hgptiotes, Miagrammopes, Octonoba,-Philop)neila, Tangaroa, IJloborzts, and Zosis shows them to contain silk of three diameter classes,the clistribution of which does not mirror the familv's phylogeny. The eggsacs of some taxa are constructed of a single layer of fine silk fibers having a diameter o] about 1.0 pm ancl others of two la,n,ers of this silk, judged to be of tubuliform glancl origin. others construct eggsacsit""a 6inr" silk and covered by coarse silk fibers having a diameter of aboirt t.o rrp. Eggsacs of Haptiotes are made of trvo coarse layers covered by tuftecl silk having a fiber 6iameter of about 5'6 pm. Both coarse and tufted silk camoufl"g" tufteJ silk possibly,also serving to collect "ggr"cs, moisture and protect eggs from mechanital ancl insect damage. Coarse and tufted silk may be produced by ampullate glands. The spider family Uloboridae is represented world-wide (Opell, 1g79). Its 18 genera show behavioral diversity in the type of capture webs^producedand in the shape and placement of silken thut u." spun around egg clusters (Berland, "ggr""r Ig32; Comstock, lglB; Eberhard, l96g; Gertsch, l97g; Girault, lgl4; Kaston, 1948; Lubin et al., tgTB; Scheffer, lg05; Trail, rg}2; wiehle, rgz7, 1928; Yoshida, 1981; personal observations).The stellate or elongate, lenticular eggsacs of Philop,onella (Fig, l) often are suspended from t"h" of u horizontal "dg", orb-web and are guarded bv females, whereas those of dctonoba and Zosis are incorporated into the horizontal orb-web and usually are left unattended (Fig. -
Family Uloboridae the Refationship of Book Lung and Tracheal Systems in the Spider
JOURNAL OF MORPHOLOGY 206:211-216(1990) The Refationshipof Book Lungand Tracheal Systems in the Spider FamilyUloboridae BRENT D. OPELL nia Po lv t ec hni c l rx t i t ute and s t at e u niue r s it v Bf::I r,i;,', ltt#;Y l ;#F ABSTRACT The book lung surface areas of representatives of six genera were measured and divided by spider prosomal and leg mass and by the product of prosomal length and width to obtain two indexes of book lung area. Both indexesare greatest in speciesthat have the simplest tracheal systemsand smallest in those with the most extensivetracheal systems.When speciesare ordered phylogenetically and the lung area indexes of their hypothetical ancestorscomputed, a transformational increasein lung area is indicated. Neither the lung area of a speciesnor its phyloge- netic position is significantly related to the generalmoisture regime of its habitat. The number of leavesin a book lung is positively correlated with both spider sizeand total lung area. However, leaf number is not correlated with tracheal development and showsno transformational change. The Tracheospira (seruu, Platnick, '77) con- branch to enter the legs. Tracheae entering the tains spiders that have two respiratory compo- prosomaeof Hyptiotes and Miagrammopes have nents: a pair of book lungs that oxygenate the diameters that are, relative to combined proso- hemolymph and a tracheal system that carries mal and leg masses,nearly twice those of Waitk- oxygen directly to tissues. A variety of spider era artd Uloborus (Table 1). This difference is tracheal patterns have been documented and attributed to the fact that they more actively '87; their adaptiveness discussed (Bromhall, monitor and manipulate their reduced prey cap- Opell,'87a). -
Members of the Dartmouth Biology Fsp 2011
MEMBERS OF THE DARTMOUTH BIOLOGY FSP 2011 FACULTY RYAN G. CALSBEEK DAVID R. PEART BRAD W. TAYLOR LAB COORDINATOR CRAIG D. LAYNE GRADUATE ASSISTANTS M. C. DURYEA GILLIAN L. MORITZ SPECIAL ASSISTANT AND COPY EDITOR SARAH E. WENGERT UNDERGRADUATES KELLY S. AHO JENNIFER A. FREISE MARIELLE F. BATTISTONI SUZANNE J. KELSON ELIN C. BECK EMILY KYKER-SNOWMAN LARRY L. BOWMAN, JR. ANDREW N. MERTENS ROHAN N. CHAUDHARY REBECCA M. NIEMIEC ZACHARY J. CLARE-SALZLER SARA E. REMSEN IAN D. ENGLER FRANCES M. WANG KATHERINE L. FITZGERALD i Dartmouth Studies in Tropical Ecology, Vol. 21 Dartmouth College runs an annual 9-10 week ecological field research program in Costa Rica and the Caribbean. Manuscripts from the research projects in this program have been published in the annual volume “Dartmouth Studies in Tropical Ecology” since 1989. Copies are held in the Dartmouth library and in Costa Rica at the San Jose office of the Organization for Tropical Studies (OTS/OET), at the OTS field stations at Palo Verde, Las Cruces and La Selva, at the Cuerici Biological Station, at the Sirena Station of the Corcovado National Park (through 2010), and at the Monteverde Biological Station. On Little Cayman Island, there are copies at the Little Cayman Research Center. Dartmouth faculty from the Department of Biological Sciences, along with two Ph.D. students from Dartmouth’s Environmental and Evolutionary Biology graduate program, advise ca. 15 advanced undergraduate students on this program. The first few projects are designed by the advisors, but undergraduates soon begin conceiving and designing their own projects. The order of authorship on each paper was chosen randomly, in keeping with the style of the program, which emphasizes a cooperative and egalitarian relationship among undergraduates in each project. -
Records of the Canterbury Museum Volume 34 2020
Records of the Canterbury Museum, 2020 Vol. 34: 85–94 85 A redescription of Philoponella congregabilis, an Australian hackled orb weaver spider (Uloboridae) now found in Christchurch, New Zealand Cor J Vink1,2,3 and Kate M Curtis1,3 1Canterbury Museum, Rolleston Avenue, Christchurch 8013, New Zealand 2Zoological Museum, Centre of Natural History, University of Hamburg, Martin-Luther-King-Platz 3, D-0146 Hamburg, Germany 3Department of Pest-management and Conservation, Lincoln University, Lincoln 7647, New Zealand Email: [email protected] Philoponella congregabilis (Rainbow, 1916), an Australian spider in the family Uloboridae, has recently established in Christchurch, New Zealand. The species is redescribed. It builds reduced, horizontal or sloping orb webs in low vegetation, on fences, under eaves and in outbuildings. The webs of different individuals can be interconnected. Philoponella congregabilis is found in eastern and southeastern Australia and its current New Zealand distribution is limited to the southern suburbs of Christchurch. Keywords: invasive spider, taxonomy, uloborid Introduction The Uloboridae include small spiders that are congregabilis (Rainbow, 1916) established unusual in that they do not have cheliceral itself in Christchurch and has now spread to a venom glands. Instead of envenomating number of localities in southern Christchurch. their prey, uloborids wrap their prey tightly Because the original and only description of with large amounts of silk, which breaks the P. congregabilis is not sufficient to identify cuticle (Eberhard et al. 2006). The spider then specimens with certainty, we redescribe P. regurgitates digestive enzymes over its prey congregabilis here. We also plot its current and feeds on the liquefied body (e.g.