Chapter 12 Algebraic Numbers and Algebraic Integers

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 12 Algebraic Numbers and Algebraic Integers Chapter 12 Algebraic numbers and algebraic integers 12.1 Algebraic numbers Definition 12.1. A number α 2 C is said to be algebraic if it satisfies a polynomial equation n n−1 f(x) = x + a1x + ··· + an = 0 with rational coefficients ai 2 Q. p For example, 2 and i=2 are algebraic. A complex number is said to be transcendental if it is not algebraic. Both e and π are transcendental. It is in general extremely difficult to prove a number transcendental, and there are many open problems in this area, eg it is not known if πe is transcendental. Theorem 12.1. The algebraic numbers form a field Q¯ ⊂ C. Proof. If α satisfies the equation f(x) = 0 then −α satisfies f(−x) = 0, while 1/α satisfies xnf(1=x) = 0 (where n is the degree of f(x)). It follows that −α and 1/α are both algebraic. Thus it is sufficient to show that if α; β are algebraic then so are α + β; αβ. Lemma 12.1. Suppose V ⊂ C is a finite-dimensional vector space over Q, with V 6= 0; and suppose x 2 C. If xV ⊂ V then x 2 Q¯ . Proof. Let e1; : : : ; en be a basis for V . Suppose xe1 = a11e1 + ··· a1nen xe2 = a21e1 + ··· a2nen ··· xen = an1e1 + ··· annen: 12–1 Then det(xI − A) = 0; where 0 1 a11 a12 ··· a1n Ba a ··· a C B 21 22 2nC A = B . C : @ . A an1 an2 ··· ann This is a polynomial equation with coefficients in Q. Hence x 2 Q¯ . Consider the vector space V = hαiβj : 0 ≤ i < m; 0 ≤ j < ni over Q spanned by the mn elements αiβj. Evidently αV ⊂ V; βV ⊂ V: Thus (α + β)V ⊂ V; (αβ)V ⊂ V: Hence α + β and αβ are algebraic. 12.2 Algebraic integers Definition 12.2. A number α 2 C is said to be an algebraic integer if it satisfies a monic polynomial equation n n−1 f(x) = x + a1x + ··· + an = 0 with integral coefficients ai 2 Z. We denote the set of algebraic integers by Z¯. Theorem 12.2. The algebraic integers form a ring Z¯ with Z ⊂ Z¯ ⊂ Q¯ : Proof. Evidently Z ⊂ Z¯; since n 2 Z satisfies the equation x − n = 0: We have to show that α; β 2 Z¯ =) α + β; αβ 2 Z¯: Lemma 12.2. Suppose S ⊂ C is a finitely-generated abelian group, with S 6= 0; and suppose x 2 C. If xS ⊂ S then x 2 Z¯. 12–2 Proof. Let s1; : : : ; sn generate S. Suppose xs1 = a11s1 + ··· a1nsn xs2 = a21s1 + ··· a2nsn ··· xsn = an1s1 + ··· annsn: Then det(xI − A) = 0: This is a monic equation with coefficients in Z. Hence x 2 Z¯. Consider the abelian group S = hαiβj : 0 ≤ i < m; 0 ≤ j < ni generated by the mn elements αiβj. Evidently αS ⊂ S; βS ⊂ S: Thus (α + β)S ⊂ S; (αβ)S ⊂ S: Hence α + β and αβ are algebraic integers. Proposition 12.1. A rational number c 2 Q is an algebraic integer if and only if it is a rational integer: Z¯ \ Q = Z: Proof. Suppose c = m=n, where gcd(m; n) = 1; and suppose c satisfies the equation d d−1 x + a1x + ··· + ad = 0 (ai 2 Z): Then d d−1 d m + a1m n + ··· + adn = 0: Since n divides every term after the first, it follows that n j md. But that is incompatible with gcd(m; n) = 1, unless n = 1, ie c 2 Z. 12.3 Number fields and number rings Suppose F ⊂ C is a field. Then 1 2 F , by definition, and so Q ⊂ F ⊂ C: We can consider F as a vector space over Q. Definition 12.3. An algebraic number field (or simply number field is a subfield F ⊂ C which is a finite-dimensional vector space over Q. The degree of F is the dimension of this vector space: deg F = dimQ F: 12–3 Proposition 12.2. The elements of a number field F are algebraic numbers: Q ⊂ F ⊂ Q¯ : Proof. Suppose deg F = d; and suppose α 2 F . Then the d + 1 numbers 1; α; α2; : : : ; αd are linearly dependent over Q, say 2 d a0 + a1α + a2α + ··· + adα = 0: Thus f(α) = 0; where f(x) is the polynomial 2 d f(x) = a0 + a1x + a2x + ··· + adx 2 Q[x]: Definition 12.4. The algebraic integers in a number field F are said to form an algebraic number ring (or simply number ring). Thus the number ring associated to the number field F is F \ Z¯: Proposition 12.3. The number ring associated to the field of gaussian num- bers is the ring Γ of gaussian integers. Proof. Suppose z = x + iy (x; y 2 Q) is a