History Newsletter Center for History of Physics Niels Bohr Library & Archives

Total Page:16

File Type:pdf, Size:1020Kb

History Newsletter Center for History of Physics Niels Bohr Library & Archives HISTORY NEWSLETTER CENTER FOR HISTORY OF PHYSICS NIELS BOHR LIBRARY & ARCHIVES Volume 48 (2016), Number 2 FLASH! NEW DESIGN AND EXPANDED CONTENT FOR TEACHING GUIDES ON WOMEN AND MINORITIES IN THE PHYSICAL SCIENCES By Greg Good, Director, Center for History of Physics It is good sometimes to stop and mark an ac- That was in 2012. Over the next four years, intern Fiona Muir from England and gradu- complishment. That is especially true when the staff of the Niels Bohr Library & Archives ate research assistant Emily Margolis (Johns a project has taken four years to mature and and the Center for History of Physics worked Hopkins University) built a list of books and be ready to share. The AIP “Teaching Guides with a series of teams of summer interns articles to explore the background on wom- on Women & Minorities” tell stories of wom- in the Society of Physics Students’ summer en and minorities in physical science and en who have built accomplished careers in intern program, with the addition of grad- they mapped out some preliminary lesson science and engineering; of African Ameri- uate students in history of science and li- plans. Their work was so productive that in can experiences in the scientific community brary science, for a few intensive months 2014, the team grew to two SPS interns – during World War II and during the Civil Rights each year. I advised the students to select Simon Patané (from Vassar) and Jacob Zal- Movement in the 1960s; kind (from Shippensburg and of Latino scientists. Ex- University) – and two grad plore and engage with the research assistants – Serina fifty-one lesson plans and Hwang Jensen (then at the accompanying material University of Maryland) and that are on the Center for Sharina Haynes (then at the History of Physics website University of South Caro- at https://www.aip.org/his- lina). In 2015, the team in- tory-programs/physics-his- cluded SPS interns Connor tory/teaching-guides-wom- Day (Agnes Scott College) en-minorities. and Brean Fontain (Drexel), and grad research assistant This historical project was Joanna Behrman (Johns inspired by a contemporary Hopkins). And lastly, the challenge. Science educa- wrap-up 2016 team includ- tors, science policy special- ed SPS interns Victoria De- ists, and statistical research- Tomasso (CUNY Macaulay ers, all of whom care about The new teaching guides pages now includes advanced search features and filters. Honors College at Hunter women and minorities in the College) and Samantha physical sciences, know we need to attract their goals carefully so that the work would Spytek (Virginia Tech), and grad research and support a diverse and inclusive group of reach a clear stopping point by summer’s assistants Stephen Neal (University of Wis- young people in the sciences. My question end. In 2015, the student team produced consin-Madison) and Lance Burch (Florida was (and remains), what role can history of a proto-type site that was evaluated by a State University). science play? How can historians help? weeklong teachers’ workshop. The 2016 team worked with our web designer, Nathan The Center for History of Physics will con- The goal, I thought, was to get beyond the Cromer, to come up with a cleaner presenta- tinue improving and expanding this proj- few famous names – Marie Curie, Benjamin tion of the lessons. They also went through ect. In 2017 we will be gathering feedback Banneker – to a much more varied and tex- every lesson plan. They made improvements and suggestions, leading workshops on the tured set of stories. My goal was to provide in some, and sent a few back to the hopper use of the Teaching Guides, and working to a richer vocabulary for teachers and students for reconsideration by future teams. spread the word about this new teaching to explore the ways gender, race, and other resource. Please recommend other topics distinctions have affected lives and careers in In 2013, our first team began exploring what for future additions to the lesson plans. science. it would mean to produce lesson plans. SPS AIP Member Societies: Acoustical Society of America • American Association of Physicists in Medicine • American Association of Physics Teachers • American Astronomical Society • American Crystallographic Association • American Meteorological Society • American Physical Society • AVS: Science and Technology of Materials, Interfaces, and Processing • The Optical Society • The Society of Rheology IN THIS ISSUE... Flash! New Design and Expanded Content for Teaching Guides on Women and Minorities in the Physical Sciences . 1 Historical Astronomy Division, American Astronomical Society . 3 Forum on the History of Physics . 4 Report on the 2nd International Conference on The History of Physics, Pöllau, Austria . 5 AIP’s Early-Career History Conferences Bear Fruit . 6 Newton, Leibniz, and the Catholic Church: the Italian way to the Age of Enlightenment . 