The Environment and Disease: Association Or Causation?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
F:\RSS\Me\Society's Mathemarica
School of Social Sciences Economics Division University of Southampton Southampton SO17 1BJ, UK Discussion Papers in Economics and Econometrics Mathematics in the Statistical Society 1883-1933 John Aldrich No. 0919 This paper is available on our website http://www.southampton.ac.uk/socsci/economics/research/papers ISSN 0966-4246 Mathematics in the Statistical Society 1883-1933* John Aldrich Economics Division School of Social Sciences University of Southampton Southampton SO17 1BJ UK e-mail: [email protected] Abstract This paper considers the place of mathematical methods based on probability in the work of the London (later Royal) Statistical Society in the half-century 1883-1933. The end-points are chosen because mathematical work started to appear regularly in 1883 and 1933 saw the formation of the Industrial and Agricultural Research Section– to promote these particular applications was to encourage mathematical methods. In the period three movements are distinguished, associated with major figures in the history of mathematical statistics–F. Y. Edgeworth, Karl Pearson and R. A. Fisher. The first two movements were based on the conviction that the use of mathematical methods could transform the way the Society did its traditional work in economic/social statistics while the third movement was associated with an enlargement in the scope of statistics. The study tries to synthesise research based on the Society’s archives with research on the wider history of statistics. Key names : Arthur Bowley, F. Y. Edgeworth, R. A. Fisher, Egon Pearson, Karl Pearson, Ernest Snow, John Wishart, G. Udny Yule. Keywords : History of Statistics, Royal Statistical Society, mathematical methods. -
Two Principles of Evidence and Their Implications for the Philosophy of Scientific Method
TWO PRINCIPLES OF EVIDENCE AND THEIR IMPLICATIONS FOR THE PHILOSOPHY OF SCIENTIFIC METHOD by Gregory Stephen Gandenberger BA, Philosophy, Washington University in St. Louis, 2009 MA, Statistics, University of Pittsburgh, 2014 Submitted to the Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2015 UNIVERSITY OF PITTSBURGH KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Gregory Stephen Gandenberger It was defended on April 14, 2015 and approved by Edouard Machery, Pittsburgh, Dietrich School of Arts and Sciences Satish Iyengar, Pittsburgh, Dietrich School of Arts and Sciences John Norton, Pittsburgh, Dietrich School of Arts and Sciences Teddy Seidenfeld, Carnegie Mellon University, Dietrich College of Humanities & Social Sciences James Woodward, Pittsburgh, Dietrich School of Arts and Sciences Dissertation Director: Edouard Machery, Pittsburgh, Dietrich School of Arts and Sciences ii Copyright © by Gregory Stephen Gandenberger 2015 iii TWO PRINCIPLES OF EVIDENCE AND THEIR IMPLICATIONS FOR THE PHILOSOPHY OF SCIENTIFIC METHOD Gregory Stephen Gandenberger, PhD University of Pittsburgh, 2015 The notion of evidence is of great importance, but there are substantial disagreements about how it should be understood. One major locus of disagreement is the Likelihood Principle, which says roughly that an observation supports a hypothesis to the extent that the hy- pothesis predicts it. The Likelihood Principle is supported by axiomatic arguments, but the frequentist methods that are most commonly used in science violate it. This dissertation advances debates about the Likelihood Principle, its near-corollary the Law of Likelihood, and related questions about statistical practice. -
History of the Development of the ICD
History of the development of the ICD 1. Early history Sir George Knibbs, the eminent Australian statistician, credited François Bossier de Lacroix (1706-1777), better known as Sauvages, with the first attempt to classify diseases systematically (10). Sauvages' comprehensive treatise was published under the title Nosologia methodica. A contemporary of Sauvages was the great methodologist Linnaeus (1707-1778), one of whose treatises was entitled Genera morborum. At the beginning of the 19th century, the classification of disease in most general use was one by William Cullen (1710-1790), of Edinburgh, which was published in 1785 under the title Synopsis nosologiae methodicae. For all practical purposes, however, the statistical study of disease began a century earlier with the work of John Graunt on the London Bills of Mortality. The kind of classification envisaged by this pioneer is exemplified by his attempt to estimate the proportion of liveborn children who died before reaching the age of six years, no records of age at death being available. He took all deaths classed as thrush, convulsions, rickets, teeth and worms, abortives, chrysomes, infants, livergrown, and overlaid and added to them half the deaths classed as smallpox, swinepox, measles, and worms without convulsions. Despite the crudity of this classification his estimate of a 36 % mortality before the age of six years appears from later evidence to have been a good one. While three centuries have contributed something to the scientific accuracy of disease classification, there are many who doubt the usefulness of attempts to compile statistics of disease, or even causes of death, because of the difficulties of classification. -
