A Pilot Study: Osteopathic Treatment of Infants with a Sucking Dysfunction

Total Page:16

File Type:pdf, Size:1020Kb

A Pilot Study: Osteopathic Treatment of Infants with a Sucking Dysfunction -13 m m I m A pilot study: m Osteopathic treatment of infants m with a sucking dysfunction by Maxwell M.P.R. Fraval DO, M. Osteo. Sc. (Paed.) 0 Editor's Note: Dr. Manvell is an affiliate member Acknowledgments of the American Academ y of Osteopath y as well as This research ninth not have been possible without The Cranial Academ y. He currently is in practice in the support of a grant from the Frank and Janet Australia. Williams Charitable Trust through the kind assistance of Mrs. Man Terracall. Abstract The estimation of the fat content of breastmilk, by I particularly wish to acknowledge the early simple centrifuge method, is a reliable measure that encouragement received from Dr John Harakal is easily obtained. Estimations from six infants who (now deceased), Orme) . President of the Sutherland were feeding normally demonstrate that it provides Cranial Teaching Foundation and Professor of a gold standard against which patient outcomes can Osteopathic Manipulative Medicine at the Texas be measured. College of Osteopathic Medicine. A pilot study of six infants is reported on. At the time of first measurement. the difference Thanks are also due to Di: Viola Ervinatm, Director between pre- post feed fat estimations of breastmilk of the Osteopathic Childrens Centre in San Diego was small in infants with a dysfunctional suck. California and Dr. Edna Lay, Vice President of the Following osteopathic treatment the difference Sutherland Cranial Teaching Foundation. between pre- post feed fat estimations were comparable with the fat estimations from the I am also much indebted to Professor Peter breastmilk of infants who were feeding normally. Hartmann of the Department of Biochemistr y at the The results are encouraging enough to warrant University of Western Australia who so freely extending this to an age- and sex-matched case- provided me with information about his research. control study. The estimation of fat concentration in breastmilk was one of the measurement techniques to whirl he Key words drew m y attention. Breastmilk fat estimation, sucking dysfunction, lactation and osteopathic treatment. * 51 Learmonth Drive. Kambah 2902 A.C.T. Australia: Telephone +61 2 6231 911 1; Facsimile +61 2 6231 9195: E-mail [email protected] Supported by a grant from the Frank and Janet Williams Charitable Trust through the kind assistance of Mrs. Mary Terracall. Introduction or up to hourly), an increase in milk secretion occurred only Osteopaths has been reported as effectively delivering in the gland that had been milked more frequently:" paediatric care. 1 -1-3A-5'.7." This study assumed that. as pro- It is accepted that fat content of human milk is greater posed by Sutherland." there is a pattern of normal motion in the hind milk than in the fore milk:T=1'3 An infant that in the cranium that is present throughout life and that the is feeding effectively will take both fore milk and hind hirth process may produce strain patterns within the cra- milk at each feed. One way of measuring the extent to nium which may alter normal physiology. The scientific which the breast is emptied is M measuring the fat con- basis for this was recently reviewed by Myers." The study tent before and after each feed. The assumption that an further assumed that these strain patterns can be recognised infant with a dysfunctional suck, will on lc effect a small and accurately recorded by, careful palpation:: variation in the pre- and post-feed breastmilk fat estima- At parturition the tentorium cerebelli and falx cerebri tions was tested in this pilot study. The greater the differ- can sustain tremendous strain" with consequent defor- ence between pre-post fat concentrations, the more the mation: 4i Initiall y . the head presents in the transverse infant would demonstrate the ability to effectively empty diameter of the pelvic brim with the occiput to the left the breast of milk and attain the fat-rich hind milk. side of the maternal pelvis. Rotational forces affect the The aims of this pilot study were to establish the feasi- occiput which engages eccentrically with one part lead- bility of utilising the estimation of the concentration of ing first ( asynclitism 1. I breastmilk fat as a standard for measuring performance Particularly in the case of a prolonged second stage or outcomes in infants with a dysfunctional suck. The pre- other complication, the resulting micro- or macro-trauma post feed fat concentrations in the breastmilk of six moth- has been postulated ( within the osteopathic profession) to ers whose infants were feeding normally was measured. cause distortion of function in both the bony and soft tis- The results are described and analysed to assess whether sues as well as related fluid (vascular, lymphatic and cere- a standard had been established against which the