Strontiojoaquinite and Bario-Orthojoaquinite: Two New Members of the Joaquinite Group

Total Page:16

File Type:pdf, Size:1020Kb

Strontiojoaquinite and Bario-Orthojoaquinite: Two New Members of the Joaquinite Group American Mineralogist, Volume 67, pages 809-8/6, /982 Strontiojoaquinite and bario-orthojoaquinite: two new members of the joaquinite group WILLIAM S. WISE Department of Geological Sciences University of California Santa Barbara, California 93106 Abstract Two new minerals have been found in San Benito County, California, that are structurally and chemically related to joaquinite. A combination of electron and ion microprobe analyses of strontiojoaquinite yields the formula (Na2.2sLio.IIFeI.44Do.17) D2Ba4Ti4[01.27(OHh.73]Sr4.oIREEo.oJ[Si4012kI.62H20. The virtual absence of REE indi- cates that this is the Sr analog of joaquinite. X-ray single crystal study showed the mineral to be monoclinic with the same submicroscopic twinning and one dimensional disorder exhibited by joaquinite. Several reflections in the X-ray powder pattern show that the space group must be P2, Pm, or P2/m, as compared to the C2 of joaquinite. Refined cell dimensions are a 10.516(6), b 9,764(5), c 11.87(1)A, f3 109°17(4)' Z = I. The strongest lines in the X-ray powder pattern are 2,801(100)(004,311), 2.967(72)(023), 3,001(48)(113), 2.923(45)(301), 2.611(42)(401,402), 2.432(40)(312), and 4.30(35)(121). The pseudo-orthorhombic, bipyramidal crystals have the forms {11O},{II I}, and {001}. All crystals are zoned with ajoaquinite core. Strontiojoaquinite is green, yellow-green, and less commonly yellow-brown. Hardness (Mohs) is 5Y2; cleavage {001},good. Calculated density is 3.68 glcm3. It is optically biaxial, positive, 2V 35° to 45° with strong dispersion of the optic axes r > v. Refractive indices are a 1.710(2), f3 1.718(2), '}' 1.780(3). Optical orientation and axial colors: X (colorless):a = 19°, Y (colorless) = b, Z (yellow) = c; absorption X = Y < Z. A combination of electron and ion microprobe analyses of bario-orthojoaquinite yields the formula (Nao.IOFe3.61Mno.24)D2Ba4(Ti3.ssAIo.12)(Ba2.ssSro.ssCao.osAlo.19)04[Si4012]'2H20. The absence of REE and the excess Ba indicates that this mineral is the Ba analog of joaquinite. X-ray single crystal study showed it to be orthorhombic, space group Ccmm, CC2m, or Ccm2" a 10.477(5), b 9.599(1), c 22.59(I)A, Z = 2. The strongest lines in the X-ray powder pattern are 2.997(100)(224), 2.953(95)(132), 2.824(90)(008), 5.64(70)(004), 2.935(70)(117), 4.30(62)(203),3.203(50)(223), and 2.602(50)(401). Crystals are up to 8 mm in diameter, in the form of steep bipyramids {III} truncated by the basal pinacoid, and are yellow-brown with a vitreous luster. Hardness (Mohs) is 5Y2. Cleavage {001}, good. Measured density is 3.959(2) glcm3 (calculated, 3.962 g/cm3). It is optically biaxial, positive, 2V 10° to 15°, with strong dispersion of the optic axes r > v. Refractive indices are a 1.735(2), f3 I. 737(2), '}' 1.80(1). Optic orientation and axial colors: X(very pale yellow) = a, Y (pale yellow) = b, and Z (yellow) = c, absorption X < Y« Z. These two new minerals, along with others previously described, allow names of the joaquinite group minerals to be based on the symmetry and occupancy of the REE position: REE-bearing members are joaquinite and orthojoaquinite; Sr-bearing, strontiojoaquinite and strontio-orthojoaquinite; and Ba-bearing, bario-orthojoaquinite. Introduction initial discovery and naming (Louderback, 1909). The type locality is the well known Benitoite Gem The characterization of the mineral joaquinite Mine in San Benito County, California. X-ray and was not complete for nearly 70 years following its morphological studies by Palache and Foshag 0003-004X/82/0708-0809$02.00 809 810 WISE: STRONTIOJOAQUlNITE AND BARIO-ORTHOJOAQUlNITE (1932) suggested that the mineral had orthorhombic (00l), which gives rise to a pseudotetragonal mor- symmetry, and their chemical analysis yielded the phology and the basal cleavage. The Ti-bonded formula NaBa(Ti,FehSi401s. There was little fur- Si4012 sheets are held together in two ways, one by ther work on the mineral until two new occur- a sheet of Ba and 0 ions and water molecules, and rences, Seal Lake, Quebec (Bell, 1963) and Ilimaus- the