gaussian number. We have to show that z is an algebraic integer if and only if x; y 2 Z. If m; n 2 Z then m + in 2 Z¯, since m; n; i 2 Z¯ and Z¯ is a ring. Conversely, suppose z = x + iy 2 Z¯: Then z¯ = x − iy 2 Z¯ since z and z¯ satisfy the same polynomials over Q. Hence z +z ¯ = 2x 2 Z¯ \ Q = Z: Similarly −iz = y − ix 2 Z¯ =) 2y 2 Z: Thus m + in z = ; 2 with m; n 2 Z. 12–4 But now N (z) = zz¯ 2 Z¯ \ Q = Z; ie m2 + n2 x2 + y2 = 2 ; 4 Z ie m2 + n2 ≡ 0 mod 4: But m2; n2 ≡ 0 or 1 mod 4. So m2 + n2 ≡ 0 mod 4 =) 2 j m; n =) z 2 Γ: p Example: 2 is an algebraic integer, since it satisfies the equation x2 − 2 = 0: p But 2=2 is not an algebraic integer. For if it were, p ( 2=2)2 = 1=2 would be an algbraic integer (since Z¯ is a ring), which we have just seen is not so. Algebraic number theory is the study of number rings. The first question one might ask is whether a given number ring is a Unique Factorisation Domain. We have seen that the number rings Z and Γ are. But in general number rings are not UFDs. The foundation of algebraic number theory was Dedekind’s amazing dis- covery that unique factorisation could be recovered if one added what Dedekind called ‘ideal numbers’, and what are today called ‘ideals’. However, we are not going into that theory. We shall only be looking at a small number of quadratic number rings which are UFDs. 12.4 Integral closure Recall that any integral domain A can be extended to its field of fractions, which we shall denote by Q(A), since we follows exactly the same process as in creating the field of rational numbers Q from the ring of integers Z. We define Q(A) to be the quotient set X=E, where X is the set of pairs (n; d), with n; d 2 A and d 6= 0, and E is the equivalence relation (n; d) ∼ (n0; d0) () nd0 = n0d: 12–5 We write n=d for the the element of Q(A) represented by the the pair (n; d). We define addition, multiplication and inversion in Q(A) in the obvious way, and it is a trivial matter to verify that these satisfy the axioms for a field. Identifying a 2 A with a=1 2 Q(A) allows us to identify A with a subset of Q(A), so we can regard Q(A) as an extension of A. As an example of the construction we have k[x] ! k(x), where k(x) is the field of rational functions f(x)=g(x), with f(x); g(x) 2 k[x]. If A is already a subring of a field F then we can identify Q(A) with the subfield of F formed by the elements a=d with a; d 2 A. So for example the field of algebraic numbers is the quotient-field of the ring of algebraic integers: Q¯ = Q(Z¯). 12–6.
Recommended publications
  • Local-Global Methods in Algebraic Number Theory
    LOCAL-GLOBAL METHODS IN ALGEBRAIC NUMBER THEORY ZACHARY KIRSCHE Abstract. This paper seeks to develop the key ideas behind some local-global methods in algebraic number theory. To this end, we first develop the theory of local fields associated to an algebraic number field. We then describe the Hilbert reciprocity law and show how it can be used to develop a proof of the classical Hasse-Minkowski theorem about quadratic forms over algebraic number fields. We also discuss the ramification theory of places and develop the theory of quaternion algebras to show how local-global methods can also be applied in this case. Contents 1. Local fields 1 1.1. Absolute values and completions 2 1.2. Classifying absolute values 3 1.3. Global fields 4 2. The p-adic numbers 5 2.1. The Chevalley-Warning theorem 5 2.2. The p-adic integers 6 2.3. Hensel's lemma 7 3. The Hasse-Minkowski theorem 8 3.1. The Hilbert symbol 8 3.2. The Hasse-Minkowski theorem 9 3.3. Applications and further results 9 4. Other local-global principles 10 4.1. The ramification theory of places 10 4.2. Quaternion algebras 12 Acknowledgments 13 References 13 1. Local fields In this section, we will develop the theory of local fields. We will first introduce local fields in the special case of algebraic number fields. This special case will be the main focus of the remainder of the paper, though at the end of this section we will include some remarks about more general global fields and connections to algebraic geometry.