progress brospinal) systems.":":":" of infants with sticking problems could he compared. Magoun states that a commonly occurring distortion re- Further, six infants who were feeding normally were sulting from the birth process is an approximation of the assessed to establish the difference between pre- post feed anterior ends of the condylar parts which "may have the ef- fat concentrations. A pilot study of six treated babies (each fect of putting increased tension through the slip of dura mater of which was treated for 4 weeks) then assessed whether, that divides the jugular foramen and thereby irritating the when first measured, the difference between pre- post feed cranial nerves (Glossopharyngeal. Vagus and Accessory fat concentrations was less than normal babies. It was then nerves) passing through the area. In addition the petrosal considered whether osteopathic treatment of these infants and sigmoid sinuses are vulnerable to distorted function as improved their pre- post feed fat concentrations to a level they exit through the jugular foramina carrying 95 percent that compared favorably with normal infants. of the drainage from the head. Circulatory retardation may result in ischaemia- (Magoun 1975: p2501. The literature The irritation of the vagus nerve as it passes through The current interest in autocrine control of lactation, the jugular foramen or of the hypoglossal nerve as it passes and the interest in the fat component of milk, has high- through the hypoglossal canal" may affect the infants lighted the possibility of fat concentration as a marker for ability to suck or swallow. Infants have been treated to effective feeding. It has been noted that the fat concentra- resolve cranial strains in the United States of America since tion in breastmilk varies over 24 hours. 21 " When milk the 1940s where the clinical effectiveness of osteopathic that was stored in a goats gland was not milked, but di- treatment has been observed." luted with an inert solution, the secretory rate in- Considerable interest in the fat content of milk has been creased.26.27.28 This suggests that it is not the mere empty- seen in recent years. It has been postulated" that milk se- ing of the gland. but the concentration/dilution of sub- cretion is modulated by local chemical feedback inhibi- stances within it, that determine milk production. This view tion, and that there is some mechanism operating. within was strengthened by the observation that the goats gland the breast tissue, that is additional to hormonal control that had been milked three or more times daily had a greater ( via prolactin. growth hormone and oxytocin). The inhibi- number of secretory cells than the gland that had only tor is thought to be present in the milk itself and to have a been milked twice daily:".":" More recently it has been regulatory effect. shown that it is the extent to which the breast is emptied. In one study it was shown that if only one of the glands of rather than the frequency of feeding, that is important in goats were milked more than twice daily (three times daily the short-term control of the human milk supply." Milk synthesis in the alveoli of the mammary glands is a com- Strain means sufficient force to cause deformation of tissue. 26/AAO Journal Summer 1998 plex process involving at least four secretory mechanisms. may cause their mothers to experience nipple pain." It is These include exocytosis, fat synthesis and transfer, se- important, where such pain persists, to exclude the possi- cretion of ions and water and immunoglobulin transfer bility of Candida albicans as a cause,' rather than assume from the extracellular space.'' The average lipid content that the pain is caused by the infant's sucking. However, of human milk ranges from 3.2 - 3.5g/100m1" whereas having excluded this possibility, it is certainly recognised colostrum, which is the initial fluid released during the that pain can result from an infant's dysfunctional suck first few days of lactation, contains about 2.9g fat/100ml." (which invariably leads to exquisitely tender, cracked and/ The fat in human milk occurs as microscopic globules 2-, or bleeding nipples of the breast-feeding mother) and that 3 pm in diameter and coated with a membrane derived from this alters the milk composition or secretion." This ma- the mammary epithelial cell that secreted it. Fat, which con- ternal nipple pain resulting from an infant's dysfunctional stitutes 50 percent of the total energy value of human milk, sucking can be severe." The maternal record of pain on a plays an essential role in infant nutrition since it is vital to visual analog scale can be a useful indicator of improve- normal brain development, the structure and function of cell ment in the infant's sucking. membranes and for prostaglandin synthesis.' Woodward has noted that a far more dramatic increase Method in fat content occurs if an infant feeds from only one breast A simple technique for estimating fat concentration has at any one feed.