7 American Meteorological Society Awards History of Meteorology Doctoral Fellowship for 2016-2017 . 8 AIP Grant-in-Aid Recipient Receives National Dissertation Award in Brazil . 8 Niels Bohr Scientific Correspondence to be Digitized. 9 Oral Histories of Distinguished Women in Science, Technology, Engineering, and Mathematics (STEM). 10 History Center Awarded Substantial NASA Grant . 11 Melanie Mueller Named New Director of the Niels Bohr Library & Archives. 12 Changing Faces, Changing Titles. 13 Help us Rename and Test Updates to ACAP! . 13 Back to School with the Emilio Segrè Visual Archives . 14 The ‘Forman Collection’ in NBL&A . .16 AIP’s Oral Histories on the International Stage . 16 Lyne Starling Trimble Science Heritage Public Lectures now an AIP Tradition . 18 2015-2016 Additions to the NBL&A Archival Collections. 19 Broadening the Community for History of Physical Science. 19 Documentation Preserved. 20 2 History Newsletter | Volume 48, No. 2 www.aip.org/history-programs HISTORICAL ASTRONOMY DIVISION, AMERICAN ASTRONOMICAL SOCIETY By Kenneth. S. Rumstay, HAD Secretary-Treasurer The American Astronomical Society (AAS), Saturday) at the Gaylord Texan Resort and vance the field of the history of astronomy. founded in 1899, currently has over 7,000 Convention Center in Grapevine, Texas. This award is named in memory of Donald E. members and six specialized divisions. The The HAD meeting will be held that Tuesday Osterbrock, a long-time and remarkably ac- Divisions for Planetary Sciences (formed in through Thursday. A typical HAD meeting tive member of HAD. In addition, each year 1968), Dynamical Astronomy (1969), High consists of two special sessions in which in- HAD invites graduate and undergraduate Energy Astrophysics (1969), Solar Physics vited speakers present on a particular topic. students to apply for a Student Travel Award (1969), and Laboratory Astrophysics (2012) At last year’s meeting we had, not surprising- of $500, in support of travel to present a pa- draw their membership from the ranks of ly, an excellent session entitled A Celebration per at the January meeting. professional physicists, mathematicians, of the Centenary of Einstein’s General Relativ- For further information about the Histori- geologists, and engineers. The Historical ity. There are also one or two (or sometimes Astronomy Division was created in 1980 for more) regular sessions for contributed oral the purpose of advancing interest in topics presentations, and usually a poster session relating to the historical nature of astrono- (though the number of poster submissions my. Astronomy is, of course, one of the old- is usually very small). And, of course, there est of mankind’s intellectual pursuits! is a business meeting on the second day. In addition, there are often HAD sessions at spring meetings of the AAS, or in conjunc- tion with meetings of other divisions. A A HAD awards two prizes, in alternate years. The LeRoy E. Doggett Prize for Historical Astronomy is awarded in even-numbered S years to an individual who has significantly influenced the field of the history of astron- The HAD plaque, proudly displayed at every HAD omy by a career-long effort. The prize is a meeting. Painted in 1996 by member Ronald American Astronomical Society (AAS) logo memorial to LeRoy Doggett, who was an Schorn, the plaque is based upon Albrecht Durer’s expert in calendars, archaeoastronomy, and 1500 woodcut The Astronomer. Photo courtesy of At the time of writing, the Historical Astron- planetary theory. A highly regarded member Kenneth S. Rumstay. omy Division (HAD) has 298 members. Many of HAD, he was serving as its secretary-trea- are professional historians of science, but surer at the time of his passing in 1996. The cal Astronomy Division, please consult our most are astronomers with a deep interest Donald E. Osterbrock Book Prize is awarded website at https://had.aas.org/ or write to in the rich history of astronomy. Member- in odd-numbered years to the author or au- me at [email protected]. We would love to ship dues are nominal: Regular Members thors of a book judged to significantly ad- have you join us! (who must be members of the AAS) pay just $15 per year. Members of other profession- al societies may become Affiliate Members for $20 per annum. Affiliate membership is restricted to members of professional orga- nizations actively concerned with historical astronomy (such as the History of Science Society, the Society for the History of Tech- nology, the American Historical Associa- tion, etc.). Affiliate Members enjoy the same rights and privileges as other members ex- cept that they are not eligible to hold elec- tive office within the division. HAD meets each year in January, in conjunc- tion with a biannual meeting of the Amer- ican Astronomical Society (the other being in June). Typically the AAS meeting runs from Sunday evening (with an opening re- ception) through Thursday, though circum- Some of the speakers at the January 2015 HAD meeting in Seattle.
