Profinite Properties of 3-Manifold Groups

Total Page:16

File Type:pdf, Size:1020Kb

Profinite Properties of 3-Manifold Groups Profinite Properties of 3-Manifold Groups Gareth Wilkes St John's College University of Oxford A thesis submitted for the degree of Doctor of Philosophy Trinity 2018 Dedicated to my family. Acknowledgements Firstly I give great thanks to Marc Lackenby for his excellent supervision and advice throughout my DPhil and for being a font of knowledge from whom I have learnt a great deal. I would also like to thank him for so carefully reading all my mathematics and rooting out any misconceptions. I would also like to acknowledge several academics and professors who have invited me for visits over the course of my DPhil and with whom I have had very enlightening discussions. In particular I thank Henry Wilton at Cambridge, Stefan Freidl at Regensburg and Michel Boileau at Marseille. I also thank Peter Neumann for his advice on the giving of seminars and on proper mathematical style, as well as for illuminating Kinderseminar with his great knowledge. Huge thanks go to my Mum, my Dad, my sister Lizzie and all my family and friends for all their support over the last few years and for picking me up when I needed it. Among my friends I would particularly like to mention Joseph Mason, In´esDawson, Alexander Roberts, Federico Vigolo, Robert Kropholler, TomaˇsZeman, Josephine French, David Hume, Ric Wade and Guy-Andr´eYerro. Federico gets additional thanks for helping me with some of the diagrams. Finally I thank the plant Camellia sinensis for providing the lifeblood of my mathematics. Abstract In this thesis we study the finite quotients of 3-manifold groups, con- cerning both residual properties of the groups and the properties of the 3-manifolds that can be detected using finite quotients of the fundamental group. A key theme is the analysis of when two 3-manifold groups can have the same families of finite quotients. We make a detailed study of this ‘profinite rigidity' problem for Seifert fibre spaces and prove complete classification results for these manifolds. From Seifert fibre spaces we continue on this trajectory and extend our classification results to all graph manifolds. We illustrate this classification with examples and several consequences, including for graph knots and for mapping class groups. The third part of the thesis concerns the behaviour of the finite p-group quotients of 3-manifold groups. In general these quotients may be scarce and poorly behaved. We give results showing that some of these issues may be resolved by passing to finite-sheeted covers of the manifold involved. We also prove theorems concerning the p-conjugacy separability of certain graph manifold groups. The concluding chapter of the thesis collects other results linking low- dimensional topology and finite quotients of groups. In particular we prove that finite quotients of a right-angled Artin group distinguish it from other right-angled Artin groups, and we give an argument detecting the prime decomposition of certain 3-manifold groups from the finite p- group quotients. Statement of Originality Chapters 2 and 3 constitute an exposition of background material, written by the author but drawing on the sources cited within. Chapters 1, 4, 5 and 6 and Section 7.2 are entirely the author's own work. Section 7.1 was written by the author in collaboration with Robert Kropholler. To the best of my knowledge all citations are complete and accurate. Contents 1 Introduction 1 2 Preliminaries 8 2.1 Inverse limits and profinite completions . .8 2.1.1 Inverse limits . .8 2.1.2 Profinite completions . 10 2.1.3 The profinite topology . 14 2.1.4 The pro-p topology . 16 2.2 Cohomology of profinite groups . 17 2.2.1 Goodness and cohomological dimension . 18 2.2.2 Spectral sequence . 22 2.2.3 Chain complexes . 23 3 Profinite Bass-Serre Theory 28 3.1 Groups acting on profinite graphs . 28 3.1.1 Profinite graphs . 28 3.1.2 Profinite trees . 30 3.1.3 Group actions on profinite trees . 33 3.2 Acylindrical actions . 36 3.3 Graphs of profinite groups . 39 3.3.1 Free profinite products . 39 3.3.2 Graphs of groups . 42 i 4 Seifert Fibre Spaces 46 4.1 Background on Seifert fibre spaces . 46 4.2 Profinite completions of 2-orbifold groups . 50 4.3 Profinite rigidity of Seifert fibre spaces . 52 4.3.1 Preservation of the fibre . 54 4.3.2 Central extensions . 58 4.3.3 Action on cohomology . 61 4.4 Distinguishing Seifert fibre spaces among 3-manifolds . 71 5 JSJ Decompositions and Graph Manifolds 76 5.1 Background on JSJ decompositions . 76 5.2 The JSJ decomposition . 78 5.3 Graph manifolds versus mixed manifolds . 91 5.4 Totally hyperbolic manifolds . 92 5.5 The pro-p JSJ decomposition . 94 5.6 Profinite rigidity of graph manifolds . 98 5.7 Examples . 120 5.8 Commensurability of graph manifolds . 125 5.9 Behaviour of knot complements . 127 5.10 Relation to mapping class groups . 134 6 Virtual Pro-p Properties 141 6.1 Virtual p-efficiency . 141 6.2 Conjugacy p-separability . 149 7 Miscellany 164 7.1 RAAGs and special groups . 164 7.2 Pro-p prime decompositions . 