A Thesis Entitled a Sensor for Measuring Liquid Water Content of Wet Snow on Superstructures by Mehdi Sarayloo Submitted To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spatial Representativeness Analysis for Snow Depth Measurements of Meteorological Stations in Northeast China
APRIL 2020 W A N G A N D Z H E N G 791 Spatial Representativeness Analysis for Snow Depth Measurements of Meteorological Stations in Northeast China YUANYUAN WANG AND ZHAOJUN ZHENG National Satellite Meteorological Center, China Meteorological Administration, Beijing, China (Manuscript received 14 June 2019, in final form 20 February 2020) ABSTRACT Triple collocation (TC) is a popular technique for determining the data quality of three products that estimate the same geophysical variable using mutually independent methods. When TC is applied to a triplet of one point-scale in situ and two coarse-scale datasets that have the similar spatial resolution, the TC-derived performance metric for the point-scale dataset can be used to assess its spatial representativeness. In this study, the spatial representativeness of in situ snow depth measurements from the meteorological stations in northeast China was assessed using an unbiased correlation metric r2 estimated with TC. Stations are t,X1 considered representative if r2 $ 0:5; that is, in situ measurements explain no less than 50% of the variations t,X1 in the ‘‘ground truth’’ of the snow depth averaged at the coarse scale (0.258). The results confirmed that TC can be used to reliably exploit existing sparse snow depth networks. The main findings are as follows. 1) Among all the 98 stations in the study region, 86 stations have valid r2 values, of which 57 stations are t,X1 representative for the entire snow season (October–December, January–April). 2) Seasonal variations in r2 t,X1 are large: 63 stations are representative during the snow accumulation period (December–February), whereas only 25 stations are representative during the snow ablation period (October–November, March–April). -
World Meteorological Organization Global Cryosphere Watch
WORLD METEOROLOGICAL ORGANIZATION GLOBAL CRYOSPHERE WATCH REPORT No. 20/ 2018 GLOBAL CRYOSPHERE WATCH STEERING GROUP TH 5 SESSION OSLO, NORWAY, 10-12 January, 2018 © World Meteorological Organization, 2018 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chair, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 8403 P.O. Box 2300 Fax: +41 (0) 22 730 8040 CH-1211 Geneva 2, Switzerland E-mail: [email protected] NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised. The findings, interpretations and conclusions expressed in WMO publications with named authors are those of the authors alone and do not necessarily reflect those of WMO or its Members. - 2 - GROUP PHOTO, 10 JANUARY 2018 - 3 - EXECUTIVE SUMMARY The 5th session of the Steering Group of the Global Cryosphere Watch (GSG-5) was hosted by Norwegian Meteorological Institute (Met Norway), in Oslo, Norway, from 10th to 12 January. -
Measuring Snow Properties Relevant to Snowsports & Outdoor
Measuring snow properties relevant to Mittuniversitetet snowsports & outdoor 10.06.2019 Development of measuring method to ana- lyze snow properties Measuring snow properties relevant to snowsports & outdoor Development of measuring method to analyze snow properties Sebastian Klein Självständigt arbete Huvudområde: Mechanical Engineering MA,Thesis Högskolepoäng: 30 hp Termin/år: ST 2019 Handledare: Mikael Bäckström Examinator: Andrey Koptyug Kurskod/registreringsnummer: H4X94 Utbildningsprogram: Sportteknologi Based on the Mid Sweden University template for technical reports, written by Magnus Eriksson, Kenneth Berg and Mårten Sjöstr öm. i Measuring snow properties relevant to Mittuniversitetet snowsports & outdoor 10.06.2019 Development of measuring method to ana- lyze snow properties Abstract Snow is a common surface on which a lot of sports competitions take place. We know a lot about our equipment, but there has been done very little research on the snow itself regarding the use in sports. The aim of this project is to create a measurement device to investigate the properties of different snow types. The snow compound on the ski slopes nowadays does not only exist of natural snow, a big part of it is machine-made snow and the most common one is produced with snow guns. There are differ- ent theories why skis glide on snow and that is why a lot of research has been done on the snow behavior. But the main goal in the ski industry is to improve the equipment. The measurement tool should be compact, so it is possible to carry it around on the ski slope, waterproof and should give electronic data, not like previous devices where you have to measure by hand. -
High Concentrations of Biological Aerosol Particles and Ice Nuclei Open Access During and After Rain Biogeosciences Biogeosciences Discussions J
EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmos. Chem. Phys., 13, 6151–6164, 2013 Atmospheric Atmospheric www.atmos-chem-phys.net/13/6151/2013/ doi:10.5194/acp-13-6151-2013 Chemistry Chemistry © Author(s) 2013. CC Attribution 3.0 License. and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access High concentrations of biological aerosol particles and ice nuclei Open Access during and after rain Biogeosciences Biogeosciences Discussions J. A. Huffman1,2, A. J. Prenni3, P. J. DeMott3, C. Pohlker¨ 2, R. H. Mason4, N. H. Robinson5, J. Frohlich-Nowoisky¨ 2, Y. Tobo3, V. R. Despres´ 6, E. Garcia3, D. J. Gochis7, E. Harris2, I. Muller-Germann¨ 2, C. Ruzene2, B. Schmer2, 2,8 9 2 9 5 3 4 Open Access B. Sinha , D. A. Day , M. O. Andreae , J. L. Jimenez , M. Gallagher , S. M. Kreidenweis , A. K. Bertram , and Open Access U. Poschl¨ 2 Climate 1 Climate Department of Chemistry and Biochemistry, University of Denver, 2190 E. Illif Ave., Denver, CO, 80208, USA of the Past 2Max Planck Institute for Chemistry, P.O. Box 3060, 55020, Mainz, Germany of the Past 3Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO, 80523, USA Discussions 4Department of Chemistry, University of British Columbia, Room D223, 2036 Main Mall, Vancouver, BC, V6T1Z1, Canada Open Access 5Centre for Atmospheric Sciences, University of Manchester, Simon Building, Oxford Road, Manchester, M139PL, UK Open Access 6Institute for General Botany, Johannes Gutenberg University, Mullerweg¨ 6, 55099, Mainz,Earth Germany System Earth System 7National Center for Atmospheric Research, P.O. -
Comparison of the Compact Dopplar Radar Rain Gauge and Optical
Short Paper J. Agric. Meteorol. 67 (3): 199–204, 2011 Comparison of the compact dopplar radar rain gauge and optical disdrometer Ko NAKAYA†, and Yasushi TOYODA (Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba, 270–1194, Japan) Abstract The operations of a compact Doppler radar rain gauge (R2S; Rufft, FRG) and optical disdrometer (LPM; THIES, FRG) are based on raindrop size distribution (DSD) measurements. We checked the instrumental error of these sensors and compared each sensor with a reference tipping-bucket rain gauge. This is because both rain gauges can detect fine particles and so they can function as rain sensors. The R2S has a measuring bias of rainfall intensity when the drop size distribution differs from the assumed statistical DSD model. The instrumental error on the LPM is small; in fact, the LPM shows good agreement with the reference rain gauge. Where the atmospheric density differs remarkably from the standard elevation, as is the case in highland areas, the R2S requires calibration using a reference rain gauge. The resultant calibration coefficient of the R2S to convert the reading into a reference tip- ping-bucket rain-gauge equivalent was 0.51 in a forest at an elevation of 1380 m. Further gathering of calibration coefficients obtained at different elevations will improve the R2S’s applicability. Key words: Doppler radar rain gauge, Drop size distribution, Optical disdrometer, Tipping-bucket rain gauge. Although the accuracy and suggested errors of rainfall 1. Introduction observations using typical Doppler radar have been Rainfall properties, such as the intensity, amount, reviewed in many studies (Maki et al., 1998, for duration, and type, constitute important meteorological example), reviews for the R2S compared to a reference information that is useful for agriculture and forestation rain gauge are few. -
The Science of Snowflakes
The Science of Snowflakes Author: Paulette Clancy Date Created: 1999 Subject: Earth Science, Engineering Level: Middle School Standards: New York State- Intermediate Science (www.emsc.nysed.gov/ciai/) Standard 1- Analysis, Inquiry and Design Standard 4- The Physical Setting Standard 6- Interconnectedness: Common Themes Standard 7- Interdisciplinary Problem Solving Schedule: Five to six 40-minute class periods Objectives: Vocabulary: Learn about states of matter, Matter Volume classification, and properties of Atom Density crystals Crystal Ion Materials: Students will: For Each Student: Activity Sheet 1: Activity Sheet 8: Design a Mini-Hut Thinking About Snowflakes Box with a lid • Catch snowflakes and classify Activity Sheet 2: The Can of “Crystal Clear” them by shape and structure States of Matter spray • Grow a crystal in a jar Activity Sheet 3: Glass microscope • Design an experiment that will Temperature of slides String show if the growth of the crystal Substances Activity Sheet 4: Let’s Wide mouth jar changes if grown under Classify Snowflakes White pipe cleaners different conditions Activity Sheet 5: Blue food coloring • Design a “mini-hut” to preserve Properties of Crystals (optional) the crystal structure of ice Activity Sheet 6: Grow Boiling water* a Snowflake in a Jar Borax • Reflect on scientific process Activity Sheet 7: For Each Pair: and discuss concepts that were Experiment Template Microscope* learned *Provided by the teacher Safety: Blue food coloring can stain clothing. If it is used, use caution when handling it. Science Content: Snow Crystals: When cloud temperature is at freezing or below and the clouds are moisture filled, snow crystals form. The ice crystals form on dust particles as the water vapor condenses and partially melted crystals cling together to form snowflakes. -
Measurement of Precipitation