Recommended publications
  • Copyright by CLP Research 1600 1700 1750
    Spencer Compton 1600Copyright by CLP Research (1601-43) (2d Earl of Northampton); (Royalist/KIA fighting for King Charles I) Main Political Affiliation: Partial Genealogy of the Comptons = Mary Beaumont (1604-54) (of Ohio) 9 Others William Compton I 1763-83 Whig/Revolutionary (1622-94) 1789-1823 Republican (Emigrated from Northamptonshire, England to Long Island, New York, 1647); (moved to Middlesex co. New Jersey) 1824-33 National Republican = Mary Wilmot (1635-1713) See Wilmot of PA 1834-53 Whig 6 Others William Compton II Genealogy 1854- Republican (1649-1709) 1650 (born Long Island, New York); (moved to Middlesex co. New Jersey, then Monmouth co. NJ) = Mary Brown (1653-84) 9 Others Richard Compton (1667-1710); (merchant-store/farmer) = Providence Isselstyne (1664-1702) 6 Others Isselstyne Compton (1694-1763) 1700 = Orchie Altje Blaaw (1700-30) 7 Others Azariah Compton (1738-1825) (Rev War/Yorktown) = Margaret Mary Burlu 1750 (1760?-at least 1811) 7 Others Elias Compton (1788-1864); (farmer) (born Rosemont, Hunterdon co. NJ); (moved to Hamilton co. Ohio, 1816) Catheryne Die = = Bathsheba Hill 1800 (1790s?-1813) (1790-1832) 2 SonsWilson Martindale Compton 5 Others (1828-1908); (farmer) (born Springfield, Hamilton co. OH) = Elizabeth Hunt (1832-at least 1880) Rev. Elias Compton 4 Others 1850 (1856-at least 1927) (Wooster University professor of philosophy; dean) = Otelia Catheryne Augspurger (1858-1944) Dr. Karl Taylor Compton Dr. Wilson Martindale Comton 1 Daughter Arthur Holly Compton (1887-1954); (PhD/physics) (1890-1967); (PhD/physics) (1892-1962); (PhD/physics) (born Wooster, Wayne co. OH) (born Wooster, Wayne co. OH) (born Wooster, Wayne co. OH); (moved to Chicago, Cook co.