    [Show full text]
  • Integers, Rational Numbers, and Algebraic Numbers
    LECTURE 9 Integers, Rational Numbers, and Algebraic Numbers In the set N of natural numbers only the operations of addition and multiplication can be defined. For allowing the operations of subtraction and division quickly take us out of the set N; 2 ∈ N and3 ∈ N but2 − 3=−1 ∈/ N 1 1 ∈ N and2 ∈ N but1 ÷ 2= = N 2 The set Z of integers is formed by expanding N to obtain a set that is closed under subtraction as well as addition. Z = {0, −1, +1, −2, +2, −3, +3,...} . The new set Z is not closed under division, however. One therefore expands Z to include fractions as well and arrives at the number field Q, the rational numbers. More formally, the set Q of rational numbers is the set of all ratios of integers: p Q = | p, q ∈ Z ,q=0 q The rational numbers appear to be a very satisfactory algebraic system until one begins to tries to solve equations like x2 =2 . It turns out that there is no rational number that satisfies this equation. To see this, suppose there exists integers p, q such that p 2 2= . q p We can without loss of generality assume that p and q have no common divisors (i.e., that the fraction q is reduced as far as possible). We have 2q2 = p2 so p2 is even. Hence p is even. Therefore, p is of the form p =2k for some k ∈ Z.Butthen 2q2 =4k2 or q2 =2k2 so q is even, so p and q have a common divisor - a contradiction since p and q are can be assumed to be relatively prime.
    [Show full text]
  • Algebraic Number Theory
    Algebraic Number Theory William B. Hart Warwick Mathematics Institute Abstract. We give a short introduction to algebraic number theory. Algebraic number theory is the study of extension fields Q(α1; α2; : : : ; αn) of the rational numbers, known as algebraic number fields (sometimes number fields for short), in which each of the adjoined complex numbers αi is algebraic, i.e. the root of a polynomial with rational coefficients. Throughout this set of notes we use the notation Z[α1; α2; : : : ; αn] to denote the ring generated by the values αi. It is the smallest ring containing the integers Z and each of the αi. It can be described as the ring of all polynomial expressions in the αi with integer coefficients, i.e. the ring of all expressions built up from elements of Z and the complex numbers αi by finitely many applications of the arithmetic operations of addition and multiplication. The notation Q(α1; α2; : : : ; αn) denotes the field of all quotients of elements of Z[α1; α2; : : : ; αn] with nonzero denominator, i.e. the field of rational functions in the αi, with rational coefficients. It is the smallest field containing the rational numbers Q and all of the αi. It can be thought of as the field of all expressions built up from elements of Z and the numbers αi by finitely many applications of the arithmetic operations of addition, multiplication and division (excepting of course, divide by zero). 1 Algebraic numbers and integers A number α 2 C is called algebraic if it is the root of a monic polynomial n n−1 n−2 f(x) = x + an−1x + an−2x + ::: + a1x + a0 = 0 with rational coefficients ai.
    [Show full text]
  • On the Rational Approximations to the Powers of an Algebraic Number: Solution of Two Problems of Mahler and Mend S France
    Acta Math., 193 (2004), 175 191 (~) 2004 by Institut Mittag-Leffier. All rights reserved On the rational approximations to the powers of an algebraic number: Solution of two problems of Mahler and Mend s France by PIETRO CORVAJA and UMBERTO ZANNIER Universith di Udine Scuola Normale Superiore Udine, Italy Pisa, Italy 1. Introduction About fifty years ago Mahler [Ma] proved that if ~> 1 is rational but not an integer and if 0<l<l, then the fractional part of (~n is larger than l n except for a finite set of integers n depending on ~ and I. His proof used a p-adic version of Roth's theorem, as in previous work by Mahler and especially by Ridout. At the end of that paper Mahler pointed out that the conclusion does not hold if c~ is a suitable algebraic number, as e.g. 1 (1 + x/~ ) ; of course, a counterexample is provided by any Pisot number, i.e. a real algebraic integer c~>l all of whose conjugates different from cr have absolute value less than 1 (note that rational integers larger than 1 are Pisot numbers according to our definition). Mahler also added that "It would be of some interest to know which algebraic numbers have the same property as [the rationals in the theorem]". Now, it seems that even replacing Ridout's theorem with the modern versions of Roth's theorem, valid for several valuations and approximations in any given number field, the method of Mahler does not lead to a complete solution to his question. One of the objects of the present paper is to answer Mahler's question completely; our methods will involve a suitable version of the Schmidt subspace theorem, which may be considered as a multi-dimensional extension of the results mentioned by Roth, Mahler and Ridout.