CHAPTER CONTENTS Page CHAPTER 6. MEASUREMENT OF PRECIPITATION ..................................... 186 6.1 General ................................................................... 186 6.1.1 Definitions ......................................................... 186 6.1.2 Units and scales ..................................................... 186 6.1.3 Meteorological and hydrological requirements .......................... 187 6.1.4 Measurement methods .............................................. 187 6.1.4.1 Instruments ................................................ 187 6.1.4.2 Reference gauges and intercomparisons ........................ 188 6.1.4.3 Documentation. 188 6.2 Siting and exposure ........................................................ 189 6.3 Non-recording precipitation gauges .......................................... 190 6.3.1 Ordinary gauges .................................................... 190 6.3.1.1 Instruments ................................................ 190 6.3.1.2 Operation. 192 6.3.1.3 Calibration and maintenance ................................. 192 6.3.2 Storage gauges ..................................................... 192 6.4 Precipitation gauge errors and corrections ..................................... 193 6.5 Recording precipitation gauges .............................................. 196 6.5.1 Weighing-recording gauge ........................................... 196 6.5.1.1 Instruments ................................................ 196 6.5.1.2 Errors and corrections. 197 6.5.1.3 Calibration -
Changes in Snow Depth, Snow Cover Duration, and Potential Snowmaking Conditions in Austria, 1961–2020—A Model Based Approach
atmosphere Article Changes in Snow Depth, Snow Cover Duration, and Potential Snowmaking Conditions in Austria, 1961–2020—A Model Based Approach Marc Olefs 1,* , Roland Koch 1, Wolfgang Schöner 2 and Thomas Marke 3 1 Climate Research Department, ZAMG—Zentralanstalt für Meteorologie und Geodynamik, Hohe Warte 38, 1190 Vienna, Austria; [email protected] 2 Department of Geography and Regional Science, University of Graz, 8010 Graz, Austria; [email protected] 3 Department of Geography, University of Innsbruck, 6020 Innsbruck, Austria; [email protected] * Correspondence: [email protected] Received: 2 October 2020; Accepted: 4 December 2020; Published: 8 December 2020 Abstract: We used the spatially distributed and physically based snow cover model SNOWGRID-CL to derive daily grids of natural snow conditions and snowmaking potential at a spatial resolution of 1 1 km for Austria for the period 1961–2020 validated against homogenized long-term snow × observations. Meteorological driving data consists of recently created gridded observation-based datasets of air temperature, precipitation, and evapotranspiration at the same resolution that takes into account the high variability of these variables in complex terrain. Calculated changes reveal a decrease in the mean seasonal (November–April) snow depth (HS), snow cover duration (SCD), and potential snowmaking hours (SP) of 0.15 m, 42 days, and 85 h (26%), respectively, on average over Austria over the period 1961/62–2019/20. Results indicate a clear altitude dependence of the relative reductions ( 75% to 5% (HS) and 55% to 0% (SCD)). Detected changes are induced by − − − major shifts of HS in the 1970s and late 1980s. -
Iowa (SMAPVEX16-IA) Experiment Plan
Soil Moisture Active Passive Validation Experiment 2016- Iowa (SMAPVEX16-IA) Experiment Plan Iowa Landscape July 2014 Ver. 5/20/16 Table of Contents 1. Introduction .........................................................................................................................8 1.1. Role of Field Campaigns in SMAP Cal/Val...................................................................8 1.2. Science Objectives for a Post-Launch SMAP Aircraft-Based Field Campaign ...............9 1.2.1. Investigate and resolve anomalous observations and products ...............................9 1.2.2. Improving up-scaling functions for CVS .............................................................. 10 1.2.3. Contribution to a broader scientific/application objective.................................... 10 1.2.4. Validate the L2SMAP algorithm process: pending new directions ....................... 13 2. SMAPVEX16 Aircraft Experiment Concept ...................................................................... 13 3. South Fork (SF), Iowa Study Area ..................................................................................... 13 3.1. General Description .................................................................................................... 13 3.2. Land Cover/Vegetation ............................................................................................... 14 3.3. Soils ............................................................................................................................ 15 3.4. Climate ...................................................................................................................... -
Turf Smart Solutions 2021 Product Catalog