    [Show full text]
  • Small Wonders the US National Nanotechnology Initiative Has Spent Billions of Dollars on Submicroscopic Science in Its First 10 Years
    NEWS FEATURE NATURE|Vol 467|2 September 2010 Simulation of the flow pattern for electrons travelling over a random nanoscale landscape. Small wonders The US National Nanotechnology Initiative has spent billions of dollars on submicroscopic science in its first 10 years. Corie Lok finds out where the money went and what the initiative plans to do next. ichard Smalley’s cheeks were gaunt and promised to conduct electricity better than It was a message that Washington was ready his hair was nearly gone when he testi- copper, but also had the potential to produce to hear. US President Bill Clinton formally fied before the US House of Representa- fibres 100 times stronger than steel at one- announced the initiative in 2000, with bipar- tives in June 1999. The Nobel laureate sixth of the weight. Smalley also predicted tisan support from Congress. The initiative R, HARVARD UNIV. HARVARD R, R E chemist had been diagnosed with non-Hodg- that the “very blunt tool” of chemotherapy that has faced some criticism in the decade since LL kin’s lymphoma a few months earlier, chemo- had ravaged his own body would be obsolete — most notably for its slowness to address E therapy was taking its toll, and the journey within 20 years, because scientists would engi- environmental, health and safety concerns H J. E. from Rice University in Houston, Texas, had neer nanoscale drugs that were “essentially about nanomaterials. But it has also created been exhausting. But none of that dimmed his cancer-seeking missiles” able more than 70 nano-related obvious passion for a subject that his listen- to target mutant cells with “As chemists, we academic or government ers found both mystifying and enthralling: minimal side effects.
    [Show full text]
  • Famous Physicists Himansu Sekhar Fatesingh
    Fun Quiz FAMOUS PHYSICISTS HIMANSU SEKHAR FATESINGH 1. The first woman to 6. He first succeeded in receive the Nobel Prize in producing the nuclear physics was chain reaction. a. Maria G. Mayer a. Otto Hahn b. Irene Curie b. Fritz Strassmann c. Marie Curie c. Robert Oppenheimer d. Lise Meitner d. Enrico Fermi 2. Who first suggested electron 7. The credit for discovering shells around the nucleus? electron microscope is often a. Ernest Rutherford attributed to b. Neils Bohr a. H. Germer c. Erwin Schrödinger b. Ernst Ruska d. Wolfgang Pauli c. George P. Thomson d. Clinton J. Davisson 8. The wave theory of light was 3. He first measured negative first proposed by charge on an electron. a. Christiaan Huygens a. J. J. Thomson b. Isaac Newton b. Clinton Davisson c. Hermann Helmholtz c. Louis de Broglie d. Augustin Fresnel d. Robert A. Millikan 9. He was the first scientist 4. The existence of quarks was to find proof of Einstein’s first suggested by theory of relativity a. Max Planck a. Edwin Hubble b. Sheldon Glasgow b. George Gamow c. Murray Gell-Mann c. S. Chandrasekhar d. Albert Einstein d. Arthur Eddington 10. The credit for development of the cyclotron 5. The phenomenon of goes to: superconductivity was a. Carl Anderson b. Donald Glaser discovered by c. Ernest O. Lawrence d. Charles Wilson a. Heike Kamerlingh Onnes b. Alex Muller c. Brian D. Josephson 11. Who first proposed the use of absolute scale d. John Bardeen of Temperature? a. Anders Celsius b. Lord Kelvin c. Rudolf Clausius d.
    [Show full text]
  • Comments by Jon Mark Meeting of Board of Trustees December 13, 2016
    Comments by Jon Mark Meeting of Board of Trustees December 13, 2016 Dr. John Salimbene: It is with great sadness that we note the tragic death of Dr. John Salimbene. As has been publicly reported, Dr. Salimbene died in the fire that occurred in his home on Sunday, December 4, 2016. Many of his neighbors and other Scarsdale residents were his patients and he was fondly remembered by one of them as an old-fashioned town doctor. In addition, for more than half a century, Dr. Salimbene served as Tuckahoe’s village-appointed physician. Earlier this year, the Tuckahoe Police Department honored the doctor for his many years of kind and compassionate service. Here in Scarsdale, this Board and Village staff send our sincere condolences and prayers to the Salimbene family at this difficult time. We ask for a moment of silence in Dr. Salimbene’s memory. Dr. Richard Garwin : On November 22, 2016, President Barack Obama presented Dr. Richard Garwin with the Presidential Medal of Freedom. Dr. Garwin is a long-time resident of the Village. In making that award, the President noted that Dr. Garwin is a polymath physicist who earned a Ph.D. under Enrico Fermi at age 21 and subsequently made pioneering contributions to U.S. defense and intelligence technologies, low-temperature and nuclear physics, detection of gravitational radiation, magnetic resonance imaging (MRI), computer systems, laser printing, and nuclear arms control and nonproliferation. He directed Applied Research at IBM’s Thomas J. Watson Research Center and taught at the University of Chicago, Columbia University, and Harvard University.