    [Show full text]
  • Many More Names of (7, 3, 1)
    VOL. 88, NO. 2, APRIL 2015 103 Many More Names of (7, 3, 1) EZRA BROWN Virginia Polytechnic Institute and State University Blacksburg, VA 24061-0123 [email protected] Combinatorial designs are collections of subsets of a finite set that satisfy specified conditions, usually involving regularity or symmetry. As the scope of the 984-page Handbook of Combinatorial Designs [7] suggests, this field of study is vast and far reaching. Here is a picture of the very first design to appear in “Opening the Door,” the first of the Handbook’s 109 chapters: Figure 1 The design that opens the door This design, which we call the (7, 3, 1) design, makes appearances in many areas of mathematics. It seems to turn up again and again in unexpected places. An earlier paper in this MAGAZINE [4] described (7, 3, 1)’s appearance in a number of different areas, including finite projective planes, as the Fano plane (FIGURE 1); graph theory, as the Heawood graph and the doubly regular round-robin tournament of order 7; topology, as an arrangement of six mutually adjacent hexagons on the torus; (−1, 1) matrices, as a skew-Hadamard matrix of order 8; and algebraic number theory, as the splitting field of the polynomial (x 2 − 2)(x 2 − 3)(x 2 − 5). In this paper, we show how (7, 3, 1) makes appearances in three areas, namely (1) Hamming’s error-correcting codes, (2) Singer designs and difference sets based on n-dimensional finite projective geometries, and (3) normed algebras. We begin with an overview of block designs, including two descriptions of (7, 3, 1).
    [Show full text]
  • Class Group Computations in Number Fields and Applications to Cryptology Alexandre Gélin
    Class group computations in number fields and applications to cryptology Alexandre Gélin To cite this version: Alexandre Gélin. Class group computations in number fields and applications to cryptology. Data Structures and Algorithms [cs.DS]. Université Pierre et Marie Curie - Paris VI, 2017. English. NNT : 2017PA066398. tel-01696470v2 HAL Id: tel-01696470 https://tel.archives-ouvertes.fr/tel-01696470v2 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité Informatique École Doctorale Informatique, Télécommunications et Électronique (Paris) Présentée par Alexandre GÉLIN Pour obtenir le grade de DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE Calcul de Groupes de Classes d’un Corps de Nombres et Applications à la Cryptologie Thèse dirigée par Antoine JOUX et Arjen LENSTRA soutenue le vendredi 22 septembre 2017 après avis des rapporteurs : M. Andreas ENGE Directeur de Recherche, Inria Bordeaux-Sud-Ouest & IMB M. Claus FIEKER Professeur, Université de Kaiserslautern devant le jury composé de : M. Karim BELABAS Professeur, Université de Bordeaux M. Andreas ENGE Directeur de Recherche, Inria Bordeaux-Sud-Ouest & IMB M. Claus FIEKER Professeur, Université de Kaiserslautern M.
    [Show full text]
  • Algebraic Number Theory Summary of Notes
    Algebraic Number Theory summary of notes Robin Chapman 3 May 2000, revised 28 March 2004, corrected 4 January 2005 This is a summary of the 1999–2000 course on algebraic number the- ory. Proofs will generally be sketched rather than presented in detail. Also, examples will be very thin on the ground. I first learnt algebraic number theory from Stewart and Tall’s textbook Algebraic Number Theory (Chapman & Hall, 1979) (latest edition retitled Algebraic Number Theory and Fermat’s Last Theorem (A. K. Peters, 2002)) and these notes owe much to this book. I am indebted to Artur Costa Steiner for pointing out an error in an earlier version. 1 Algebraic numbers and integers We say that α ∈ C is an algebraic number if f(α) = 0 for some monic polynomial f ∈ Q[X]. We say that β ∈ C is an algebraic integer if g(α) = 0 for some monic polynomial g ∈ Z[X]. We let A and B denote the sets of algebraic numbers and algebraic integers respectively. Clearly B ⊆ A, Z ⊆ B and Q ⊆ A. Lemma 1.1 Let α ∈ A. Then there is β ∈ B and a nonzero m ∈ Z with α = β/m. Proof There is a monic polynomial f ∈ Q[X] with f(α) = 0. Let m be the product of the denominators of the coefficients of f. Then g = mf ∈ Z[X]. Pn j Write g = j=0 ajX . Then an = m. Now n n−1 X n−1+j j h(X) = m g(X/m) = m ajX j=0 1 is monic with integer coefficients (the only slightly problematical coefficient n −1 n−1 is that of X which equals m Am = 1).