170 ii Chapter 1 Introduction It has long been known that one can often use the finite quotients of a given group to obtain information about that group. Mal'cev observed that a finitely-presented group G such that every element is non-vanishing in some finite quotient (i.e. such that G is residually finite) has solvable word problem. The conjugacy and membership problems have similar answers given conditions ensuring a plentiful supply of finite quotients. Such conditions may be referred to by the catch-all name of `residual finiteness properties' or sometimes simply `residual properties'. For convenience one often assembles all the finite quotients of a group G into a single algebraic object Gb called the profinite completion of G and attempts to study ‘profinite invariants'|that is, those properties of G which can be recovered from the profinite completion. Of course in the broadest scope there is no hope of obtaining any significant invariants for the class of all groups, since taking a direct product or extension by an infinite simple group changes G without changing the finite quotients. One therefore looks to find classes of groups within which these problems are tractable. Those groups arising in low-dimensional topology often have good residual proper- ties. Work of Hempel [Hem87] together with Geometrization shows that all 3-manifold groups are residually finite, and the dramatic advances resulting from the theory of special cube complexes yield many powerful results. In dimension two, even the iso- morphism type of a Fuchsian group (among lattices in connected Lie groups) is a profinite invariant [BCR16]. Profinite invariants and residual properties of 3-manifold groups have received much recent attention. Lackenby [Lac14] showed that the property of containing a 1 pair of disjoint non-separating surfaces is detected by the pro-2 completion of the fundamental group of a 3-manifold. Wilton and Zalesskii [WZ17a] showed that the geometry of a 3-manifold is a profinite invariant. Bridson and Reid [BR15] and Boileau and Friedl [BF15b] showed that the fundamental group of the figure-eight knot complement is uniquely determined among 3-manifold groups by its finite quotients. This was later extended to all once-punctured torus bundles by Bridson, Reid and Wilton [BRW17]. These examples are ‘profinitely rigid' in the following sense. Definition 2.1.9. An (orientable) 3-manifold is profinitely rigid if the profinite com- pletion distinguishes its fundamental group from all other fundamental groups of (orientable) 3-manifolds. In the other direction, Funar [Fun13] building on Stebe [Ste72] found Sol manifolds which are not profinitely rigid; Hempel [Hem14] has found Seifert-fibred examples. We now give an overview of the thesis, and state some of our key results. In Chapter 2 we recall the basic notions of the study of profinite groups, and in particular the cohomology theory of profinite groups. None of this chapter is new, except for the results of Section 2.2.3 which are adapted from similar results in [Nak94]. Chapter 3 gives an overview of the theory of profinite groups acting on profinite trees developed mainly by Ribes and Zalesskii. The primary source for this chapter is the book [Rib17]. The results of Section 3.2 are probably known to experts but are not well- attested in the literature. In Chapter 4 we study profinite completions of Seifert fibre space groups. We prove the following strong theorem, in which the examples of Seifert fibre spaces which are not profinitely rigid are those found by Hempel [Hem14]. We also give a new proof that these examples do indeed fail to be rigid, and prove a version of Theorem A for Seifert fibre spaces with boundary. These results first appeared in the author's paper [Wil17b]. Theorem A. Let M be a closed orientable Seifert fibre space. Then either: • M is profinitely rigid; or 2 • M has the geometry H2 × R, and is a surface bundle with periodic monodromy φ; and in the latter case the 3-manifolds whose fundamental groups have the same finite k quotients as π1M are precisely the surface bundles with monodromy φ , for k coprime to the order of φ. In Chapter 5, which is adapted from the author's papers [Wil18a] and [Wil18b], we investigate 3-manifolds with a non-trivial JSJ decomposition. We pay particular at- tention to the case of graph manifolds. We obtain the following classification theorem for graph manifold groups with isomorphic profinite completions: Theorem B.
Recommended publications
  • Abstract Quotients of Profinite Groups, After Nikolov and Segal
    ABSTRACT QUOTIENTS OF PROFINITE GROUPS, AFTER NIKOLOV AND SEGAL BENJAMIN KLOPSCH Abstract. In this expanded account of a talk given at the Oberwolfach Ar- beitsgemeinschaft “Totally Disconnected Groups”, October 2014, we discuss results of Nikolay Nikolov and Dan Segal on abstract quotients of compact Hausdorff topological groups, paying special attention to the class of finitely generated profinite groups. Our primary source is [17]. Sidestepping all difficult and technical proofs, we present a selection of accessible arguments to illuminate key ideas in the subject. 1. Introduction §1.1. Many concepts and techniques in the theory of finite groups depend in- trinsically on the assumption that the groups considered are a priori finite. The theoretical framework based on such methods has led to marvellous achievements, including – as a particular highlight – the classification of all finite simple groups. Notwithstanding, the same methods are only of limited use in the study of infinite groups: it remains mysterious how one could possibly pin down the structure of a general infinite group in a systematic way. Significantly more can be said if such a group comes equipped with additional information, such as a structure-preserving action on a notable geometric object. A coherent approach to studying restricted classes of infinite groups is found by imposing suitable ‘finiteness conditions’, i.e., conditions that generalise the notion of being finite but are significantly more flexible, such as the group being finitely generated or compact with respect to a natural topology. One rather fruitful theme, fusing methods from finite and infinite group theory, consists in studying the interplay between an infinite group Γ and the collection of all its finite quotients.