    [Show full text]
  • A Brief Tour Into the History of Gravity: from Emocritus to Einstein
    American Journal of Space Science 1 (1): 33-45, 2013 ISSN: 1948-9927 © 2013 Science Publications doi:10.3844/ajssp.2013.33.45 Published Online 1 (1) 2013 (http://www.thescipub.com/ajss.toc) A Brief Tour into the History of Gravity: From Emocritus to Einstein Panagiotis Papaspirou and Xenophon Moussas Department of Physics, Section of Astrophysics, Astronomy and Mechanics, University of Athens, Athens, Greece ABSTRACT The History of Gravity encompasses many different versions of the idea of the Gravitational interaction, which starts already from the Presocratic Atomists, continues to the doctrines of the Platonic and Neoplatonic School and of the Aristotelian School, passes through the works of John Philoponus and John Bouridan and reaches the visions of Johannes Kepler and Galileo Galilei. Then, the major breakthrough in the Theory of Motion and the Theory of Gravity takes place within the realm of Isaac Newton’s most famous Principia and of the work of Gottfried Leibniz, continues with the contributions of the Post- newtonians, such as Leonhard Euler, reaches the epoch of its modern formulation by Ernst Mach and other Giants of Physics and Philosophy of this epoch, enriches its structure within the work of Henry Poincare and finally culminates within the work of Albert Einstein, with the formulation of the Theory of Special Relativity and of General Relativity at the begin of the 20th century. The evolution of the Theory of General Relativity still continues up to our times, is rich in forms it takes and full of ideas of theoretical strength. Many fundamental concepts of the Epistemology and the History of Physics appear in the study of the Theory of Gravity, such as the notions of Space, of Time, of Motion, of Mass, in its Inertial, Active Gravitational and Passive Gravitational form, of the Inertial system of reference, of the Force, of the Field, of the Riemannian Geometry and of the Field Equations.
    [Show full text]
  • 2008 Annual Report
    2008 Annual Report NATIONAL ACADEMY OF ENGINEERING ENGINEERING THE FUTURE 1 Letter from the President 3 In Service to the Nation 3 Mission Statement 4 Program Reports 4 Engineering Education 4 Center for the Advancement of Scholarship on Engineering Education 6 Technological Literacy 6 Public Understanding of Engineering Developing Effective Messages Media Relations Public Relations Grand Challenges for Engineering 8 Center for Engineering, Ethics, and Society 9 Diversity in the Engineering Workforce Engineer Girl! Website Engineer Your Life Project Engineering Equity Extension Service 10 Frontiers of Engineering Armstrong Endowment for Young Engineers-Gilbreth Lectures 12 Engineering and Health Care 14 Technology and Peace Building 14 Technology for a Quieter America 15 America’s Energy Future 16 Terrorism and the Electric Power-Delivery System 16 U.S.-China Cooperation on Electricity from Renewables 17 U.S.-China Symposium on Science and Technology Strategic Policy 17 Offshoring of Engineering 18 Gathering Storm Still Frames the Policy Debate 20 2008 NAE Awards Recipients 22 2008 New Members and Foreign Associates 24 2008 NAE Anniversary Members 28 2008 Private Contributions 28 Einstein Society 28 Heritage Society 29 Golden Bridge Society 29 Catalyst Society 30 Rosette Society 30 Challenge Society 30 Charter Society 31 Other Individual Donors 34 The Presidents’ Circle 34 Corporations, Foundations, and Other Organizations 35 National Academy of Engineering Fund Financial Report 37 Report of Independent Certified Public Accountants 41 Notes to Financial Statements 53 Officers 53 Councillors 54 Staff 54 NAE Publications Letter from the President Engineering is critical to meeting the fundamental challenges facing the U.S. economy in the 21st century.