    [Show full text]
  • Approximation to Real Numbers by Algebraic Numbers of Bounded Degree
    Approximation to real numbers by algebraic numbers of bounded degree (Review of existing results) Vladislav Frank University Bordeaux 1 ALGANT Master program May,2007 Contents 1 Approximation by rational numbers. 2 2 Wirsing conjecture and Wirsing theorem 4 3 Mahler and Koksma functions and original Wirsing idea 6 4 Davenport-Schmidt method for the case d = 2 8 5 Linear forms and the subspace theorem 10 6 Hopeless approach and Schmidt counterexample 12 7 Modern approach to Wirsing conjecture 12 8 Integral approximation 18 9 Extremal numbers due to Damien Roy 22 10 Exactness of Schmidt result 27 1 1 Approximation by rational numbers. It seems, that the problem of approximation of given number by numbers of given class was firstly stated by Dirichlet. So, we may call his theorem as ”the beginning of diophantine approximation”. Theorem 1.1. (Dirichlet, 1842) For every irrational number ζ there are in- p finetely many rational numbers q , such that p 1 0 < ζ − < . q q2 Proof. Take a natural number N and consider numbers {qζ} for all q, 1 ≤ q ≤ N. They all are in the interval (0, 1), hence, there are two of them with distance 1 not exceeding q . Denote the corresponding q’s as q1 and q2. So, we know, that 1 there are integers p1, p2 ≤ N such that |(q2ζ − p2) − (q1ζ − p1)| < N . Hence, 1 for q = q2 − q1 and p = p2 − p1 we have |qζ − p| < . Division by q gives N ζ − p < 1 ≤ 1 . So, for every N we have an approximation with precision q qN q2 1 1 qN < N .
    [Show full text]
  • Mop 2018: Algebraic Conjugates and Number Theory (06/15, Bk)
    MOP 2018: ALGEBRAIC CONJUGATES AND NUMBER THEORY (06/15, BK) VICTOR WANG 1. Arithmetic properties of polynomials Problem 1.1. If P; Q 2 Z[x] share no (complex) roots, show that there exists a finite set of primes S such that p - gcd(P (n);Q(n)) holds for all primes p2 = S and integers n 2 Z. Problem 1.2. If P; Q 2 C[t; x] share no common factors, show that there exists a finite set S ⊂ C such that (P (t; z);Q(t; z)) 6= (0; 0) holds for all complex numbers t2 = S and z 2 C. Problem 1.3 (USA TST 2010/1). Let P 2 Z[x] be such that P (0) = 0 and gcd(P (0);P (1);P (2);::: ) = 1: Show there are infinitely many n such that gcd(P (n) − P (0);P (n + 1) − P (1);P (n + 2) − P (2);::: ) = n: Problem 1.4 (Calvin Deng). Is R[x]=(x2 + 1)2 isomorphic to C[y]=y2 as an R-algebra? Problem 1.5 (ELMO 2013, Andre Arslan, one-dimensional version). For what polynomials P 2 Z[x] can a positive integer be assigned to every integer so that for every integer n ≥ 1, the sum of the n1 integers assigned to any n consecutive integers is divisible by P (n)? 2. Algebraic conjugates and symmetry 2.1. General theory. Let Q denote the set of algebraic numbers (over Q), i.e. roots of polynomials in Q[x]. Proposition-Definition 2.1. If α 2 Q, then there is a unique monic polynomial M 2 Q[x] of lowest degree with M(α) = 0, called the minimal polynomial of α over Q.