Recommended publications
  • Ordinary Least Squares 1 Ordinary Least Squares
    Ordinary least squares 1 Ordinary least squares In statistics, ordinary least squares (OLS) or linear least squares is a method for estimating the unknown parameters in a linear regression model. This method minimizes the sum of squared vertical distances between the observed responses in the dataset and the responses predicted by the linear approximation. The resulting estimator can be expressed by a simple formula, especially in the case of a single regressor on the right-hand side. The OLS estimator is consistent when the regressors are exogenous and there is no Okun's law in macroeconomics states that in an economy the GDP growth should multicollinearity, and optimal in the class of depend linearly on the changes in the unemployment rate. Here the ordinary least squares method is used to construct the regression line describing this law. linear unbiased estimators when the errors are homoscedastic and serially uncorrelated. Under these conditions, the method of OLS provides minimum-variance mean-unbiased estimation when the errors have finite variances. Under the additional assumption that the errors be normally distributed, OLS is the maximum likelihood estimator. OLS is used in economics (econometrics) and electrical engineering (control theory and signal processing), among many areas of application. Linear model Suppose the data consists of n observations { y , x } . Each observation includes a scalar response y and a i i i vector of predictors (or regressors) x . In a linear regression model the response variable is a linear function of the i regressors: where β is a p×1 vector of unknown parameters; ε 's are unobserved scalar random variables (errors) which account i for the discrepancy between the actually observed responses y and the "predicted outcomes" x′ β; and ′ denotes i i matrix transpose, so that x′ β is the dot product between the vectors x and β.
    [Show full text]
  • Linear Regression
    DATA MINING 2 Linear and Logistic Regression Riccardo Guidotti a.a. 2019/2020 Regression • Given a dataset containing N observations Xi, Yi i = 1, 2, …, N • Regression is the task of learning a target function f that maps each input attribute set X into a output Y. • The goal is to find the target function that can fit the input data with minimum error. • The error function can be expressed as • Absolute Error = ∑! |�! − �(�!)| " • Squared Error = ∑!(�! − � �! ) residuals Linear Regression Y • Linear regression is a linear approach to modeling the relationship between a dependent variable Y and one or more independent (explanatory) variables X. • The case of one explanatory variable is called simple linear regression. • For more than one explanatory variable, the process is called multiple linear X regression. • For multiple correlated dependent variables, the process is called multivariate linear regression. What does it mean to predict Y? • Look at X = 5. There are many different Y values at X=5. • When we say predict Y at X =5, we are really asking: • What is the expected value (average) of Y at X = 5? What does it mean to predict Y? • Formally, the regression function is given by E(Y|X=x). This is the expected value of Y at X=x. • The ideal or optimal predictor of Y based on X is thus • f(X) = E(Y | X=x) Simple Linear Regression Dependent Independent Variable Variable Linear Model: Y = mX + b � = �!� + �" Slope Intercept (bias) • In general, such a relationship may not hold exactly for the largely unobserved population • We call the unobserved deviations from Y the errors.
    [Show full text]
  • Linear Regression
    eesc BC 3017 statistics notes 1 LINEAR REGRESSION Systematic var iation in the true value Up to now, wehav e been thinking about measurement as sampling of values from an ensemble of all possible outcomes in order to estimate the true value (which would, according to our previous discussion, be well approximated by the mean of a very large sample). Givenasample of outcomes, we have sometimes checked the hypothesis that it is a random sample from some ensemble of outcomes, by plotting the data points against some other variable, such as ordinal position. Under the hypothesis of random selection, no clear trend should appear.Howev er, the contrary case, where one finds a clear trend, is very important. Aclear trend can be a discovery,rather than a nuisance! Whether it is adiscovery or a nuisance (or both) depends on what one finds out about the reasons underlying the trend. In either case one must be prepared to deal with trends in analyzing data. Figure 2.1 (a) shows a plot of (hypothetical) data in which there is a very clear trend. The yaxis scales concentration of coliform bacteria sampled from rivers in various regions (units are colonies per liter). The x axis is a hypothetical indexofregional urbanization, ranging from 1 to 10. The hypothetical data consist of 6 different measurements at each levelofurbanization. The mean of each set of 6 measurements givesarough estimate of the true value for coliform bacteria concentration for rivers in a region with that urbanization level. The jagged dark line drawn on the graph connects these estimates of true value and makes the trend quite clear: more extensive urbanization is associated with higher true values of bacteria concentration.
