Geology of the Spring Mountains, Nevada
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cultural Background of the Spring Mountains National Recreation Area
American Indian Groups Recent studies of the Great Basin region, which includes the Las Vegas and Pahrump Valleys, have begun to show that people may have lived in this area as far back as 12,000 to 13,000 years ago. When people first began to arrive here, the environment was far more wet and lush than the world we know today. Lakes, playas, and marshes all existed in the area and this abundance of water led to a much greater variety of plants and animals that the people who lived here used. As the environment of the Spring Mountains changed over time, a unique physical history developed that helped it evolve into the fascinating place it is today. As the water began to dry up around 10,000 years ago, the Spring Mountains became isolated from the Great Basin mountain ecosystems and slowly the mountains were surrounded by the drier Mojave Desert. As it became warmer and drier, the mountain range also became isolated biologically. The valley floors surrounding the range act as a barrier to most plant and animal migrations, and thus many of the plants and animals found here today are either relic species or are new or evolved species found only to exist in this area. As the physical environment changed, so did the ways that people lived and used the land. American Indian groups have had a continuous presence in Southern Nevada for thousands of years and believe that the Spring Mountains are where their people were created. Because of this, the mountains are considered to be sacred and very special to them. -
Ecoregions of Nevada Ecoregion 5 Is a Mountainous, Deeply Dissected, and Westerly Tilting Fault Block
5 . S i e r r a N e v a d a Ecoregions of Nevada Ecoregion 5 is a mountainous, deeply dissected, and westerly tilting fault block. It is largely composed of granitic rocks that are lithologically distinct from the sedimentary rocks of the Klamath Mountains (78) and the volcanic rocks of the Cascades (4). A Ecoregions denote areas of general similarity in ecosystems and in the type, quality, Vegas, Reno, and Carson City areas. Most of the state is internally drained and lies Literature Cited: high fault scarp divides the Sierra Nevada (5) from the Northern Basin and Range (80) and Central Basin and Range (13) to the 2 2 . A r i z o n a / N e w M e x i c o P l a t e a u east. Near this eastern fault scarp, the Sierra Nevada (5) reaches its highest elevations. Here, moraines, cirques, and small lakes and quantity of environmental resources. They are designed to serve as a spatial within the Great Basin; rivers in the southeast are part of the Colorado River system Bailey, R.G., Avers, P.E., King, T., and McNab, W.H., eds., 1994, Ecoregions and subregions of the Ecoregion 22 is a high dissected plateau underlain by horizontal beds of limestone, sandstone, and shale, cut by canyons, and United States (map): Washington, D.C., USFS, scale 1:7,500,000. are especially common and are products of Pleistocene alpine glaciation. Large areas are above timberline, including Mt. Whitney framework for the research, assessment, management, and monitoring of ecosystems and those in the northeast drain to the Snake River. -
Framework for Springs Stewardship Program and Proposed Action Development: Spring Mountains National Recreation Area, Humboldt-Toiyabe National Forest
United States Department of Agriculture Framework for Springs Stewardship Program and Proposed Action Development: Spring Mountains National Recreation Area Humboldt-Toiyabe National Forest Forest Rocky Mountain General Technical Report Service Research Station RMRS-GTR-330 December 2014 Coles-Ritchie, Marc; Solem, Stephen J.; Springer, Abraham E.; Pendleton, Burton. 2014. Framework for Springs Stewardship Program and proposed action development: Spring Mountains National Recreation Area, Humboldt-Toiyabe National Forest. Gen. Tech. Rep. RMRS-GTR-330. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 63 p. Keywords: Spring stewardship, spring restoration, groundwater dependent ecosystems, watershed management, spring rehabilitation, spring maintenance AUTHORS Marc Coles-Ritchie, Ph.D., is a Vegetation Ecologist with Management and Engineering Technology International, Inc. (METI, Inc.), Salt Lake City, Utah. Stephen J. Solem is a senior advisor for natural resource planning and inventory with Management and Engineering Technology International, Inc. (METI, Inc.), Missoula, Montana. Abraham E. Springer, Ph.D., is a Hydrogeologist and Professor at Northern Arizona University and consultant to Management and Engineering Technology International, Inc. (METI, Inc.), Flagstaff, Arizona. Burton Pendleton, Ph.D., is a Research Ecologist Emeritus with the Rocky Mountain Research Station in Albuquerque, New Mexico. ACKNOWLEDGMENTS This effort was accomplished by using funding provided by the Southern Nevada Public Lands Management Act conservation initiative (Round 10). Work was performed using In-Service Agreements between the Humboldt-Toiyabe National Forest and the Rocky Mountain Research Station and under the terms and conditions of Management and Engineering Technologies International, Inc. Contract Number: AG- 3187-C-0028, Order Number: AG-3187-D-10-0126. -
Central Nevada
University of Nevada Reno LATE CENOZOIC GEOLOGY AND TECTONICS OF STEWART AND MONTE CRISTO VALLEYS, WEST - CENTRAL NEVADA A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science .I by Mark Philip Molinari fit ; December, 1984 ii ABSTRACT Discontinuous right-normal-slip faults comprise the N30 0W trending, 45 kilometer long Stewart - Monte Cristo fault zone (SMCFZ). Initiation of the SMCFZ postdates the 15.5 to 11.0 m.y. Esmeralda Formation. Right-normal-slip >1 meter occurred on the southern segment of the SMCFZ during the 1932 Cedar Mountain earthquake (Ms= 7.2-7.3). Geomor- phic evidence supports at least three and possibly five or six surface faulting events on the southern segment during the latest Pleistocene and Holocene. Gentle folds in the Esmeralda Formation east of and sub-parallel to the SMCFZ are coeval with and genetically related to faulting. Structural development of the SMCFZ is similar to other right-lateral wrench faults and is consistent with labora- tory wrench fault models. The SMCFZ is the youngest and southeasternmost fault of a system of major late Cenozoic, left-stepping, en echelon right-slip faults in the central Walker Lane. - .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ iii TABLE OF CONTENTS page ABSTRACT .................. S S ii INTRODUCTION . 0 0 1 0 * I Location and Extent of Study Area . S S S S 1 Regional Tectonic and Geologic Setting. S. S a * 0 1 Purpose and Scope ...... a a * a 5 Methodology . 6 Previous Work . 8 Physiography. 10 MESOZOIC STRATIGRAPHY. 13 Sedimentary Rocks . & 13 Mina Formation . 13 Luning Formation . 13 Plutonic Rocks . -
Science to Support Land Management in Southern Nevada
Chapter 6 Species of Conservation Concern and Environmental Stressors: Local, Regional, and Global Effects Steven M. Ostoja, Matthew L. Brooks, Jeanne C. Chambers, and Burton Pendleton Introduction Species conservation has traditionally been based on individual species within the context of their requisite habitat, which is generally defined as the communities and ecosystems deemed necessary for their persistence. Conservation decisions are ham- pered by the fact that environmental stressors that potentially threaten the persistence of species can operate at organizational levels larger than the habitat or home range of a focal species. Resource managers must therefore simultaneously consider local, regional, and/or global scale stressors for effective conservation and management of species of concern. The wide ranging effects associated with global stressors such as climate change may exceed or exacerbate the effects of local or regional stressors. Although resource managers may only be able to directly affect local and regional stressors, they still need to understand the direct and interactive effects of global stressors and ultimately how they affect the lands they manage. Conservation of species in southern Nevada is further complicated by the fact that the region includes one of the largest and fastest growing urban centers in North America. To accomplish the goal of species conserva- tion, resource managers must identify actionable management options that mitigate the effects of local and regional stressors in the context of the effects of global stressors that are beyond their control. Species conservation is typically focused on a subset of species often referred to as species of conservation concern that have either demonstrated considerable decline or are naturally rare or have limited distributions. -
