Dry Etching Etching Issues

Total Page:16

File Type:pdf, Size:1020Kb

Dry Etching Etching Issues Etching Issues - Anisotropy • Isotropic etchants etch at the same rate in Dry Etching every direction mask An-isotropic Dr. Bruce K. Gale Fundamentals of Micromachining BIOEN 6421 EL EN 5221 and 6221 Isotropic ME EN 5960 and 6960 Etching Issues - Selectivity Dry Etching Overview • Selectivity is the ratio of the etch rate of the • What is dry etching? target material being etched to the etch rate – Material removal reactions occur in the gas phase. of other materials • Types of dry etching • Chemical etches are generally more – Non-plasma based dry etching selective than plasma etches – Plasma based dry etching • Selectivity to masking material and to etch- • Why dry etching? stop is important Mask • Development of dry etching target • Plasma parameters/influences Etch stop Dry Etching Advantages Dry Etching • Eliminates handling of dangerous acids and solvents • Disadvantages: • Uses small amounts of chemicals – Some gases are quite toxic and corrosive • Isotropic or anisotropic etch profiles – Re-deposition of non-volatile compounds • Directional etching without using the crystal orientation of Si • Faithfully transfer lithographically defined photoresist patterns – Need for specialized (expensive) equipment into underlying layers •Types: • High resolution and cleanliness – Non-plasma based = uses spontaneous reaction • Less undercutting of appropriate reactive gas mixture • No unintentional prolongation of etching – Plasma based = uses radio frequency (RF) • Better process control power to drive chemical reaction • Ease of automation (e.g., cassette loading) Non-plasma Based Dry Etching Xenon Difluoride (XeF2) Etching • Isotropic etching of Si • Isotropic etching of Si • Typically fluorine-containing gases • High selectivity for Al, SiO2, Si3N4, PR, (fluorides or interhalogens) that readily etch PSG Si •2XeF2 +Si 2Xe + SiF4 µ • High selectivity to masking layers • Typical etch rates of 1 to 3 m/min • No need for plasma processing equipment • Heat is generated during exothermic reaction • Highly controllable via temperature and •XeF2 reacts with water (or vapor) to form partial pressure of reactants HF Interhalogen (BrF3 & ClF3) Etching Plasma Based Dry Etching • Nearly isotropic profile • RF power is used to drive chemical reactions • Gases react with Si to form SiF4 • Surface roughness: ~40 to 150 nm • Plasma takes place of elevated temperatures or very reactive chemicals •Masks: SiO2, Si3N4, PR, Al, Cu, Au, and Ni •Types: – Physical etching – Chemical etching – Reactive ion etching (RIE) – Deep reactive ion etching (DRIE) Plasma Plasma Formation •Plasma= partially ionized gas consisting of equal numbers of “+” (ions) and “-“ (electrons) charges and • Chamber is evacuated a different number of neutral (un-ionized) molecules • Chamber is filled with gas(es) • An ion-electron pair is continuously created by • RF energy is applied to a pair of electrodes ionization and destroyed by recombination • Applied energy accelerates electrons • Typical kinetic energy (KE) of an electron in plasma is increasing kinetic energy 2-8 eV •KE = ½ mV2 = 3/ kT • Electrons collide with neutral gas 2 2 eV electron has molecules, forming ions and more electrons – m = particle mass T ≈ 15,000 K – V = particle mean velocity • Steady state is reached (plasma); ionization V ≈ 6 x 107 cm/s – k = Boltzmann constant = 1,342,16176 mph = recombination – T = temperature (K) Plasma Formation Plasma Parameters • Plasma discharge is characterized by central glow • Temperature •Power or bulk region and dark or sheath regions near – Etching rate – Ion density electrodes – Spontaneous chemical – Ion kinetic energy • Bulk region = semi-neutral (nearly equal number reaction of electrons and ions) – Etching directivity • Other variables • Sheath regions = nearly all of the potential drop; –Gas flow rate accelerates “+” ions from bulk region which • Pressure – Reactor materials bombard the substrate – Reactor cleanliness – Ion density • Maintained at 1 Pa (75 mtorr) to 750 Pa (56 torr) – Loading with gas density of 27 x 1014 to 2 x 1017 – Ion directivity (microloading) molecules/cm3 – Mask materials Physical Etching (Sputter Etching) Two Basic Plasma Systems • Based on physical bombardment with ions or atoms • Plasma is used to energize a chemically inert projectile so that it moves at high velocity when it strikes the substrate • Momentum is transferred during the collision • Substrate atoms are dislodged if projectile energy exceeds bonding energy • Very similar to ion implantation, but low-energy ions are used to avoid implantation damage • Highly anisotropic • Etch rates for most materials are comparable (ie, no masking) • Argon is the most commonly used ion source • May result in redeposition Plasma Etchers Chemical (Plasma) Etching: • Plasma is used to produce chemically reactive species (atoms, radicals, and ions) from inert molecular gas • Six major steps: – Generation of reactive species (eg, free radicals) – Diffusion to surface – Adsorption on surface – Chemical reaction – Desorption of by-products – Diffusion into bulk gas • Production of gaseous by-products is extremely important Plasma Etching Steps Plasma Etching Systems • Plasma Etching (PE) • Barrel, barrel with downstream and symmetrical parallel plate system • Pure chemical etching • Isotropic etching Reactive Ion Etching (RIE) RIE System • RIE = process in which chemical etching is • Reactive Ion Etching (RIE) accompanied by ionic bombardment (ie ion- • Asymmetrical parallel plate system assisted etching) • Bombardment opens areas for reactions • Plasma, sheath and • Ionic bombardment: boundary layer • Combination of physical – No undercutting since side-walls are not and chemical etching exposed • Anisotropic etching – Greatly increased etch rate – Structural degradation – Lower selectivity Disadvantages of RIE Deep Reactive Ion Etching (DRIE) • Conflict between etching rate and anisotropic • Uses electron cyclotron resonance (ECR) profile source to supplement RIE system → – Etching rate (+) Reactive species • Microwave power at 245 GHz is coupled → → concentration (+) Gas pressure (+) into ECR Collision (+) → Anisotropic (-) • Magnetic field is used to enhance transfer of • Conflict between damage of high etching microwave energy to resonating electrons rate and anisotropic profile • DRIE uses lower energy ions less → → – KE (+) Etching rate (+) damage (+) damage and higher selectivity • Plasma maintained at 0.5 to 3 mtorr ECR Systems ICP System (DRIE) • Inductively Coupled • Electron Cyclotron Resonance Plasma (ICP) (ECR) • Simple system • Higher plasma density at lower • Almost same process pressure result as that from the • Control the density of the ECR system reactive ions and their kinetic • Two RF power energy separately generators to control • Downstream of plasma further ion energy and ion limits the exposure to reduce density separately damage Deep Reactive Ion Etch Deep Reactive Ion Etching BOSCH Patent STS, Alcatel, Trion, Oxford Instruments … • high density ICP plasma Unconstrained geometry • high aspect ratio Si structures Uses high density plasma to alternatively 90° side walls • cost: $500K etch silicon and deposit a etch-resistant ☺ High aspect ratio 1:30 • vendors: STS, Alcatel, PlasmaTherm polymer on side walls Easily masked (PR, SiO2) Source: LucasNova Process recipe depends on Polymer geometry Polymer deposition Silicon etch using SF chemistry Source: STS Source: AMMI 6 Source: STS Scalloping and Footing Issues of DRIE Top wafer surface cathode Top wafer surface Scalloped sidewall Top wafer surface anode Tip precursors microgrid <100 nm silicon nanowire • Increased capacitance for over >10 micron gap DRIE Structures actuation and sensing • Low-stress structures Milanovic et al, IEEE TED, Jan. 2001. – single-crystal Si only structural material 1 • Highly stiff in vertical µm Footing at the bottom of direction device layer – isolation of motion to wafer Thermal Actuator plane – flat, robust structures • Organic FilmsEtch Chemistries – Oxygen plasma is required Comb-drive Actuator – By-products: CO, CO –Masks:Si, SiO – Addition of fluorine containing gases significantly increases2 , Al, etch or 2Ti ,rate H but decreases 2DoF Electrostatic actuator 2 O selectivity (due to HF formation) • Oxide and NitrideEtch Films Chemistries – Fluorine plasma is required (eg, CF –Mask: PR – Addition of O • Increases etch rate • Silicon• Adjusts PR : oxide2 and PR : nitride selectivity 4 ) – Fluorine plasma (CF – Chlorine plasma (Cl – Mixed (fluorine and chlorine) plasma (Cl 4 or SF 2 ) 6 ) 2 + SF 6 ).