TURF SMART SOLUTIONS 2021 PRODUCT CATALOG EASY ORDERING - REQUEST A QUOTE At Spectrum Technologies, we pride Online www.specmeters.com ourselves on helping our valued customers transform plant measurements into more E-mail [email protected] profitable growing decisions. Since 1987, Phone 1 (800) 248-8873 (Toll Free U.S. & Canada) we have manufactured and distributed affordable, leading-edge plant measurement 1 (815) 436-4440 technology to agricultural, horticultural, Fax 1 (815) 436-4460 environmental, and turf markets throughout the world, serving more than 3600 Thayer Court 14,000 customers in over 80 countries. Aurora, IL 60504 USA We proudly work alongside researchers, growers, golf course superintendents, Order Total Shipping/Handling (USA Only) and industry suppliers to provide a broad $25.01 to $99.99 $18.00 line of innovative devices and software Standard $100.00 to $499.99 $24.00 for better environmental monitoring, Ground Delivery: $500.00 to $999.99 $30.00 nutrient management, soil moisture $1,000.00 to $1,999.99 $35.00 measurement, irrigation scheduling, and Express Delivery: $2,000.00 to $2,999.99 $44.00 pest management. (Contact for charges) $3,000.00 to $4,999.99 $56.00 Canadian Delivery: $5,000.00 to $9,999.99 $78.00 (Contact for charges) 10,000 or more Contact for pricing Our products will positively impact the way you grow your turf; therefore, we stand behind every product with our 100% ORDERING INFORMATION Satisfaction Guarantee. Our friendly and Purchase Orders: We accept purchase orders from accredited universities, governments, businesses, and nonprofit organizations. Completed credit application knowledgeable product support team is may be required. -
Advanced Weather Monitoring for a Cable Stayed Bridge
Advanced weather monitoring for a Cable stayed bridge Chandrasekar Venkatesh June 11, 2018 Bachelors in Electrical and Electronics Engineering Ph.D. in Electrical Engineering Department of Electrical Engineering and Computer Science, College of Engineering and Applied Science Committee Chair: Dr. Arthur Helmicki Committee Members: Dr.Victor Hunt Dr. Douglas Nims Dr. Ali Minai Dr. William Wee Abstract In the northern United States, Canada, and many northern European countries, snow and ice pose serious hazards to motorists. Potential traffic disruptions caused by ice and snow are challenges faced by transportation agencies. Successful winter maintenance involves the selection and application of the most optimum strategy, over optimum time intervals. The risk associated with operating the bridges during winter emergencies varies depending on the size of the structure, the material of the stays, volume of average daily traffic, geographical location, nature of terrain and surroundings etc. The ‘Dashboard’, a monitoring system designed to help the bridge maintenance and operation personnel was developed at University of Cincinnati Infrastructure Institute. This was implemented at the Veterans Glass City Skyway Bridge in Toledo, Ohio. This system was also extended to the Port Mann Bridge in Vancouver, Canada. The aim of this research is to come up with an advanced monitoring system which will help the bridge management team make control actions during winter emergencies on the VGCS and Port Mann bridges. The current monitoring system gives information on the status of ice accumulation/ snow accretion or shedding based on last one hour’s weather data. This dissertation focuses on adding intelligence to the existing system through addition of sensors, identifying patterns in events, adding cost-benefit analysis and incorporating forecast parameters, while also extending the system to other bridges and structures. -
By: ESSA RAMADAN MOHAMMAD D F Superintendent of Stations Kuwait
By: ESSA RAMADAN MOHAMMAD Superintendent O f Stations Kuwait Met. Departmentt Geoggpyraphy and climate Kuwait consists mostly of desert and little difference in elevation. It has nine islands, the largest of which is Bubiyan, which is linked to the mainland by a concrete bridge. Summers (April to October) are extremely hot and dry with temperatures exceeding 51 °C(124°F) in Kuwait City several times during the hottest months of June, July and August. April and October are more moderate with temperatures over 40 °C uncommon . Winters (November through February) are cool with some precipitation and average temperatures around 13 °C(56°F) with extremes from ‐2 °Cto27°C. The spring season (Marc h) iswarmand pltleasant with occasilional thund ers torms. Surface coastal water temperatures range from 15 °C(59°F) in February to 35 °C(95°F) in August. The driest months are June through September, while the wettest are January through March. Thunderstorms and hailstorms are common in November, March and April when warm and moist Arabian Gulf air collides with cold air masses from Europe. One such thunderstorm in November 1997 dumped more than ten inches of rain on Kuwait. Kuwait Meteorology Dep artment Meteorological Department Forecasting Supervision Clima tes SiiSupervision Stations & Upper Air Supervision Communications Supervision Maintenance Supervision Stations and Upper air Supervision 1‐ SfSurface manned Sta tions & AWOS 2‐ upper air Stations & Ozone Kuwait Int. Airport Station In December 1962 one manned synoptic, climate, agro stations started to report on 24 hour basis and sending data to WMO Kuwait Int. Airport Station Kuwait started to observe and report meteorological data in the early 1940 with Kuwait Britsh oil company but most of the report were very limited.