    [Show full text]
  • Algebraic Numbers, Algebraic Integers
    Algebraic Numbers, Algebraic Integers October 7, 2012 1 Reading Assignment: 1. Read [I-R]Chapter 13, section 1. 2. Suggested reading: Davenport IV sections 1,2. 2 Homework set due October 11 1. Let p be a prime number. Show that the polynomial f(X) = Xp−1 + Xp−2 + Xp−3 + ::: + 1 is irreducible over Q. Hint: Use Eisenstein's Criterion that you have proved in the Homework set due today; and find a change of variables, making just the right substitution for X to turn f(X) into a polynomial for which you can apply Eisenstein' criterion. 2. Show that any unit not equal to ±1 in the ring of integers of a real quadratic field is of infinite order in the group of units of that ring. 3. [I-R] Page 201, Exercises 4,5,7,10. 4. Solve Problems 1,2 in these notes. 3 Recall: Algebraic integers; rings of algebraic integers Definition 1 An algebraic integer is a root of a monic polynomial with rational integer coefficients. Proposition 1 Let θ 2 C be an algebraic integer. The minimal1 monic polynomial f(X) 2 Q[X] having θ as a root, has integral coefficients; that is, f(X) 2 Z[X] ⊂ Q[X]. 1i.e., minimal degree 1 Proof: This follows from the fact that a product of primitive polynomials is again primitive. Discuss. Define content. Note that this means that there is no ambiguity in the meaning of, say, quadratic algebraic integer. It means, equivalently, a quadratic number that is an algebraic integer, or number that satisfies a quadratic monic polynomial relation with integral coefficients, or: Corollary 1 A quadratic number is a quadratic integer if and only if its trace and norm are integers.
    [Show full text]
  • Cah˙It Arf's Contribution to Algebraic Number Theory
    Tr. J. of Mathematics 22 (1998) , 1 – 14. c TUB¨ ITAK˙ CAHIT˙ ARF’S CONTRIBUTION TO ALGEBRAIC NUMBER THEORY AND RELATED FIELDS by Masatoshi G. Ikeda∗ Dedicated to the memory of Professor Cahit ARF 1. Introduction Since 1939 Cahit Arf has published number of papers on various subjects in Pure Mathematics. In this note I shall try to give a brief survey of his works in Algebraic Number Theory and related fields. The papers covered in this survey are: two papers on the structure of local fields ([1], [5]), a paper on the Riemann-Roch theorem for algebraic number fields ([6]), two papers on quadratic forms ([2], [3]), and a paper on multiplicity sequences of algebraic braches ([4]). The number of the papers cited above is rather few, but the results obtained in these papers as well as his ideas and methods developed in them constitute really essential contributions to the fields. I am firmly convinced that these papers still contain many valuable suggestions and hidden possibilities for further investigations on these subjects. I believe, it is the task of Turkish mathematicians working in these fields to undertake and continue further study along the lines developed by Cahit Arf who doubtless is the most gifted mathematician Turkey ever had. In doing this survey, I did not follow the chronological order of the publications, but rather divided them into four groups according to the subjects: Structure of local fields, Riemann-Roch theorem for algebraic number fields, quadratic forms, and multiplicity sequences of algebraic braches. My aim is not to reproduce every technical detail of Cahit Arf’s works, but to make his idea in each work as clear as possible, and at the same time to locate them in the main stream of Mathematics.
    [Show full text]
  • Arxiv:1103.4922V1 [Math.NT] 25 Mar 2011 Hoyo Udai Om.Let Forms
    QUATERNION ORDERS AND TERNARY QUADRATIC FORMS STEFAN LEMURELL Introduction The main purpose of this paper is to provide an introduction to the arith- metic theory of quaternion algebras. However, it also contains some new results, most notably in Section 5. We will emphasise on the connection between quaternion algebras and quadratic forms. This connection will pro- vide us with an efficient tool to consider arbitrary orders instead of having to restrict to special classes of them. The existing results are mostly restricted to special classes of orders, most notably to so called Eichler orders. The paper is organised as follows. Some notations and background are provided in Section 1, especially on the theory of quadratic forms. Section 2 contains the basic theory of quaternion algebras. Moreover at the end of that section, we give a quite general solution to the problem of representing a quaternion algebra with given discriminant. Such a general description seems to be lacking in the literature. Section 3 gives the basic definitions concerning orders in quaternion alge- bras. In Section 4, we prove an important correspondence between ternary quadratic forms and quaternion orders. Section 5 deals with orders in quaternion algebras over p-adic fields. The major part is an investigation of the isomorphism classes in the non-dyadic and 2-adic cases. The starting- point is the correspondence with ternary quadratic forms and known classi- fications of such forms. From this, we derive representatives of the isomor- phism classes of quaternion orders. These new results are complements to arXiv:1103.4922v1 [math.NT] 25 Mar 2011 existing more ring-theoretic descriptions of orders.
    [Show full text]