other by Na, FeH, OH, and the ions of the REE saq, Greenland (Semenov et al., 1967) lead to position. The Na, Fe, and OH occur along 2-fold renewed interest in the mineral. Semenov and his axes and have a multiplicity of only 2. There is one co-workers found that the rare earth elements site preferred by Na and another by FeH (Dowty, (REE) are an essential part of the composition of 1975, Fig. 2), but in mostjoaquinites these positions joaquinite from all three localities. Laird and Albee and the OH position are not completely filled. In the (1972) conducted a thorough study of the X-ray minerals described here Na and Fe substitute for properties and the composition of a number of each other, and more importantly the REE ions are crystals from the type locality. This work, not only completely replaced by divalent ions such as Sr and further defined the composition, but also demon- Ba. strated that the crystals are monoclinic, although parts of a few were found to be orthorhombic. Group composition Furthermore, Laird and Albee found that the ortho- A number of joaquinite group crystals were ana- rhombic-appearing crystals exhibit submicroscopic, lyzed as part of this study, and a selection of polysynthetic twinning parallel to {001}. analyses is presented in Table 1. All samples were The crystal structure of joaquinite was studied by analyzed for the major elements with an electron Cannillo et al. (1972) on relatively untwinned mate- microprobe. Crystals or groups of crystals (about 1 rial from Greenland. Although they based their mm in diameter) were embedded in epoxy and analysis on the monoclinic space group C2/m and ground to expose the center of the crystals. Such did not detect several atoms, the basic structure did grains were analyzed in at least four spots to emerge. This structure was refined by Dowty (1975) determine the extent (if any) of compositional zon- using the space group C2, and the positions for the mg. remaining atoms were located. Standards used were benitoite (Ba, Ti, and Si), Semenov et al. (1967) and Laird and Albee (1972) hematite (Fe), rhodonite (Mn), celestite (Sr), albite found such variation in the composition of the (Na and AI), andesine (Ca), and synthetic rare earth crystals they analyzed, that they proposed a num- glasses (Drake and Weill, 1972). The analyses were ber of possible end members and referred to the carried out under the following conditions: acceler- whole as the joaquinite group. Recent collecting in ating voltage 15 kV for all elements, sample current San Benito County has lead to the discovery of two 8 nA, and a spot diameter 10 to 20 JLm. Emission members of the group, one iq. which the REE have data were reduced and interelement corrections been replaced by Sr and the other by Ba. The applied with a modified version of EMPADR7 (Ruck- compositional adjustments to maintain charge bal- lidge and Gasparrini, 1969). ance in these phases provides a further understand- Because two samples represented new composi- ing of the composition and symmetries of the group. tions for the joaquinite group, mass scans with an This paper describes these new minerals, fits their ARL ion probe were performed. The ion probe compositions into a general scheme, and proposes a microanalyses were carried out with a negatively system of nomenclature for the group. The new charged primary beam of monatomic 160- at 17 kV. minerals, mineral names, and group nomenclature The spot size was approximately 20 JLm and a have been approved by the I.M.A. Commission for sample current of 6 nA. The hydrogen content was New Minerals and Mineral Names. estimated from the working curves of Hinthorne and Anderson (1975), and other element data were The joaquinite group quantitatively reduced, using sensitivity factors de- Based on his structure refinement Dowty (1975) rived from a theoretical ionization model (Anderson proposed an ideal formula for joaquinite, and Hinthorne, 1973). Na2Fe~+(OHhBa4Ti404REE4[Si40I2k2H20. The Combined results of both microprobe methods structure is characterized by Si4012 rings (see Can- are presented in Table 1. The ideal formula for nillo et al., 1972, and Dowty, 1975), connected by joaquinite has an anionic charge of -106. If the Ti ions. These bonded rings