Bayesian Inference for Heterogeneous Event Counts
Bayesian Inference for Heterogeneous Event Counts ANDREW D. MARTIN Washington University This article presents an integrated set of Bayesian tools one can use to model hetero- geneous event counts. While models for event count cross sections are now widely used, little has been written about how to model counts when contextual factors introduce heterogeneity. The author begins with a discussion of Bayesian cross-sectional count models and discusses an alternative model for counts with overdispersion. To illustrate the Bayesian framework, the author fits the model to the number of women’s rights cosponsorships for each member of the 83rd to 102nd House of Representatives. The model is generalized to allow for contextual heterogeneity. The hierarchical model allows one to explicitly model contextual factors and test alternative contextual explana- tions, even with a small number of contextual units. The author compares the estimates from this model with traditional approaches and discusses software one can use to easily implement these Bayesian models with little start-up cost. Keywords: event count; Markov chain Monte Carlo; hierarchical Bayes; multilevel models; BUGS INTRODUCTION Heterogeneity is what makes society and, for that matter, statistics interesting. However, until recently, little attention has been paidto modeling count data observed in heterogeneous clusters (a notable exception is Sampson, Raudenbush, and Earls 1997). Explanations AUTHOR’S NOTE: This research is supported by the National Science Foundation Law and Social Sciences and Methodology, Measurement, and Statistics Sections, Grant SES-0135855 to Washing- ton University. I would like to thank Dave Peterson, Kevin Quinn, and Kyle Saunders for their helpful comments. I am particularly indebted to Christina Wolbrecht for sharing her valuable data set with me. -
Judging the Evidence 2018 Contents World Cancer Research Fund Network 3 1
Judging the evidence 2018 Contents World Cancer Research Fund Network 3 1. Introduction 5 2. Randomised controlled trials 6 3. Epidemiological evidence 6 3.1 Cohort studies 9 3.2 Case-control studies 10 3.3 Other study designs 10 4. Meta-analysis 11 5. Experimental evidence 16 5.1 Human studies 16 5.2 Live animal models 16 5.3 In vitro studies 17 6. Methods of assessment 17 6.1 Foods, drinks and nutrients 17 6.2 Nutrition status 18 6.3 Physical activity 19 6.4 Cancer outcomes 20 7. Evidence collated for the Continuous Update Project 21 8. The grading criteria 22 8.1 Context for using the criteria 26 8.2 Food-based approach 27 8.3 CUP matrices 28 8.4 Levels and types of judgement 29 9. Conclusions 29 Acknowledgements 30 Abbreviations 34 Glossary 35 References 39 Our Cancer Prevention Recommendations 42 WORLD CANCER RESEARCH FUND NETWORK Our Vision We want to live in a world where no one develops a preventable cancer. Our Mission We champion the latest and most authoritative scientific research from around the world on cancer prevention and survival through diet, weight and physical activity, so that we can help people make informed choices to reduce their cancer risk. As a network, we influence policy at the highest level and are trusted advisors to governments and to other official bodies from around the world. Our Network World Cancer Research Fund International is a not-for-profit organisation that leads and unifies a network of cancer charities with a global reach, dedicated to the prevention of cancer through diet, weight and physical activity. -
Could Low Grade Bacterial Infection Contribute to Low Back Pain? a Systematic Review
Urquhart et al. BMC Medicine (2015) 13:13 DOI 10.1186/s12916-015-0267-x RESEARCH ARTICLE Open Access Could low grade bacterial infection contribute to low back pain? A systematic review Donna M Urquhart1*, Yiliang Zheng1, Allen C Cheng1, Jeffrey V Rosenfeld2,3, Patrick Chan2,3, Susan Liew2,4, Sultana Monira Hussain1 and Flavia M Cicuttini1 Abstract Background: Recently, there has been both immense interest and controversy regarding a randomised, controlled trial which showed antibiotics to be effective in the treatment of chronic low back pain (disc herniation with Modic Type 1 change). While this research has the potential to result in a paradigm shift in the treatment of low back pain, several questions remain unanswered. This systematic review aims to address these questions by examining the role of bacteria in low back pain and the relationship between bacteria and Modic change. Methods: We conducted electronic searches of MEDLINE and EMBASE and included studies that examined the relationship between bacteria and back pain or Modic change. Studies were rated based on their methodological quality, a best-evidence synthesis was used to summarise the results, and Bradford Hill’s criteria were used to assess the evidence for causation. Results: Eleven studies were identified. The median (range) age and percentage of female participants was 44.7 (41–46.4) years and 41.5% (27–59%), respectively, and in 7 of the 11 studies participants were diagnosed with disc herniation. Nine studies examined the presence of bacteria in spinal disc material and all identified bacteria, with the pooled estimate of the proportion with positive samples being 34%. -