Late Cenozoic Geomorphic History of Lee Canyon, Spring Mountains, Nevada
UNLV Theses, Dissertations, Professional Papers, and Capstones 6-1969 Late Cenozoic geomorphic history of Lee Canyon, Spring Mountains, Nevada John Henry Gucwa Pennsylvania State University - Main Campus Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Geology Commons, Geomorphology Commons, and the Sedimentology Commons Repository Citation Gucwa, John Henry, "Late Cenozoic geomorphic history of Lee Canyon, Spring Mountains, Nevada" (1969). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1436. http://dx.doi.org/10.34917/3431545 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. The Pennsylvania State Universiti ( / . The Graduate School Department of Geology and Geophysics Late Cenozoic Geomorphic History of Lee Canyon, Spring Mountains, Nevada A Thesis in ., \ Geology \. \' by I John Henry Gucwa ( Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science June, 1969 · Date of Approval: • Head of the Department~ Geology and Geophysics i ii 1CKNOHLEDGMENTS ( 1be author wishes expressly to thank Dr. -
Eocene–Early Miocene Paleotopography of the Sierra Nevada–Great Basin–Nevadaplano Based on Widespread Ash-Flow Tuffs and P
Origin and Evolution of the Sierra Nevada and Walker Lane themed issue Eocene–Early Miocene paleotopography of the Sierra Nevada–Great Basin–Nevadaplano based on widespread ash-fl ow tuffs and paleovalleys Christopher D. Henry1, Nicholas H. Hinz1, James E. Faulds1, Joseph P. Colgan2, David A. John2, Elwood R. Brooks3, Elizabeth J. Cassel4, Larry J. Garside1, David A. Davis1, and Steven B. Castor1 1Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557, USA 2U.S. Geological Survey, Menlo Park, California 94025, USA 3California State University, Hayward, California 94542, USA 4Department of Earth and Environment, Franklin & Marshall College, Lancaster, Pennsylvania 17604, USA ABSTRACT the great volume of erupted tuff and its erup- eruption fl owed similar distances as the mid- tion after ~3 Ma of nearly continuous, major Cenozoic tuffs at average gradients of ~2.5–8 The distribution of Cenozoic ash-fl ow tuffs pyroclastic eruptions near its caldera that m/km. Extrapolated 200–300 km (pre-exten- in the Great Basin and the Sierra Nevada of probably fi lled in nearby topography. sion) from the Pacifi c Ocean to the central eastern California (United States) demon- Distribution of the tuff of Campbell Creek Nevada caldera belt, the lower gradient strates that the region, commonly referred and other ash-fl ow tuffs and continuity of would require elevations of only 0.5 km for to as the Nevadaplano, was an erosional paleovalleys demonstrates that (1) the Basin valley fl oors and 1.5 km for interfl uves. The highland that was drained by major west- and Range–Sierra Nevada structural and great eastward, upvalley fl ow is consistent and east-trending rivers, with a north-south topographic boundary did not exist before with recent stable isotope data that indicate paleodivide through eastern Nevada. -
Spring Mountains National Recreation Area Visitor Guide
SPRING MOUNTAINS NATIONAL RECREATION AREA 2 0 0 9 - 2 0 1 0 V I S I T O R G U I D E Welcome to the Spring Mountains National Recreation Area This year-round recreation area offers camping, picnicking, hiking, and other activities in the warmer months, and opportunities for snow-based activities in winter. Recreation tips and information in this visitor guide will help you enjoy your visit and protect the Spring Mountains for plants and animals who depend on this “island in the desert.” SPRING MOUNTAINS – MT. CHARLESTON AREA: Visit Kyle and Lee SPRING MOUNTAINS – WEST SIDE: The west side of the Spring Canyons where you will have access to five picnic areas, six developed Mountains, accessed by rugged dirt roads from areas around Pahrump, campgrounds, and over 50 miles of hiking trails, many entering into Cold Creek, and