form sheets parallel to number of cations in the analyses of Table 1 are WISE: STRONTIOJOAQUINITE AND BARIO-ORTHOJOAQUINITE 811 Table 1. Microprobe analyses and cell contents of various that the total anionic charge may be somewhat members of the joaquinite group from San Benito County, variable. Therefore, the unit cell contents were California proportioned by setting the number of Si to 16. The total cationic charge, the number ofTi ions, and the S102 37.54 35.87 37.57 34.99 35.15 36.16 34.75 TiOz 12.48 12.86 12.45 12.01 11.33 12.54 10.95 total number of ions in the X position can be used to Alz03 o o o o .57 .16 .24 check the quality ofthe analysis. If the oxygen ions FeO 4.03 3.91 5.04 3.96 9.47 3.13 3.23 MnO o .14 o .09 .62 .09 .41t between the Si4016 rings can be replaced by OH, 24.52 23.22 26.39 22.51 38.56 23.81 22.40 and if the hydroxyl sites on the Na and Fe 2-fold 16.23 8.37 12.45 4.07 3.34 4.91 .31 o o o o .17 o o axes (Dowty, 1975, Fig.
Recommended publications
  • New Publications
    WaTEn RESOURCESINVESTIGATIONS O'Brien and W J. Stone, 1984:Ground Water, Newpublications v.22, no. 6, pp.717-727. 83-4l18-B-Maps showing ground-water levels, Volcanogenic-exhalativetungsten mineralization springs, and depth to ground water, Basin and T{MBMMR of Proterozoic age near Santa Fe, New Mexico, Range Province, New Mexico, by B. T. Brady, *Circular L90--The skull of Sphenacodon and implicationsfor exploration,by M. S. Fulp ferocior, D. A. Mulvihill, D. L Hart, and W. H. Lan- and comoarisons with other sphenacodontines Jr., andJ.L. Renshaw,1985: Geology, v.73,pp.66- ger, 7984,6 pp., 2 sheets,scale 1:500,000 (ReptiliaiPelycosauria), by D.-A. Eberth, 1985, 69. 83-411.8-C-Maps showing distribution of dis- 39 pp., 2 tables, 39 figs $4.00 in Virtually complete, disarticulated cranial re- solved solids and dominant chemical type New 0pen-filereports ma\nsof Sohenacodonferociorfrom the Cutler and ground water, Basin and Range Province, and NMBMMR Abo Formations (Lower Permian) of north-cen- Mexico,by T. H. Thompson, R. Chappell, scale *215--Evaluation tral New Mexico are described in detail for the D. L. Hart, Jr., 7984, 5 pp., 2 sheets, of laboratory procedures for de- first time. These descriptions provide the basis 1:500,000. termining soil-water chloride, by B. E. McGurk for the most detailedcomparisons to datewithin 83-41.18-D-Map showing outcrops of granitic and W. f. Stone,1985, 36 pp., 12 tables,2 figs. and the subfamily Sphen- rocks and silicic shallow-intrusive rocks, Basin $7.20 the genus Sphenacodon *21.9-Geology acodontinae.
    [Show full text]
  • Crystal Structure of Bage [Ge3 O9] and Its Relation to Benitoite
    ------------- ., JOURNAL OF RESEARCH of the National Bureau of Standards - A. Physics and Chemistry Vol. 70A, No.5, September-October 1966 Crystal Structure of BaGe [ Ge3 0 9 Jand Its Relation to Benitoite I I C. Robbins, A. Perloff, and S. Block ~ ( Institute for Materials Research, National Bureau of Standards, Washington, D.C. 20234 I (May 23, 1966) BaGe[Ge30gl is trigonal, space group P3, with lattice constants a= 11.61, c=4.74 A, and Z =3. The structure was established by three·dimensional Patterson and electron density syntheses. Three·dimensional least·squares refinement resulted in a final R value of 6.8 percent (observed data only). The previously proposed structural relationship of this compound with benitoite, BaTiSbOg, has been confirmed. The structure can be considered as composed of Ge30g rings, in which the Ge is tetrahedrally coordinated, linked through octahedrally coordinated Ge atoms to form a three·dimen· sional Ge·O network. All Ge polyhedra are linked by corner sharing. The Ba ions occupy positions in channels of the network. Key Words: Barium tetragermanate, structure, benitoite, crystal, x·ray. 1. Introduction Robbins and Levin [lJ. Their data plus the space group information are: The synthesis of three germanates of formula type MeGe4 0g (Me = Sr, Pb, Ba) was reported by Robbins a=lL61 A w= L797±0.003 and Levin [lJ .1 A comparison of indexed powder c=4.74A E= 1.783 ± 0.003 patterns suggested that the compounds were isostruc­ S.G.=P3 p (obs) = 5.1 gcm - 3 turaL This was later confirmed by Eulenberger, Z =3 p (calc) = 5.12 gcm- 3 Wittman, and Nowotny [2].