Recommended publications
  • Fabrication of Sharp Silicon Hollow Microneedles by Deep-Reactive Ion
    Li et al. Microsystems & Nanoengineering (2019) 5:41 Microsystems & Nanoengineering https://doi.org/10.1038/s41378-019-0077-y www.nature.com/micronano ARTICLE Open Access Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics Yan Li1,2,HangZhang1, Ruifeng Yang1, Yohan Laffitte2, Ulises Schmill2,WenhanHu1, Moufeed Kaddoura2, Eric J. M. Blondeel2 and Bo Cui1 Abstract Microneedle technologies have the potential for expanding the capabilities of wearable health monitoring from physiology to biochemistry. This paper presents the fabrication of silicon hollow microneedles by a deep-reactive ion etching (DRIE) process, with the aim of exploring the feasibility of microneedle-based in-vivo monitoring of biomarkers in skin fluid. Such devices shall have the ability to allow the sensing elements to be integrated either within the needle borehole or on the backside of the device, relying on capillary filling of the borehole with dermal interstitial fluid (ISF) for transporting clinically relevant biomarkers to the sensor sites. The modified DRIE process was utilized for the anisotropic etching of circular holes with diameters as small as 30 μm to a depth of >300 μm by enhancing ion bombardment to efficiently remove the fluorocarbon passivation polymer. Afterward, isotropic wet and/or dry etching was utilized to sharpen the needle due to faster etching at the pillar top, achieving tip radii as small as 5 μm. Such sharp microneedles have been demonstrated to be sufficiently robust to penetrate porcine skin without needing any aids such as an impact-insertion applicator, with the needles remaining mechanically intact after repetitive fi 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; penetrations.
    [Show full text]
  • On-Wafer Fabrication of Cavity Mirrors for Ingan-Based Laser Diode Grown
    www.nature.com/scientificreports OPEN On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si Received: 25 January 2018 Junlei He1,2, Meixin Feng1,3, Yaozong Zhong1, Jin Wang1,4, Rui Zhou1,2, Hongwei Gao1,3, Yu Accepted: 17 April 2018 Zhou1,3, Qian Sun1,2,3, Jianxun Liu1, Yingnan Huang1, Shuming Zhang1,2, Huaibing Wang1, Published: xx xx xxxx Masao Ikeda1 & Hui Yang1,2 Direct bandgap III-V semiconductor lasers grown on silicon (Si) are highly desired for monolithic integration with Si photonics. Fabrication of semiconductor lasers with a Fabry–Pérot cavity usually includes facet cleavage, however, that is not compatible with on-chip photonic integration. Etching as an alternative approach holds a great advantage in preparing cavity mirrors with no need of breaking wafer into bars. However, gallium nitride (GaN) sidewalls prepared by dry etching often have a large roughness and etching damages, which would cause mirror loss due to optical scattering and carrier injection loss because of surface non-radiative recombination. A wet chemical polishing process of GaN sidewall facets formed by dry etching was studied in detail to remove the etching damages and smooth the vertical sidewalls. The wet chemical polishing technique combined with dry etching was successfully applied to the on-wafer fabrication of cavity mirrors, which enabled the realization of room temperature electrically injected InGaN-based laser diodes grown on Si. Silicon photonics call for electrically injected semiconductor laser diodes (LDs) as on-chip light sources1–3. When grown on Si, III-nitride (Al, Ga, In)N semiconductors with a direct-band emission wavelength ranging from 0.2 to 1.8 μm ofer a new approach for achieving on-chip lasers4–7.