Mountain Springs, offers wide open spaces for off-highway wilderness areas. Paved highways and spectacular scenery create exceptional vehicle (OHV) use and dispersed camping. There are no developed opportunities for scenic driving. campgrounds or picnic areas with restrooms and picnic tables on the west side of the Spring Mountains. HUMBOLDT-TOIYABE NATIONAL FOREST • USDA FOREST SERVICE TIPS & MORE HANDY NUMBERS AND WEB SITES EMERGENCY: 911 Las Vegas Metropolitan Police Department: 702-229-3111 Spring Mountains National Recreation Area Visitor Information: 702-872-5486 or fs.fed.us/r4/htnf/districts/smnra/ Spring Mountains National Recreation Area Administrative Office: 702 -515-5400 Spring Mountains National Recreation Area Fire Information: 702-631-2350 or www.fs.fed.us./r4/htnf/fire/ Nevada Division of Wildlife (hunting and fishing): 702 -486-5127, www.ndow.org Nevada Highway Patrol: 702-486-4100 or www.nhp.nv.gov National Recreation Reservation Service (campground reservations): 877-444-6777 or www.recreation.gov Weather information: www.weather.gov SUGGESTIONS FOR AN ENJOYABLE TRIP PRIVATE PROPERTY Have a full tank of gas. -
The Geology and Paleontology of Tule Springs Fossil Beds National Monument, Nevada
The Geology and Paleontology of Tule Springs Fossil Beds National Monument, Nevada On December 19, 2014, Tule Springs Fossil Beds National Monument in Nevada was established by Congress as the 405th unit of the National Park Service to “conserve, protect, interpret, and enhance for the benefit of present and future generations the unique and nationally important paleontological, scientific, educational, and recreational resources and values of the land” (P.L. 113-291, sec. 3092). Photograph by Eric Scott, Cogstone Resource Management, Inc., used with permission. The upper Las Vegas Wash cuts through sediments formed by ancient springs and marshes that blanketed the Las Vegas Valley floor during the Pleistocene Epoch. These deposits have yielded thousands of vertebrate fossils and contain valuable information on past climatic and environmental conditions. This is Tule Springs Fossil Beds National Monument. A Brief History of Tule Springs techniques with massive earth-moving animals (Haynes, 1967). Consequently, activities. Heavy construction equipment the hypothesis that early humans coexisted Vertebrate fossils have been known carved enormous trenches into the sedi- with Pleistocene megafauna at Tule from the Las Vegas Valley for more than ments at Tule Springs to expose vertical Springs was disproven, and interest in the a century, beginning in 1903 when Josiah walls as deep as 13 meters (nearly site faded. A long intermission in scientific Spurr of the U.S. Geological Survey 43 feet!), which allowed the sediments to research followed, lasting until the 2000s reported teeth and bones in the sedi- be studied in detail. Geologist C. Vance when museum scientists conducted com- ments exposed in the wash between Corn Haynes, Jr., directed the geological inves- prehensive and systematic paleontological Creek Springs and Tule Springs (Spurr, tigations and subdivided the fossil-rich excavations of the area. -
Carlin-Type Gold Deposits in Nevada: Critical Geologic Characteristics and Viable Models
©2005 Society of Economic Geologists, Inc. Economic Geology 100th Anniversary Volume pp. 451–484 Carlin-Type Gold Deposits in Nevada: Critical Geologic Characteristics and Viable Models JEAN S. CLINE,† University of Nevada, Las Vegas, 4505 Maryland Parkway, Box 454010, Las Vegas, Nevada 89154-4010 ALBERT H. HOFSTRA, Mineral Resources Program, U.S. Geological Survey, Mail Stop 973, Box 25046, Denver, Colorado 80225 JOHN L. MUNTEAN, Nevada Bureau of Mines and Geology, Mail Stop 178, University of Nevada, Reno, Nevada 89557-0088 RICHARD M. TOSDAL, AND KENNETH A. HICKEY Mineral Deposit Research Unit, University of British Columbia, 6339 Stores Road, Vancouver, British Columbia, Canada V6T 1Z4 Abstract Carlin-type Au deposits in Nevada have huge Au endowments that have made the state, and the United States, one of the leading Au producers in the world. Forty years of mining and numerous studies have pro- vided a detailed geologic picture of the deposits, yet a comprehensive and widely accepted genetic model