    [Show full text]
  • List of New Mineral Names: with an Index of Authors
    415 A (fifth) list of new mineral names: with an index of authors. 1 By L. J. S~v.scs~, M.A., F.G.S. Assistant in the ~Iineral Department of the,Brltish Museum. [Communicated June 7, 1910.] Aglaurito. R. Handmann, 1907. Zeita. Min. Geol. Stuttgart, col. i, p. 78. Orthoc]ase-felspar with a fine blue reflection forming a constituent of quartz-porphyry (Aglauritporphyr) from Teplitz, Bohemia. Named from ~,Xavpo~ ---- ~Xa&, bright. Alaito. K. A. ~Yenadkevi~, 1909. BuU. Acad. Sci. Saint-P6tersbourg, ser. 6, col. iii, p. 185 (A~am~s). Hydrate~l vanadic oxide, V205. H~O, forming blood=red, mossy growths with silky lustre. Founi] with turanite (q. v.) in thct neighbourhood of the Alai Mountains, Russian Central Asia. Alamosite. C. Palaehe and H. E. Merwin, 1909. Amer. Journ. Sci., ser. 4, col. xxvii, p. 899; Zeits. Kryst. Min., col. xlvi, p. 518. Lead recta-silicate, PbSiOs, occurring as snow-white, radially fibrous masses. Crystals are monoclinic, though apparently not isom0rphous with wol]astonite. From Alamos, Sonora, Mexico. Prepared artificially by S. Hilpert and P. Weiller, Ber. Deutsch. Chem. Ges., 1909, col. xlii, p. 2969. Aloisiite. L. Colomba, 1908. Rend. B. Accad. Lincei, Roma, set. 5, col. xvii, sere. 2, p. 233. A hydrated sub-silicate of calcium, ferrous iron, magnesium, sodium, and hydrogen, (R pp, R',), SiO,, occurring in an amorphous condition, intimately mixed with oalcinm carbonate, in a palagonite-tuff at Fort Portal, Uganda. Named in honour of H.R.H. Prince Luigi Amedeo of Savoy, Duke of Abruzzi. Aloisius or Aloysius is a Latin form of Luigi or I~ewis.
    [Show full text]
  • Mineralogicai, Radiographic and Uranium Leaching Studies on the Uranium Ore from Kvanefjeld, Ilimaussaq Complex, South Greenland
    T><2too/t6' Risø-R-416 Mineralogicai, Radiographic and Uranium Leaching Studies on the Uranium Ore from Kvanefjeld, Ilimaussaq Complex, South Greenland Milota Makovicky, Emil Makovicky, Bjarne Leth Nielsen, Svend Karup-Møller, and Emil Sørensen Risø National Laboratory, DK-4000 Roskilde, Denmark June 1980 RISØ-R-416 MINERALOGICAL, RADIOGRAPHIC AND URANIUM LEACHING STUDIES ON THE URANIUM ORE FROM KVANEFJELD, ILIMAUSSAQ. COMPLEX, 'SOUTH GREENLAND Milota Makovickyl , Emil Makovicky2, Bjarne Leth Nielsen-! , Sven Karuo-Møller^ and Emil Sørensen^ Abstract. 102 samples of low-grade uranium ore from 70 drill holes at Kvanefjeld, Ilimaussaq alkaline intrusion, South Green­ land were studied by means of autoradiography, fission-track investigations, microscopy, microprobe analyses and uranium- leaching experiments. The principal U-Th bearing mineral, steen- strupine, and several less common uranium minerals are dis­ seminated in lujavrite 'nepheline syenite) and altered volcanic rocks. Stenstrupine has a/erage composition Na6.7HxCai.n e Al (REE+Y)5.8(Th,l')o.5 ( ""1 . 6*" 1 . S^Q. 3^0. l 0. 2 ) Sii2036 (P4.3Si-) ,7 )024 (F,OH). nH20; n and x are variable. It either is of magmatic origin (type A) or connected with metasomatic processes (type B), or occurs in late veins (Type C). Preponder­ ance of grains are metamict (usually 2000-5000 ppm U3O8) or al­ tered (usually above 5000 ppm U3O8), sometimes zoned with both (continue on next page) June 1980 Pisø National Laboratory, DK-4000 Roskilde, Denmark components present. Occasionally they are extremely altered with U content falling to 500-5000 ppm U3O8 and local accumulations of high-U minerals formed.