    [Show full text]
  • From Theory to the First Working Laser Laser History—Part I
    I feature_ laser history From theory to the first working laser Laser history—Part I Author_Ingmar Ingenegeren, Germany _The principle of both maser (microwave am- 19 US patents) using a ruby laser. Both were nom- plification by stimulated emission of radiation) inated for the Nobel Prize. Gábor received the 1971 and laser (light amplification by stimulated emis- Nobel Prize in Physics for the invention and devel- sion of radiation) were first described in 1917 by opment of the holographic method. To a friend he Albert Einstein (Fig.1) in “Zur Quantentheorie der wrote that he was ashamed to get this prize for Strahlung”, as the so called ‘stimulated emission’, such a simple invention. He was the owner of more based on Niels Bohr’s quantum theory, postulated than a hundred patents. in 1913, which explains the actions of electrons in- side atoms. Einstein (born in Germany, 14 March In 1954 at the Columbia University in New York, 1879–18 April 1955) received the Nobel Prize for Charles Townes (born in the USA, 28 July 1915–to- physics in 1921, and Bohr (born in Denmark, 7 Oc- day, Fig. 2) and Arthur Schawlow (born in the USA, tober 1885–18 November 1962) in 1922. 5 Mai 1921–28 April 1999, Fig. 3) invented the maser, using ammonia gas and microwaves which In 1947 Dennis Gábor (born in Hungarian, 5 led to the granting of a patent on March 24, 1959. June 1900–8 February 1972) developed the theory The maser was used to amplify radio signals and as of holography, which requires laser light for its re- an ultra sensitive detector for space research.
    [Show full text]
  • Title: the Distribution of an Illustrated Timeline Wall Chart and Teacher's Guide of 20Fh Century Physics
    REPORT NSF GRANT #PHY-98143318 Title: The Distribution of an Illustrated Timeline Wall Chart and Teacher’s Guide of 20fhCentury Physics DOE Patent Clearance Granted December 26,2000 Principal Investigator, Brian Schwartz, The American Physical Society 1 Physics Ellipse College Park, MD 20740 301-209-3223 [email protected] BACKGROUND The American Physi a1 Society s part of its centennial celebration in March of 1999 decided to develop a timeline wall chart on the history of 20thcentury physics. This resulted in eleven consecutive posters, which when mounted side by side, create a %foot mural. The timeline exhibits and describes the millstones of physics in images and words. The timeline functions as a chronology, a work of art, a permanent open textbook, and a gigantic photo album covering a hundred years in the life of the community of physicists and the existence of the American Physical Society . Each of the eleven posters begins with a brief essay that places a major scientific achievement of the decade in its historical context. Large portraits of the essays’ subjects include youthful photographs of Marie Curie, Albert Einstein, and Richard Feynman among others, to help put a face on science. Below the essays, a total of over 130 individual discoveries and inventions, explained in dated text boxes with accompanying images, form the backbone of the timeline. For ease of comprehension, this wealth of material is organized into five color- coded story lines the stretch horizontally across the hundred years of the 20th century. The five story lines are: Cosmic Scale, relate the story of astrophysics and cosmology; Human Scale, refers to the physics of the more familiar distances from the global to the microscopic; Atomic Scale, focuses on the submicroscopic This report was prepared as an account of work sponsored by an agency of the United States Government.