    [Show full text]
  • Simple Linear Regression
    The simple linear model Represents the dependent variable, yi, as a linear function of one Regression Analysis: Basic Concepts independent variable, xi, subject to a random “disturbance” or “error”, ui. yi β0 β1xi ui = + + Allin Cottrell The error term ui is assumed to have a mean value of zero, a constant variance, and to be uncorrelated with its own past values (i.e., it is “white noise”). The task of estimation is to determine regression coefficients βˆ0 and βˆ1, estimates of the unknown parameters β0 and β1 respectively. The estimated equation will have the form yˆi βˆ0 βˆ1x = + 1 OLS Picturing the residuals The basic technique for determining the coefficients βˆ0 and βˆ1 is Ordinary Least Squares (OLS). Values for the coefficients are chosen to minimize the sum of the ˆ ˆ squared estimated errors or residual sum of squares (SSR). The β0 β1x + estimated error associated with each pair of data-values (xi, yi) is yi uˆ defined as i uˆi yi yˆi yi βˆ0 βˆ1xi yˆi = − = − − We use a different symbol for this estimated error (uˆi) as opposed to the “true” disturbance or error term, (ui). These two coincide only if βˆ0 and βˆ1 happen to be exact estimates of the regression parameters α and β. The estimated errors are also known as residuals . The SSR may be written as xi 2 2 2 SSR uˆ (yi yˆi) (yi βˆ0 βˆ1xi) = i = − = − − Σ Σ Σ The residual, uˆi, is the vertical distance between the actual value of the dependent variable, yi, and the fitted value, yˆi βˆ0 βˆ1xi.
    [Show full text]
  • Canada 2008 © 2008 Laura Duncan Library and Bibliotheque Et 1*1 Archives Canada Archives Canada Published Heritage Direction Du Branch Patrimoine De I'edition
    EFFECT OF BLOCK FACE SHELL GEOMETRY AND GROUTING ON THE COMPRESSIVE STRENGTH OF CONCRETE BLOCK MASONRY by Laura J. Duncan A Thesis Submitted to the Faculty of Graduate Studies through Civil and Environmental Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor Windsor, Ontario, Canada 2008 © 2008 Laura Duncan Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-47089-3 Our file Notre reference ISBN: 978-0-494-47089-3 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]
  • On the Determination of Proper Regularization Parameter
    Universität Stuttgart Geodätisches Institut On the determination of proper regularization parameter α-weighted BLE via A-optimal design and its comparison with the results derived by numerical methods and ridge regression Bachelorarbeit im Studiengang Geodäsie und Geoinformatik an der Universität Stuttgart Kun Qian Stuttgart, Februar 2017 Betreuer: Dr.-Ing. Jianqing Cai Universität Stuttgart Prof. Dr.-Ing. Nico Sneeuw Universität Stuttgart Erklärung der Urheberschaft Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher oder ähnlicher Form in keiner anderen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht. Ort, Datum Unterschrift III Abstract In this thesis, several numerical regularization methods and the ridge regression, which can help improve improper conditions and solve ill-posed problems, are reviewed. The deter- mination of the optimal regularization parameter via A-optimal design, the optimal uniform Tikhonov-Phillips regularization (a-weighted biased linear estimation), which minimizes the trace of the mean square error matrix MSE(ˆx), is also introduced. Moreover, the comparison of the results derived by A-optimal design and results derived by numerical heuristic methods, such as L-curve, Generalized Cross Validation and the method of dichotomy is demonstrated. According to the comparison, the A-optimal design regularization parameter has been shown to have minimum trace of MSE(ˆx) and its determination has better efficiency. VII Contents List of Figures IX List of Tables XI 1 Introduction 1 2 Least Squares Method and Ill-Posed Problems 3 2.1 The Special Gauss-Markov medel .
    [Show full text]
  • Akaike's Information Criterion
    ESCI 340 Biostatistical Analysis Model Selection with Information Theory "Far better an approximate answer to the right question, which is often vague, than an exact answer to the wrong question, which can always be made precise." − John W. Tukey, (1962), "The future of data analysis." Annals of Mathematical Statistics 33, 1-67. 1 Problems with Statistical Hypothesis Testing 1.1 Indirect approach: − effort to reject null hypothesis (H0) believed to be false a priori (statistical hypotheses are not the same as scientific hypotheses) 1.2 Cannot accommodate multiple hypotheses (e.g., Chamberlin 1890) 1.3 Significance level (α) is arbitrary − will obtain "significant" result if n large enough 1.4 Tendency to focus on P-values rather than magnitude of effects 2 Practical Alternative: Direct Evaluation of Multiple Hypotheses 2.1 General Approach: 2.1.1 Develop multiple hypotheses to answer research question. 2.1.2 Translate each hypothesis into a model. 2.1.3 Fit each model to the data (using least squares, maximum likelihood, etc.). (fitting model ≅ estimating parameters) 2.1.4 Evaluate each model using information criterion (e.g., AIC). 2.1.5 Select model that performs best, and determine its likelihood. 2.2 Model Selection Criterion 2.2.1 Akaike Information Criterion (AIC): relates information theory to maximum likelihood ˆ AIC = −2loge[L(θ | data)]+ 2K θˆ = estimated model parameters ˆ loge[L(θ | data)] = log-likelihood, maximized over all θ K = number of parameters in model Select model that minimizes AIC. 2.2.2 Modification for complex models (K large relative to sample size, n): 2K(K +1) AIC = −2log [L(θˆ | data)]+ 2K + c e n − K −1 use AICc when n/K < 40.