    [Show full text]
  • Reflective Index Reference Chart
    REFLECTIVE INDEX REFERENCE CHART FOR PRESIDIUM DUO TESTER (PDT) Reflective Index Refractive Reflective Index Refractive Reflective Index Refractive Gemstone on PDT/PRM Index Gemstone on PDT/PRM Index Gemstone on PDT/PRM Index Fluorite 16 - 18 1.434 - 1.434 Emerald 26 - 29 1.580 - 1.580 Corundum 34 - 43 1.762 - 1.770 Opal 17 - 19 1.450 - 1.450 Verdite 26 - 29 1.580 - 1.580 Idocrase 35 - 39 1.713 - 1.718 ? Glass 17 - 54 1.440 - 1.900 Brazilianite 27 - 32 1.602 - 1.621 Spinel 36 - 39 1.718 - 1.718 How does your Presidium tester Plastic 18 - 38 1.460 - 1.700 Rhodochrosite 27 - 48 1.597 - 1.817 TL Grossularite Garnet 36 - 40 1.720 - 1.720 Sodalite 19 - 21 1.483 - 1.483 Actinolite 28 - 33 1.614 - 1.642 Kyanite 36 - 41 1.716 - 1.731 work to get R.I. values? Lapis-lazuli 20 - 23 1.500 - 1.500 Nephrite 28 - 33 1.606 - 1.632 Rhodonite 37 - 41 1.730 - 1.740 Reflective indices developed by Presidium can Moldavite 20 - 23 1.500 - 1.500 Turquoise 28 - 34 1.610 - 1.650 TP Grossularite Garnet (Hessonite) 37 - 41 1.740 - 1.740 be matched in this table to the corresponding Obsidian 20 - 23 1.500 - 1.500 Topaz (Blue, White) 29 - 32 1.619 - 1.627 Chrysoberyl (Alexandrite) 38 - 42 1.746 - 1.755 common Refractive Index values to get the Calcite 20 - 35 1.486 - 1.658 Danburite 29 - 33 1.630 - 1.636 Pyrope Garnet 38 - 42 1.746 - 1.746 R.I value of the gemstone.
    [Show full text]
  • PABSTITE from the DARA-I-PIOZ MORAINE (TADJIKISTAN)
    New data on minerals. M.: 2003. Volume 38 UDC 549.6 PABSTITE FROM THE DARA-i-PIOZ MORAINE (TADJIKISTAN) Leonid A. Pautov Fersman Mineralogical Museum of the Russian Academy of Science. Moscow, [email protected] Pabstite was discovered in the moraine of the Dara-i-Pioz glacier (Garmsky district, Tadjikistan) in a leuco- cratic rock mainly composed of microcline, quartz, and albite. Subordinated minerals are aegirine, titanite, astrophyllite, bafertisite, galena, sphalerite, ilmenite, pyrochlore, fluorite, zircon, fluorapatite, and calcite. Pabstite forms grains and well-faced crystals (0.1-0.5 mm), growing on quartz crystals in small cavities abun- dant in the rock. Its composition is close to the final member BaSnSi:P9 in the series pabstite-benitoite. Microprobe analysis has shown: SiO, - 37.43; Ti02 - 0.19; Zr02 - 0.16; Sn02 - 30.05; BaO - 32.41; total 100.24. The empirical formula is Balo2(Sno96Tio.01Zroo,)o98Si3o,09'Refraction parameters of pabstite are no = 1.668(2); 1.657(2), which is much lower than cited figures for pabstite from the type locality. Strong n" = dependence of pabstite optical properties on titanium contents is shown. The find of pabstite at Dara-i-Pioze is the first find of pabstite in alkaline rocks and, apparently, the second find of this mineral in the world. 2 tables, 3 figures and 13 references. Pabstite BaSnSi30g, the tin analogue of beni- aegirine syenites and foyaites. The first data on toite, was described as a new mineral from the massif were received at works of Tadjik- Santa Cruz (California, USA), where it was met Pamirs expedition of 1932 - 1936.