    [Show full text]
  • A Review of Different Etching Methodologies and Impact of Various Etchants in Wet Etching in Micro Fabrication
    ISSN (Online) : 2319 – 8753 ISSN (Print) : 2347 - 6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 3, Special Issue 1, February 2014 International Conference on Engineering Technology and Science-(ICETS’14) On 10th & 11th February Organized by Department of CIVIL, CSE, ECE, EEE, MECHNICAL Engg. and S&H of Muthayammal College of Engineering, Rasipuram, Tamilnadu, India A Review of Different Etching Methodologies and Impact of various etchants in Wet Etching in Micro Fabrication Benjamin. J1, Grace Jency. J2, Vijila. G3 Department of ECE, Karunya University, Karunya Nagar, Coimbatore – 641114, India1, 2, 3 Abstract-- The concept of miniaturization was each and every wafer undergo a lot of etching process. introduced because of advancement in science and The material which is used to protect the wafer from the technology during 1980s. These miniaturized etchants is known as the masking material, which is used structures and designs are of high significance for in many etching steps to resist etching. This masking making up with the macroscopic technology, for the material can be a photoresist and it is patterned using sake of interfacing with microscopic world. The photolithography.Etching can also be referred as making fabrication of micro structures and designs which are cavities and these cavities should have specific depth the advanced applications of micro fabrication are according to the purposes. The depth of such cavities used for the process of micromachining structures in produced can be controlled by etching time and the three dimensions as it is essential for interfacing with etching rate.
    [Show full text]
  • Introduction to Plasma Etching
    Introduction to Plasma Etching Dr. Steve Sirard Technical Director Lam Research Corporation Lam Research Corp. 1 Day 1 Review – Plasma Fundamentals ► Plasmas consists of electrons, ions, neutrals, radiation ▪ ne ~ ni << ng (weakly ionized) Collisional Processes - -Ionization + e -Dissociation ► Collisional -Excitation processes sustain - the plasma and e h create radicals (etchant) + * + e- * ▪ Electrons are very hot e- + + ► Sheaths form at the walls/substrate to confine electrons and directionally accelerate ions Lam Research Corp. 2 Day 1 Review – Anisotropic Plasma Etching + + 0.015 0.010 + IED 0.005 Ion Flux Ion 1000V) 0.000 0 20 40 60 80 100 – Ion Energy (eV) Ion Energy (eV) V ~ 10 + + SiO2(s) + CxFy + I (Ei) SiF4(g) + CO(g) Vertical, anisotropic etch Sheath ( Sheath Electrode Synergy! Lam Research Corp. 3 Day 2 - Outline ► Primary etching variables available to process engineers ► Common pattern transfer issues ► Advanced etch strategies: Pulsing strategies, Atomic layer etching ► Within-wafer etch uniformity control ► Plasma & surface diagnostics Lam Research Corp. 4 What “knobs” are available to tune etch processes? ► Etching in general is very complex! ► Advanced plasma etch chambers are equipped with a lot of “knobs” for controlling the etch process ▪ Wafer temperature ▪ Upper electrode temperature ▪ Temperature gradients ▪ Chamber pressure ▪ Gas chemistry (~20 gases on a chamber to choose from) ▪ Gas ratios (gas partial pressures) ▪ Gas flow rate (residence time) ▪ Total RF power ▪ Multiple RF excitation frequencies (up to 3 generators) ▪ Pulsing of RF powers (duty cycle, frequency) ▪ Pulsing of gases (duty cycle, frequency) ▪ Etch time ▪ Multiple uniformity knobs ► Overall, a tremendously large process space long development cycles! Lam Research Corp.