    [Show full text]
  • Coefficient of Determination - Wikipedia, the Free Encyclopedia
    Coefficient of determination - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Coefficient_of_determination From Wikipedia, the free encyclopedia In statistics, the coefficient of determination, denoted R2 or r2 and pronounced R squared, is a number that indicates how well data fit a statistical model – sometimes simply a line or a curve. An R2 of 1 indicates that the regression line perfectly fits the data, while an R2 of 0 indicates that the line does not fit the data at all. This latter can be because the data is utterly non-linear, or because it is random. It is a statistic used in the context of statistical models whose main purpose is either the prediction of future outcomes or the testing of hypotheses, on the basis of Ordinary least squares regression of Okun's law. other related information. It provides a measure of how Since the regression line does not miss any of the well observed outcomes are replicated by the model, as points by very much, the R2 of the regression is the proportion of total variation of outcomes explained relatively high. by the model (pp. 187, 287).[1][2][3] There are several definitions of R2 that are only sometimes equivalent. One class of such cases includes that of simple linear regression where r2 is used instead of R2. In this case, if an intercept is included, then r2 is simply the square of the sample correlation coefficient (i.e., r) between the outcomes and their predicted values. If additional explanators are included, R2 is the square of the coefficient of multiple correlation.
    [Show full text]
  • Statistical Modeling of Fracture Toughness Data
    Statistical Modeling Of Fracture Toughness Data by Guru Prakash A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science in Civil and Environmental Engineering Waterloo, Ontario, Canada, 2007 © Guru Prakash, 2007 AUTHOR'S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract The fracture toughness of the zirconium alloy (Zr-2.5Nb) is an important parameter in determining the flaw tolerance for operation of pressure tubes in reactor. Fracture toughness data have been generated by performing rising pressure burst tests on sections of pressure tubes removed from operating reactors. The test data were used to generate a lower-bound fracture toughness curve, which is used in defining the operational limits of pressure tubes. The thesis presents a comprehensive statistical analysis of burst test data and develops a multivariate statistical model to relate toughness with material chemistry, mechanical properties, and operational history. The proposed model can be useful in predicting fracture toughness of specific in-service pressure tubes, thereby minimizing conservatism associated with a generic lower-bound approach. iii Acknowledgements I would like to thank my supervisor Professor Mahesh D. Pandey for his support, encouragement, guidance, and patience during my study at the University of Waterloo. I would like to thank Professor Galena Morozova for providing me Teaching Assistantship for the CIVE153 course.
    [Show full text]
  • Note 17: F-Tests of Linear Coefficient Restrictions … Page 1 of 33 Pages ECONOMICS 351* -- NOTE 17 M.G
    ECONOMICS 351* -- NOTE 17 M.G. Abbott ECON 351* -- NOTE 17 F-Tests of Linear Coefficient Restrictions: A General Approach 1. Introduction • The population regression equation (PRE) for the general multiple linear regression model takes the form: Yi= β 0 + β 1XX 1i + β 2 2i + L + βkX ki+ u i (1) where ui is an iid (independently and identically distributed) random error term. PRE (1) constitutes the unrestricted model. • The OLS sample regression equation (OLS-SRE) for equation (1) can be written as ˆ ˆ ˆ ˆ ˆ Yi=β+β 0 1X 1i +β 2X 2i +L +βkX ki +uˆ i =Y i + uˆ i (i = 1, ..., N) (2) where (1) the OLS estimated (or predicted) values of Yi , or the OLS sample regression function (OLS-SRF), are ˆ ˆ ˆ ˆ ˆ Yi= β 0 + β 1X 1i + β 2X 2i +L + βk)NX ki , . ( , 1 = i (2) the OLS residuals are ˆ ˆ ˆ ˆ ˆ uˆ i= Y i −YY i = i −β−β 0 11iX −β 22iX −L −βkX ki (i = 1, ..., N) ˆ (3) the βj are the OLS estimators of the corresponding population regression coefficients βj (j = 0, 1, ..., k). ECON 351* -- Note 17: F-Tests of Linear Coefficient Restrictions … Page 1 of 33 pages ECONOMICS 351* -- NOTE 17 M.G. Abbott ˆ ˆ ˆ ˆ ˆ Yi=β+β 0 1X 1i +β 2X 2i +L +βkX ki +uˆ i =Y i + uˆ i (i = 1, ..., N) ( ) 2 • The OLS decomposition equation for the OLS-SRE (2) is N N N N N 2 ˆ ˆ ˆ 2 ∑yi = β1 ∑x 1i y i + β2 ∑ x 2i y i +L + βk∑x ki y i + ∑ uˆ i i= 1 i= 1 i= 1 i= 1 i= 1 ⏐ ↑______________________________↑ ⏐ ⏐ ⏐ ⏐ ↓ ↓ ↓ TSS = ESS1 + RSS1 (N − ) 1 K( − )1 N(−K) where the figures in parentheses are the respective degrees of freedom for the Total Sum of Squares (TSS), the Explained (Regression) Sum of Squares (ESS1) and the Residual (Error) Sum of Squares (RSS1).