    [Show full text]
  • Mangan-Neptunite Kna2li(Mn2+,Fe2+)
    2+ 2+ Mangan-neptunite KNa2Li(Mn ; Fe )2Ti2Si8O24 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic. Point Group: 2=m or 2: Crystals prismatic, somewhat elongated along [001], to 7 cm, showing 110 , 001 , 100 , also 111 , 111 , rare 210 . Also as aggregates of small crystals, druses, rofsettges,fbloogmsf, andg earthfy crugstsf. Tgwinninfg: Ags contact twins on 001 . f g Physical Properties: Cleavage: Distinct in two directions, intersecting at 80 . » ± Fracture: Uneven to conchoidal. Tenacity: Brittle. Hardness = 5{6 D(meas.) = 3.17{3.20 D(calc.) = 3.26 Optical Properties: Transparent to translucent to opaque. Color: Dark cherry-red, orange, or black in small crystals; cherry-red in thin fragments; in thin section, light yellow, orange, or red-orange. Streak: Brick-red to reddish brown. Luster: Vitreous to resinous. Optical Class: Biaxial (+). Pleochroism: Distinct; X = light yellow; Y = orange or yellow-orange; Z = red-orange. Orientation: Y = b; Z c = 16 {20 . Dispersion: r < v; ^ ± ± very strong. Absorption: Z > Y > X. ® = 1.691{1.697 ¯ = 1.693{1.700 ° = 1.713{1.728 2V(meas.) = 31±{36± Cell Data: Space Group: C2=m or C2=c: a = 16.38 b = 12.48 c = 10.01 ¯ = 115±240 Z = 4 X-ray Powder Pattern: Lovozero massif, Russia. 2.485 (100), 1.506 (100), 1.483 (90), 2.170 (80), 1.924 (70), 2.841 (60), 2.948 (50) Chemistry: (1) (2) (3) (1) (2) (3) SiO2 52.65 52.68 52.98 CaO 0.37 0.43 TiO2 17.38 18.21 17.61 Li2O 1.08 1.65 Al2O3 0.99 Na2O 5.12 9.16 6.83 Fe2O3 1.07 K2O 6.30 4.94 5.19 + FeO 5.54 5.16 7.92 H2O 0.06 MnO 8.87 9.95 7.82 H2O¡ 0.10 MgO 0.15 0.12 Total 99.68 100.65 100.00 (1) Mt.