Building a Better Mousetrap: Patenting Biotechnology in the European
THE BRADFORD HILL CRITERIA: THE FORGOTTEN PREDICATE Dr. Frank C. Woodside, III* & Allison G. Davis** Table of Contents I. INTRODUCTION ....................................................................... 104 II. EPIDEMIOLOGY, DAUBERT, AND ESTABLISHING ASSOCIATION .................................................................... 107 A. Background on the Field of Epidemiology ...................... 107 B. Establishing Association .................................................. 108 C. Daubert and Its Progeny .................................................. 111 III. CAUSATION: THE NINE CRITERIA .................................... 112 A. Strength of Association ................................................... 113 B. Consistency ...................................................................... 114 C. Specificity of the Association .......................................... 116 * Frank C. Woodside, III is of counsel to the law firm of Dinsmore & Shohl. Dr. Woodside is a nationally-known trial lawyer representing manufacturers of pharmaceutical and medical devices, chemicals and flavorings, as well as producers of consumer products. Over a period of more than 40 years, he has tried 80-plus cases to verdict or judgment, serving as primary trial counsel in medical malpractice, product liability, and mass tort cases. Dr. Woodside’s clients include Fortune 500 companies, health care providers, and hospitals. His background to practice Medicine and Surgery for nearly 40 years affords him added knowledge and insight he uses to his -
Does Sufficient Evidence Exist to Support a Causal Association Between Vitamin D Status and Cardiovascular Disease Risk?
Nutrients 2014, 6, 3403-3430; doi:10.3390/nu6093403 OPEN ACCESS nutrients ISSN 2072-6643 www.mdpi.com/journal/nutrients Review Does Sufficient Evidence Exist to Support a Causal Association between Vitamin D Status and Cardiovascular Disease Risk? An Assessment Using Hill’s Criteria for Causality Patricia G. Weyland 1,*, William B. Grant 2 and Jill Howie-Esquivel 1 1 Department of Physiological Nursing, School of Nursing, University of California, San Francisco (UCSF), #2 Koret Way Box 0610, San Francisco, CA 94143, USA; E-Mail: [email protected] 2 Sunlight, Nutrition, and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-831-420-7324. Received: 22 May 2014; in revised form: 31 July 2014 / Accepted: 18 August 2014 / Published: 2 September 2014 Abstract: Serum 25-hydroxyvitamin D (25(OH)D) levels have been found to be inversely associated with both prevalent and incident cardiovascular disease (CVD) risk factors; dyslipidemia, hypertension and diabetes mellitus. This review looks for evidence of a causal association between low 25(OH)D levels and increased CVD risk. We evaluated journal articles in light of Hill’s criteria for causality in a biological system. The results of our assessment are as follows. Strength of association: many randomized controlled trials (RCTs), prospective and cross-sectional studies found statistically significant inverse associations between 25(OH)D levels and CVD risk factors. Consistency of observed association: most studies found statistically significant inverse associations between 25(OH)D levels and CVD risk factors in various populations, locations and circumstances. -
Medicine in 18Th and 19Th Century Britain, 1700-1900
Medicine in 18th and 19th century Britain, 1700‐1900 The breakthroughs th 1798: Edward Jenner – The development of How had society changed to make medical What was behind the 19 C breakthroughs? Changing ideas of causes breakthroughs possible? vaccinations Jenner trained by leading surgeon who taught The first major breakthrough came with Louis Pasteur’s germ theory which he published in 1861. His later students to observe carefully and carry out own Proved vaccination prevented people catching smallpox, experiments proved that bacteria (also known as microbes or germs) cause diseases. However, this did not put an end The changes described in the Renaissance were experiments instead of relying on knowledge in one of the great killer diseases. Based on observation and to all earlier ideas. Belief that bad air was to blame continued, which is not surprising given