    [Show full text]
  • Fabrication of Semiconductors by Wet Chemical Etch
    THE JOURNAL OF UNDERGRADUATE RESEARCH University of Kansas | Summer 2008 Fabrication of Semiconductors by Wet Chemical Etch Selective Etching of GaAs Over InGaP in Dilute H2SO4:H2O2 Fabrication engineering of semi- terial. !e plasma etch process is car- conductor devices has made possi- ried out in a chamber in which a gas ble optoelectronic instruments, laser mixture is partially ionized to create diodes and wireless communica- a plasma, or glow discharge. High en- tion devices among many other mod- ergy ions in the plasma bombard the ern devices. Beginning with Bardeen, semiconductor material and chemi- Brittain and Shockley’s invention of cally reactive components in the gas the transistor in Bell Labs in 1947 and mixture form etch products with the Kilby and Noyce’s introduction of the semiconductor. !e process produces integrated circuit about a decade later, accurately etched features and is one semiconductor devices have dramat- of the primary reasons for the reduc- ically advanced the computing and tion in device size that has made tech- electronics industries. nology such as cell phones and laptop Semiconducting materials, such computers possible. as silicon, germanium, gallium ar- senide, and indium phosphide, are INTRODUCTION neither good insulators nor good con- Semiconductors such as InGaP ductors, but they have intrinsic electri- and InGaAsSb are important for light- cal properties so that by controlled ad- emitting devices as well as communi- dition of impurities, their conductivity cations devices and electronics. Fab- can be altered. With the need to manu- rication of these devices is achieved facture devices at the micro- and nano- by plasma etching in which an ion- scale, the semiconductor industry has ized gas mixture etches the substrate followed “Moore’s Law,” the trend that by both chemical reaction and phys- the number of transistors placed on ical bombardment.
    [Show full text]
  • Etch Overview for Microsystems Primary Knowledge Participant Guide
    Etch Overview for Microsystems Primary Knowledge Participant Guide Description and Estimated Time to Complete This Learning Module introduces the most common etch processes used in the fabrication of microsystems. Activities allow you to demonstrate your understanding of the terminology and basic concepts of these processes. This unit provides an overview of the etch processes as they apply to the fabrication of Microsystems or Microelectromechanical Systems (MEMS). It is designed to provide basic information on the etch processes and how they are used in the fabrication of MEMS. This unit will introduce you to etch terminology, purpose and processes. Additional instructional units provide more in-depth discussion of the topics introduced in this overview. Estimated Time to Complete Allow at least 30 minutes to review. Southwest Center for Microsystems Education (SCME) Page 1 of 21 Fab_Etch_PK00_PG_April2017.docx Etch Overview PK Introduction Pattern Transfer For microsystems fabrication etch is a process that removes select materials from • the wafer's surface, • below the wafer's surface, or • from within the substrate. The etch process normally follows photolithography or deposition during which a protective masking layer is applied to the wafer's surface. The protective masking layer is used to identify the material to be etched and to protect material that is to remain. The figure labeled “Pattern Transfer,” illustrates a mask pattern transferred into a photosensitive layer, shown in red (masking layer), on the wafer's surface (Photolithography Process). During the Etch Process (right), that pattern is transferred into the surface layer, removing exposed areas of the surface layer and leaving areas in the underlying layer open to a subsequent process step.
    [Show full text]
  • High Resolution Inductively Coupled Plasma Etching of 30 Nm Lines and Spaces in Tungsten and Silicon Andrew L
    High resolution inductively coupled plasma etching of 30 nm lines and spaces in tungsten and silicon Andrew L. Goodyeara) and Sinclair Mackenzie Oxford Instruments Plasma Technology, North End, Yatton, Bristol, United Kingdom Deirdre L. Olynick and Erik H. Anderson Lawrence Berkeley National Laboratory, Berkeley, California ͑Received 1 June 2000; accepted 23 August 2000͒ Dry etching of 30 nm features was investigated for x-ray and integrated electronics applications. These typically require etching of either a tungsten absorber layer or a silicon mold. Through the use of an inductively coupled plasma source and accurate control over substrate temperature it was possible to achieve highly anisotropic patterning of tungsten and silicon. Densely patterned features as small as 30 nm and at pitches of 70 nm were etched in tungsten and silicon, to depths of 100 and 200 nm, respectively. © 2000 American Vacuum Society. ͓S0734-211X͑00͒18406-9͔ I. INTRODUCTION takes this process further by producing the densely packed fine features with better sidewalls and higher aspect ratios. Patterning of sub-100 nm features has become essential This is critical for the production of the highest resolution for advanced research and development in electronics, op- x-ray optics. tics, and material science applications. This is especially true The etching of these fine features requires advanced and for x-ray applications such as microscopy zone plate lenses. sophisticated processes and equipment. The high ion density, The critical steps in the production of densely packed sub- low pressure ICP etch regime is one of the few ways to 100 nm features for x-ray applications are high resolution provide highly anisotropic profiles with excellent control e-beam lithography and precisely controlled dry etching of over selectivity to mask materials.