    [Show full text]
  • The Legacy of Mildred Dresselhaus, the Queen of Carbon
    The legacy of Mildred Dresselhaus, the Queen of Carbon Zeila Zanolli RWTH Aachen June 7, 2017 - ETSF Young Researchers Meeting, Tarragona Mildred Dresselhaus Laid the foundations for C nanotechnology: Pioneer of experimental techniques to study 2D materials Predicted the possibility and characteristics of CNTs (band structure, …) Low-dimensional thermolectrics: model of thermal transport in nanostructures, energy materials, electronic properties, phonons, electron-phonon interactions, … Her work has been crucial for developing lithium-ion batteries, electronic devices, renewable-energy generators, … [email protected] Millie: Institute Professor at MIT > 1700 publications h-index 135 > 25 prestigious awards 28 honorary doctorates Supervised >60 PhD 57 years at MIT [email protected] How did she started? [email protected] Millie: a tale of persistence 1930: born in Brooklyn lived in the Bronx family of immigrants, quite poor during the Great Depression 1936 ( 6 y): got a scholarship for a Music school and heard about the Hunter College “My teachers didn’t think it was possible to get in. But Hunter sent me a practice exam, and I studied what I needed to know to pass the exam.” at Hunter, Rosalyn Yalow (future Nobel laureate) encouraged Millie in pursuing a scientific career. 1951 (21 y): Bachelor, Hunter College, New York [email protected] Millie as Young Researcher 1953 (23 y): MA, Radcliffe College on a Fulbright Fellowship, Cambridge (MA) & Harvard 1958 (28 y): PhD, University of Chicago on the properties of superconductors in a magnetic field. Daily chats with E. Fermi. “My nominal thesis adviser told me in 1955 that women had no place in physics” I told him that I was not expecting to have others show interest in my work.
    [Show full text]
  • Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
    omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag.
    [Show full text]
  • Introduction
    Introduction Queen's College, the predecessor of Rutgers University, was the eighth college to be founded in the American colonies. The early colonial colleges were founded to meet the emerging needs for an educated clergy, and to provide education to other leaders of the community. The religious leaders of the colonies were foremost in the movements to establish these colleges. Although denominational sponsorship was critical to the founding and early support of the colleges, there were generally no religious tests for students, and the colleges were chartered by the colonies. Leaders of the Puritan Congregational Church founded Harvard College in 1636 with a bequest of £400 from the Massachusetts Bay Colony. The College was organized and named Harvard College in 1639, and chartered in 1650. The traditional list of colonial colleges that followed Harvard College begins with William and Mary College, which was founded in 1693 by leaders of the Anglican Episcopal Church, followed by Yale College, which was founded in 1701 by leaders of the Puritan Congregational Church. The College of Philadelphia (later University of Pennsylvania) was founded in 1740 by Benjamin Franklin and other leading citizens of Philadelphia, and had the weakest religious connections of the colonial colleges. The College of New Jersey (later Princeton College) was founded in 1746 by leaders of the Presbyterian Church, King's College (later Columbia College) was founded in 1754 by leaders of the Anglican Episcopal Church, and the College of Rhode Island (later Brown College) was founded in 1764 by leaders of the Baptist Church. 1 History of Physics and Astronomy Some elements of physics and astronomy were taught in the colonial colleges from the time they opened.
    [Show full text]
  • What's the Problem with the Cosmological Constant?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Philsci-Archive What’s the problem with the cosmological constant? Mike D. Schneider∗y Abstract The “Cosmological Constant Problem” (CCP) is widely considered a crisis in contemporary theoretical physics. Unfortunately, the search for its resolution is hampered by open disagreement about what is, strictly, the problem. This disagreement stems from the observation that the CCP is not a problem within any of our current theories, and nearly all of the details of those future theories for which the CCP could be made a problem are up for grabs. Given this state of affairs, I discuss how one ought to make sense of the role of the CCP in physics and generalize some lessons from it. ∗To contact the author, write to: Mike D. Schneider, Department of Logic and Philosophy of Science, University of California, Irvine; e-mail: [email protected]. yI would like to thank James Owen Weatherall and Erik Curiel for their steering comments on earlier drafts of this paper. I am also grateful for the many questions and comments from members of the Southern California Philosophy of Physics reading group, as well as for the positive reception of the paper at the Philosophy of Logic, Math, and Physics graduate student conference at the Rotman Institute of Philosophy at Western University. Finally, I am indebted to Jeffrey Barrett, JB Manchak, Hannah Rubin, Kyle Stanford, and John Earman, as well as to an anonymous reviewer and an editor for pushing me to make my punchlines clearer.
    [Show full text]