re- mains elusive. The genesis of the deposits has been difficult to determine owing to difficulties in identifying and analyzing the fine-grained, volumetrically minor, and common ore and gangue minerals, and because of postore weathering and oxidation. In addition, other approximately contemporaneous precious metal deposits have overprinted, or are overprinted by, Carlin-type mineralization. Recent geochronological studies have led to a consensus that the Nevada deposits formed ~42 to 36 m.y. ago, and the deposits can now be evaluated in the context of their tectonic setting. Continental rifting and deposi- tion of a passive margin sequence followed by compressional orogenies established a premineral architecture of steeply dipping fluid conduits, shallow, low dipping “traps” and reactive calcareous host rocks. -
F I N a L Mineral Assessment Report
BLM F I N A L MINERAL ASSESSMENT REPORT Battle Mountain District Office - Nevada J A N U A R Y 2 0 1 2 This page intentionally left blank Bureau of Land Management Mineral Assessment Report SUMMARY The Bureau of Land Management (BLM) Battle Mountain District Office (BMDO) is in the process of revising the district’s Resource Management Plan (RMP). As part of the RMP revision process, the BLM is required to prepare a Mineral Assessment Report providing information regarding mineral occurrences and potential within the BMDO Planning Area (planning area). This report provides an intermediate level of detail for mineral assessment as prescribed in BLM Manual 3060 (BLM 1994). Information presented in this report will be summarized and incorporated into an Environmental Impact Statement (EIS) for the proposed RMP and into the final RMP. The geologic history of central and southern Nevada and the planning area is very complex and includes two major cycles of sedimentation (western and eastern facies sources), episodic thrust faulting, mountain building, and associated intrusive and igneous activity. More recent geologic history includes a period of crustal extension that was accompanied by bimodal (rhyolite-basalt) volcanism, large volume caldera volcanism, and basin and range block-faulting resulting in high-levels of shallow crustal heat flow. The regional and local geologic setting has been instrumental in the location of and potential for numerous economic metallic mineral deposits in the planning area, as well as development of economic geothermal resources. MINING AND MINERAL ACTIVITY IN NEVADA Mineral exploration, particularly for gold, is an ongoing enterprise in Nevada by both operators of existing mines and by other exploration companies. -
Structural Reconstruction of Copper Basin, Battle Mountain District
STRUCTURAL RECONSTRUCTION OF THE COPPER BASIN AREA, BATTLE MOUNTAIN DISTRICT, NEVADA by David A. Keeler A Prepublication Manuscript Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 2010 1 Structural Reconstruction of the Copper Basin Area, Battle Mountain District, Nevada David A. Keeler* Newmont Mining Corp. P.O. Box 1657, Battle Mountain, NV 89820-1657 and Eric Seedorff Institute for Mineral Resources, Department of Geosciences University of Arizona, Tucson, AZ 85721-0077 *Corresponding author: email, [email protected] 2 Abstract The Copper Basin area of the Battle Mountain district in north-central Nevada contains a porphyry Mo-Cu deposit (Buckingham), several porphyry-related Au ± Cu deposits in skarn and silica-pyrite bodies (Labrador, Empire, Northern Lights, Surprise, Carissa), and three supergene Cu deposits (Contention, Sweet Marie, Widow). This study uses the results of field mapping, U- Pb dating of zircons from igneous rocks, and structural analysis to assess the age, original geometry, depth of emplacement, and degree of tilting and dismemberment of the Late Cretaceous and Eocene hydrothermal systems the Copper Basin area and the source of the supergene copper. The Copper Basin area consists primarily of clastic rocks of the Cambrian(?) Harmony Formation overlain unconformably by Pennsylvanian-Permian clastic and carbonate rocks of the Antler overlap sequence. On the eastern side of Copper Basin, the Antler overlap sequence is overlain by the late Eocene tuff of Cove Mine, in which the compaction foliation dips 15 to 25° east.