the conditions in many the result of rapid changes in society, but they did books – Jenner followed these methods. scientific experiment. However, did not understand what industrial towns. In addition, Pasteur’s theory was a very general one until scientists begun to identify the individual also build on changes and ideas from earlier caused smallpox all how vaccination worked. At first dad bacteria which cause particular diseases. So, while this was one of the two most important breakthroughs in ideas centuries. The flushing toilet important late 19th C invention wants opposition to making vaccination compulsory by law about what causes disease and illness it did not revolutionise medicine immediately. Scientists and doctors where the 1500s Renaissance – flushing system sent waste instantly down into – overtime saved many people’s lives and wiped‐out first to be convinced of this theory, but it took time for most people to understand it. -
Bradford Hill Criteria for Causal Inference Based on a Presentation at the 2015 ANZEA Conference
Bradford Hill Criteria for Causal Inference Based on a presentation at the 2015 ANZEA Conference Julian King Director, Julian King & Associates – a member of the Kinnect Group www.julianking.co.nz | www.kinnect.co.nz 2015 We think we’re good at determining causality, but we suck at it One of the great At one level, this is an Unfortunately, though, the challenges in evaluation is everyday, common sense way we are wired does not determining whether the task. As a species we’ve predispose us to logical results we’re seeing are been making judgments thinking. We are inclined because of the program about causation for a to be led astray by all sorts we’re evaluating, some million years or so. of biases and heuristics. other influences out there in the big world, or random chance. The Kinnect Group www.kinnect.co.nz 2 Along came logic Eventually, after a very long time, we evolved into philosophers who invented formal logic. Thanks to scientific method, our species has recently triumphed to the extent that we now have cars that drive themselves and flying drones that deliver pizza (don’t confuse this with progress – we still suck at ethics but that’s a story for another day). 3 But we’re still not great at causation Over time, the rocket But deep down we’re still Such a rigid view is not science for dealing with biased, heuristical beings much use in the real causation has become and not very good at world, where there are all more sophisticated – a thinking things through. -
Statistics Making an Impact
John Pullinger J. R. Statist. Soc. A (2013) 176, Part 4, pp. 819–839 Statistics making an impact John Pullinger House of Commons Library, London, UK [The address of the President, delivered to The Royal Statistical Society on Wednesday, June 26th, 2013] Summary. Statistics provides a special kind of understanding that enables well-informed deci- sions. As citizens and consumers we are faced with an array of choices. Statistics can help us to choose well. Our statistical brains need to be nurtured: we can all learn and practise some simple rules of statistical thinking. To understand how statistics can play a bigger part in our lives today we can draw inspiration from the founders of the Royal Statistical Society. Although in today’s world the information landscape is confused, there is an opportunity for statistics that is there to be seized.This calls for us to celebrate the discipline of statistics, to show confidence in our profession, to use statistics in the public interest and to champion statistical education. The Royal Statistical Society has a vital role to play. Keywords: Chartered Statistician; Citizenship; Economic growth; Evidence; ‘getstats’; Justice; Open data; Public good; The state; Wise choices 1. Introduction Dictionaries trace the source of the word statistics from the Latin ‘status’, the state, to the Italian ‘statista’, one skilled in statecraft, and on to the German ‘Statistik’, the science dealing with data about the condition of a state or community. The Oxford English Dictionary brings ‘statistics’ into English in 1787. Florence Nightingale held that ‘the thoughts and purpose of the Deity are only to be discovered by the statistical study of natural phenomena:::the application of the results of such study [is] the religious duty of man’ (Pearson, 1924). -
Medical Bacteriology
LECTURE NOTES Degree and Diploma Programs For Environmental Health Students Medical Bacteriology Abilo Tadesse, Meseret Alem University of Gondar In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education September 2006 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2006 by Abilo Tadesse, Meseret Alem All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. PREFACE Text book on Medical Bacteriology for Medical Laboratory Technology students are not available as need, so this lecture note will alleviate the acute shortage of text books and reference materials on medical bacteriology.