    [Show full text]
  • 2015 IEDM Conference Proceedings
    2015 IEDM Conference Proceedings For More Information Social Networks: IEDM Online: ieee-iedm.org ieee-iedm.org/social-media Table of Contents Intro .....................................................3 Committees ...........................................3 Topics of Interest ....................................7 Program: Tutorials ................................................8 Short Courses ........................................8 Plenary Session ......................................9 Focus Session ........................................9 Technical Program ................................10 IEDM Luncheon ....................................11 Panel Discussion ..................................11 Entrepreneur’s Luncheon ........................11 Abstracts, Bios for Tutorials, Short Courses & Technical Program ......................Appendix 2020 IEEE International Electron Devices Meeting 2 Intro IEEE International Electron Devices Meeting (IEDM) is the world’s preeminent forum for reporting technological breakthroughs in the areas of semiconductor and electronic device technology, design, manufacturing, physics, and modeling. IEDM is the fl agship conference for nanometer-scale CMOS transistor technology, advanced memory, displays, sensors, MEMS devices, novel quantum and nano-scale devices and phenomenology, optoelectronics, devices for power and energy harvesting, high-speed devices, as well as process technology and device modeling and simulation. Digital & Social Media •LinkedIn: https://www.linkedin.com/groups/7475096/ •Twitter:
    [Show full text]
  • Selective Plasma Etching of Polymeric Substrates for Advanced Applications
    nanomaterials Review Selective Plasma Etching of Polymeric Substrates for Advanced Applications Harinarayanan Puliyalil 1,2,† and Uroš Cvelbar 1,2,*,† 1 Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia; [email protected] 2 Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia * Correspondence: [email protected]; Tel.: +386-14773536 † These authors contributed equally to this work. Academic Editors: Krasimir Vasilev and Melanie Ramiasa Received: 2 February 2016; Accepted: 30 May 2016; Published: 7 June 2016 Abstract: In today’s nanoworld, there is a strong need to manipulate and process materials on an atom-by-atom scale with new tools such as reactive plasma, which in some states enables high selectivity of interaction between plasma species and materials. These interactions first involve preferential interactions with precise bonds in materials and later cause etching. This typically occurs based on material stability, which leads to preferential etching of one material over other. This process is especially interesting for polymeric substrates with increasing complexity and a “zoo” of bonds, which are used in numerous applications. In this comprehensive summary, we encompass the complete selective etching of polymers and polymer matrix micro-/nanocomposites with plasma and unravel the mechanisms behind the scenes, which ultimately leads to the enhancement of surface properties and device performance. Keywords: plasma etching; selectivity; surface chemistry; nanomesh; nanostructuring; polymer composite; biomaterials; adhesion; etch mask; radical atoms 1. Introduction Plasma technology is one of the fastest developing branches of science, which is replacing numerous conventional wet-chemical methods in high-tech laboratories and industries, with a huge impact in renewable energy, environmental protection, biomedical applications, nanotechnology, microelectronics, and other fields.
    [Show full text]
  • Electron Beam Lithography and Plasma Etching to Fabricate Supports for Studying Nanomaterials
    DOI: 10.24178/ijrs.2017.3.2.18 IJRS Vol 3(2) Jun 2017 Electron Beam Lithography and Plasma Etching To Fabricate Supports for Studying Nanomaterials Mona Alyobi1,2 & Richard Cobley1 1College of Engineering, Swansea University, Swansea, UK 2College of science, Taibah University, Medina, Kingdom of Saudi Arabia [email protected] Abstract—The fabrication processes of different nano- structures II. EXPERIMENT by electron beam lithography (EBL) and plasma dry etching are The electron beam writing was performed with a shown. The periodic circle and square patterns with different RaitheLiNE lithography system. First, the design of the square sizes were defined in the resist by EBL and then formed in the and circle arrays of different sizes (from 1um to 5um) was substrates by plasma etching. The holes were created with a created using Raith software. A substrate of a <100> oriented, diameter ranging from 1um to 5um and an etch depth from around 500nm to 1um. The quality and the size of fabricated p-type silicon wafer was cleaned in an ultrasound bath of patterns and their dependence on the etching time were acetone and isopropanol, washed with DI water, and dried with investigated using top-down and cross-sectional scanning a nitrogen gun. A layer of PMMA resist (1 PMMA: 1 electron microscopy (SEM). It was found that the structures are chlorobenzene) was spin coated on top of a Si wafer and then well-resolved in the patterns with high levels of quality and good baked on a hotplate at 180°C for three minutes. The baking is size uniformity.