    [Show full text]
  • RARE EARTHS in MINERALS of the JOAQUINITE GROUP E. I. Sblrbnov,Lv
    THE AMERICAN MINERALOGIST, VOL. 52, NOVEMBER-DECEMBER, 1967 RARE EARTHS IN MINERALS OF THE JOAQUINITE GROUP E. I. SBlrBNov,lV. f. Buxrw,2YU. A. Ber.Asuov,2aNr H. SdnnNsBuB ABsrRAcr An apparently new rare-earth mineral of the joaquinite group occurs in nephelin-syenite pegmatites of Ilimaussaq alkaline massif (S. Greenland). Optical and X-ray properties are the same, as for standard joaquinite NaBaTirSirOrs from California, but the chemical analysis is quite difierent: SiO, 33.82, NbzOs 2.31, TiO29.20, Feror 0.39, FeO 4.78, MnO 0.70, ThOz 0.38, RErOs 22.59, BaO 21.46, (Ca, Sr)O 0.03, Na:O 2.41, KzO 0.22, HzO 1.50, F 0 38, -O:F2-0.16, sum 100.01.The formula is NaBa2Fe2+CezTi:SisOr6(OH)(Z:4). Semiquantitative analyses of California joaquinite also showed the presence of consider- able rare earths. INrnooucrroN During summer field work (1964) in the expedition of the Greenland Geological Survey, headed by H. Sfrensen, in the Ilimaussaq alkaline massif (S. Greenland), E. L Semenov found an unknown mineral of composition NaBarFeCezTi2Si8O26(OH)containing 2370 F.E1o3in the nepheline syenite pegmatites. At present no barium-titanium silicate minerals containing rare earths are known. However, the Soviet Com- mission on New Minerals observed the similarity of unit cell dimensions and optical affinities of this mineral with joaquinite, NaBa(Ti,Fe)aSiaOrr,, for which the content of rare earths was not shown in analyses.Therefore both minerals were studied. Joaquinite has been described from San Benito County, California (Palacheand Foshag,1932), and from SealLake, Quebec,Canada (Bell, 1963).One California specimen(No.
    [Show full text]
  • TUGTUPITE: a GEMSTONE from GREENLAND by Aage Jensen and Ole V
    TUGTUPITE: A GEMSTONE FROM GREENLAND By Aage Jensen and Ole V. Petersen The red variety of the mineral tugtupite, a rare is derived from the locality where the mineral silicate closely related to sodalite, has been used as was first found. In 1965, the Commission on New a gemstone since 1965. This article presents the Minerals and Mineral Names of the International history of the mineral and details of its mineralogy Mineralogical Association approved both the and gemology. A recently discovered light blue mineral and the name. variety of tugtupite is also described. Thus far, Dan0 (1966) described the crystal structure of tugiupite has been found in only two localities: (1) tugtupite. A detailed description of the crystal Lovozero, Kola Peninsula, U.S.S.R., where it occurs as very small1 grains; and (2) Ilimaussaq, South habit, the pseudocubic penetration trillings, and Greenland, where it has been located at several the numerous localities where tugtupite had been places within the Ilimaussaq intrusion. Gem-quality found from the time that it was first traced at tugtupite has come almost exclusively from one Tugtup agtalzorfia until 1971 (including the only occurrence, a set of hydrothermal albite veins from one that has produced gem material of any sig- the Kvanefjeld plateau in the northwestern corner of nificance) was presented by S0rensen et al. (1971). the Ilimaussaq intrusion. Another type of twin, pseudotrigonal contact trillings, was subsequently described by Petersen (19781. The tugtupite from the type locality was The mineral that is now known as tugtupite was described as white, but Sflrensen (1960)mentions discovered in 1957 by Professor H.
    [Show full text]
  • Villiaumite Naf C 2001-2005 Mineral Data Publishing, Version 1
    Villiaumite NaF c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 4/m 32/m. Crystals rare, cubic, to 15 cm, may show {111}, {hll}, {hkl}; commonly granular, massive. Physical Properties: Cleavage: {001}, perfect. Tenacity: Brittle. Hardness = 2–2.5 D(meas.) = 2.79 D(calc.) = 2.808 Soluble in H2O; dark red to orange and yellow fluorescence under SW and LW UV. Optical Properties: Transparent. Color: Carmine-red, lavender-pink to light orange. Streak: White. Luster: Vitreous. Optical Class: Isotropic; weak anomalous anisotropism, then uniaxial (–). Pleochroism: Strong; E = yellow; O = pink to deep carmine. n = 1.327–1.328 Cell Data: Space Group: Fm3m (synthetic). a = 4.6342 Z = 4 X-ray Powder Pattern: Synthetic. 2.319 (100), 1.639 (60), 1.338 (17), 1.0363 (12), 0.9458 (8), 1.1588 (7), 2.680 (3) Chemistry: (1) (2) (3) Na 53.4 53.83 54.75 K trace 0.32 Mg trace Ca 1.2 ZrO2 1.5 F 44.2 45.28 45.25 insol. 0.84 Total 100.3 100.27 100.00 (1) Los Islands, Guinea. (2) Lovozero massif, Russia. (3) NaF. Occurrence: In nepheline syenite and nepheline syenite pegmatites; in lake-bed deposits. Association: Aegirine, sodalite, nepheline, neptunite, lamprophyllite, pectolite, serandite, eudialyte, ussingite, chkalovite, zeolites. Distribution: On Rouma Isle, Los Islands, Guinea. On Mts. Karnasurt and Alluaiv, Lovozero massif, and from the Khibiny massif, Kola Peninsula, Russia. At Kvanefjeld, Il´ımaussaqintrusion, Greenland. From Aris, about 20 km south of Windhoek, Namibia. At Lake Magadi, Kenya. From Po¸cosde Caldas, Minas Gerais, Brazil.