    [Show full text]
  • Package 'Cusp'
    Package ‘cusp’ August 10, 2015 Type Package Title Cusp-Catastrophe Model Fitting Using Maximum Likelihood Version 2.3.3 Imports stats, graphics, grDevices, utils Author Raoul P. P. P. Grasman [aut, cre, cph] Maintainer Raoul Grasman <[email protected]> LazyData yes NeedsCompilation yes Suggests plot3D Description Cobb's maximum likelihood method for cusp-catastrophe modeling (Grasman, van der Maas, & Wagenmakers, 2009, JSS, 32:8; Cobb, L, 1981, Behavioral Science, 26:1, 75--78). Includes a cusp() function for model fitting, and several utility functions for plotting, and for comparing the model to linear regression and logistic curve models. License GPL-2 Repository CRAN Repository/R-Forge/Project cusp Repository/R-Forge/Revision 21 Repository/R-Forge/DateTimeStamp 2015-07-29 11:18:21 Date/Publication 2015-08-10 18:31:48 R topics documented: cusp-package . .2 attitudes . .4 cusp.............................................5 cusp.bifset . .8 cusp.extrema . .9 cusp.logist . 10 cusp.nc . 12 1 2 cusp-package cusp.nlogLike . 13 cusp3d . 15 cusp3d.surface . 16 dcusp . 19 draw.cusp.bifset . 20 oliva............................................. 22 plot.cusp . 23 plotCuspBifurcation . 24 plotCuspDensities . 26 plotCuspResidfitted . 27 predict.cusp . 27 summary.cusp . 29 vcov.cusp . 32 zeeman . 33 Index 35 cusp-package Cusp Catastrophe Modeling Description Fits cusp catastrophe to data using Cobb’s maximum likelihood method with a different algorithm. The package contains utility functions for plotting, and for comparing the model to linear regression and logistic curve models. The package allows for multivariate response subspace modelling in the sense of the GEMCAT software of Oliva et al. Details Package: cusp Type: Package Version: 2.0 Date: 2008-02-14 License: GNU GPL v2 (or higher) This package helps fitting Cusp catastrophy models to data, as advanced in Cobb et al.
    [Show full text]
  • 2019 Akaike Information Criterion in Weighted Regression of Immittance
    Accepted version of Electrochim. Acta, 317 (2019) 648-653. doi: 10.1016/j.electacta.2019.06.030 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licences/by-nc-nd/4.0/ The Akaike information criterion in weighted regression of immittance data a a ,b Mats Ingdal ,RoyJohnsen, David A. Harrington∗ a Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway. b Department of Chemistry, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada. Abstract The Akaike Information Criterion (AIC) is a powerful way to distinguish be- tween models. It considers both the goodness-of-fit and the number of parame- ters in the model, but has been little used for immittance data. Application in the case of weighted complex nonlinear least squares regression, as typically used in fitting impedance or admittance data, is considered here. AIC can be used to compare different weighting schemes as well as different models. These ideas are tested for simulated and real transadmittance data for hydrogen diffusion through an iron foil in a Devanathan-Stachurski cell. Key words: Akaike Information Criterion, weighted regression, error structure, impedance, maximum likelihood Introduction The Akaike Information Criterion (AIC) was developed by Akaike in 1973 [1] and is widely used in modeling of biological systems to decide between different models [2]. For models with the same number of adjustable parameters, it selects the model with the best least-squares fit. Models with more parameters typically fit better, but addition of more parameters may not be statistically justifiable.
    [Show full text]