    [Show full text]
  • Characterization of Sio2 Etching Profiles in Pulse-Modulated
    materials Article Characterization of SiO2 Etching Profiles in Pulse-Modulated Capacitively Coupled Plasmas Chulhee Cho 1, Kwangho You 1, Sijun Kim 2, Youngseok Lee 1, Jangjae Lee 1 and Shinjae You 1,3,* 1 Department of Physics, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Korea; [email protected] (C.C.); [email protected] (K.Y.); [email protected] (Y.L.); [email protected] (J.L.) 2 Nanotech, Yongin 28431, Korea; [email protected] 3 Institute of Quantum System (IQS), Chungnam National University, Daejeon 34134, Korea * Correspondence: [email protected] Abstract: Although pulse-modulated plasma has overcome various problems encountered during the development of the high aspect ratio contact hole etching process, there is still a lack of under- standing in terms of precisely how the pulse-modulated plasma solves the issues. In this research, to gain insight into previously observed phenomena, SiO2 etching characteristics were investigated under various pulsed plasma conditions and analyzed through plasma diagnostics. Specifically, the disappearance of micro-trenching from the use of pulse-modulated plasma is analyzed via self-bias, and the phenomenon that as power off-time increases, the sidewall angle increases is interpreted via radical species density and self-bias. Further, the change from etching to deposition with decreased peak power during processing is understood via self-bias and electron density. It is expected that this research will provide an informative window for the optimization of SiO2 etching and for basic Citation: Cho, C.; You, K.; Kim, S.; processing databases including plasma diagnosis for advanced plasma processing simulators. Lee, Y.; Lee, J.; You, S.
    [Show full text]
  • PZT Stack Etch for MEMS Devices in a Capacitively Coupled High Density Plasma Reactor
    PZT stack etch for MEMS devices in a capacitively coupled high density plasma reactor Paul Werbaneth*, John Almerico, Les Jerde, Steve Marks Tegal Corporation ABSTRACT Ferroelectric thin films like lead zirconate titanate (PZT) are used to form several different families of MEMS devices. Moving mirrors for optical switching applications utilize the piezoelectric properties of PZT; varactors depend on its dielectric nonlinearity. The oxidizing environment during PZT deposition means that some material capable of resisting oxidation, like platinum, must be used as the metal electrode in any metal-ferroelectric-metal (MFM) stack. Ion milling has been used in laboratory applications for patterning MFM stacks. However, ion milling removal rates are low (~400Å/min), the throughputs are low, and the etched materials tend to redeposit along the edge of the etch mask, creating veils, or fences, after the etch mask is removed. These residues can lead to yield-limiting defects in finished devices. We report here on MFM stack etch results from a capacitively coupled high density plasma etch reactor. Using photoresist masks, we have demonstrated platinum and PZT etch rates greater than 1000Å/min at moderate (80ºC) wafer temperatures. Good etch profiles with no post-etch residue are produced for MFM stacks like those used for a MEMS- based Atomic Force Microscopy application, for example, which employs a bottom platinum layer 1500Å thick, 2800Å of PZT, and a platinum top electrode of 1500Å. Keywords: PZT etch, platinum etch, MFM stack etch, plasma etch 1. INTRODUCTION Plasma etch is employed in modern microelectronic fabrication processes to faithfully reproduce masking image features into the permanent layers of a device or circuit.
    [Show full text]