    [Show full text]
  • Diamond Dan's Mineral Names Dictionary
    A Dictionary of Mineral Names By Darryl Powell Mineral Names What do they mean? Who created them? What can I learn from them? This mineral diction‐ ary is unique because it is illustrated, both with mineral drawings as well as pictures of people and places after which some minerals are named. The people pictured on this page have all made a con‐ tribution to what is formally called “mineral nomenclature.” Keep reading and you will discover who they are and what they did. In 1995, Diamond Dan Publications pub‐ lished its first full book, “A Mineral Collector’s Guide to Common Mineral Names: Their Ori‐ gins & Meanings.” Now it is twenty years later. What you will discover in this issue and in the March issue is a re‐ vised and improved version of this book. This Mineral Names Dictionary contains mineral names that the average mineral collector will encounter while collecting minerals, attending shows and visiting museum displays. In addition to the most common min‐ eral names, there are some unofficial names which you will still find on labels. Each mineral name has a story to tell or a lesson to teach. If you wanted to take the time, each name could become a topic to study. Armalcolite, for example, could quickly be‐ come a study of a mineral, first discovered on the moon, and brought back to earth by the astronauts Armstrong, Aldrin and Collins (do you see parts of their names in this mineral name?) This could lead you to a study of American astronauts landing on the moon, what it took to get there and what we discovered by landing on the moon.
    [Show full text]
  • Lorenzenite Na2ti2si2o9 C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Orthorhombic
    Lorenzenite Na2Ti2Si2O9 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Orthorhombic. Point Group: 2=m 2=m 2=m: Crystals equant, bladed prismatic, to needlelike, to 6 cm; ¯brous, felted, lamellar aggregates. Physical Properties: Cleavage: Distinct on 010 . Fracture: Uneven. Hardness = 6 f g D(meas.) = 3.42{3.45 D(calc.) = 3.44 May °uoresce pale yellow to dull green under SW UV, with green cathodoluminescence. Optical Properties: Transparent to opaque. Color: Pale purple-brown, pale pink to mauve, brown to black. Luster: Vitreous, adamantine to submetallic, or silky, dull. Optical Class: Biaxial ({). Pleochroism: Weak; X = Y = pale reddish yellow, yellowish brown to light brown; Z = pale yellow, brownish to dark brown. Orientation: X = b; Y = a; Z = c. Dispersion: r > v; distinct. ® = 1.91{1.95 ¯ = 2.01{2.04 ° = 2.03{2.06 2V(meas.) = 38±{41± Cell Data: Space Group: P bcn: a = 8.7128(10) b = 5.2327(5) c = 14.487(2) Z = 4 X-ray Powder Pattern: Lovozero massif, Russia. (ICDD 18-1262). 2.74 (100), 3.33 (70), 1.60 (50), 5.56 (40), 2.45 (40), 1.64 (40), 3.12 (30) Chemistry: (1) (2) (3) (1) (2) (3) SiO2 35.40 35.3 35.15 FeO 0.34 TiO2 43.16 43.7 46.72 MnO trace 0.12 ZrO2 0.07 CaO 0.19 0.14 Al2O3 0.00 0.11 SrO 0.01 Y2O3 0.02 Na2O 16.23 17.4 18.13 La2O3 0.01 F 0.38 + Ce2O3 0.04 H2O 0.42 Fe2O3 0.99 H2O¡ 0.17 Nb O 3.89 2.20 O = F 0.16 2 5 ¡ 2 Total 100.17 99.96 100.00 (1) Narss^arssuk, Greenland; traces of V, Sc, Mn.
    [Show full text]