    [Show full text]
  • Residual Properties of Free Products
    Residual properties of free products Federico Berlai∗ Abstract Let C be a class of groups. We give sufficient conditions ensuring that a free product of residually C groups is again residually C, and analogous conditions are given for LE-C groups. As a corollary, we obtain that the class of residually amenable groups and the one of LEA groups are closed under taking free products. Moreover, we consider the pro-C topology and we characterize special HNN extensions and amalgamated free products that are residually C, where C is a suitable class of groups. In this way, we describe special HNN extensions and amalgamated free products that are residually amenable. Key words: root property, residually amenable group, sofic group, free product, pro-C topology, proamenable topology. 2010 AMS Subject Classification: 20E26, 43A07, 20E06, 20E22, 20E18. 1 Introduction Amenable groups were defined in 1929 by von Neumann in his work on the Banach-Tarski paradox and, since then, the study of amenability has been remarkably fruitful in a variety of branches of mathematics. Recently, weak variants of amenability have attracted considerable interest. Examples are the Haagerup property, also known as Gromov’s a-T-menability, and coarse amenability, also termed as Guoliang Yu’s Property A. These notions appeared in the study of analytic properties of infinite groups. The main focus of this paper are other, more algebraic, weak forms of amenability: the notions of residual amenability and of LEA (Locally Embeddable into Amenable) groups. Residual amenability is a common generalization of amenability and of residual finiteness. While the stability, or permanence, properties of both the classes of amenable groups and of residually finite groups are well known, the stability properties of the class of residually amenable groups have not yet been investigated.
    [Show full text]
  • On a Question of Bumagin and Wise
    ON A QUESTION OF BUMAGIN AND WISE ALAN D. LOGAN Abstract. Motivated by a question of Bumagin and Wise, we con- struct a continuum of finitely generated, residually finite groups whose outer automorphism groups are pairwise non-isomorphic finitely gener- ated, non-recursively-presentable groups. These are the first examples of such residually finite groups. 1. Introduction In this paper we construct the first examples of finitely generated, resid- ually finite groups G whose outer automorphism groups are finitely gener- ated and not recursively presentable. Indeed, we construct a continuum, so 2ℵ0 , of such groups G with pairwise non-isomorphic outer automorphism groups. Our construction is motivated by a question of Bumagin and Wise, who asked if every countable group Q could be realised as the outer auto- morphism group of a finitely generated, residually finite group GQ. In this paper we solve a finite-index version of this question for Q finitely generated and residually finite, and the aforementioned result then follows. Bumagin and Wise solved the question for Q finitely presented [BW05]. In previous work, the author gave a partial solution for Q finitely generated and recur- sively presentable [Log15b, Theorem A], and a complete solutions for these groups assuming that there the exists a “malnormal version” of Higman’s embedding theorem [Log15b, Theorem B]. arXiv:1509.01848v2 [math.GR] 9 Sep 2015 Residually finite groups. A group G is residually finite if for all g ∈ G \ {1} there exists a homomorphism image φg : G → Fg where Fg is finite and where φg(g) =6 1. Residual finiteness is a strong finiteness prop- erty.
    [Show full text]
  • Profinite Properties of Discrete Groups
    PROFINITE PROPERTIES OF DISCRETE GROUPS ALAN W. REID 1. Introduction This paper is based on a series of 4 lectures delivered at Groups St Andrews 2013. The main theme of the lectures was distinguishing finitely generated residually finite groups by their finite quotients. The purpose of this paper is to expand and develop the lectures. The paper is organized as follows. In x2 we collect some questions that motivated the lectures and this article, and in x3 discuss some examples related to these questions. In x4 we recall profinite groups, profinite completions and the formulation of the questions in the language of the profinite completion. In x5, we recall a particular case of the question of when groups have the same profinite completion, namely Grothendeick's question. In x6 we discuss how the methods of L2-cohomology can be brought to bear on the questions in x2, and in x7, we give a similar discussion using the methods of the cohomology of profinite groups. In x8 we discuss the questions in x2 in the context of groups arising naturally in low-dimensional topology and geometry, and in x9 discuss parafree groups. Finally in x10 we collect a list of open problems that may be of interest. Acknoweldgement: The material in this paper is based largely on joint work with M. R. Bridson, and with M. R. Bridson and M. Conder and I would like to thank them for their collaborations. I would also like to thank the organizers of Groups St Andrews 2013 for their invitation to deliver the lectures, for their hopsitality at the conference, and for their patience whilst this article was completed.
    [Show full text]
  • Profinite Groups, by J. S. Wilson, Clarendon Press, Oxford, 1998, Ix+284 Pp., $115.00, ISBN 0-19-850082-3 Profinite Groups, by L
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 38, Number 4, Pages 475{479 S 0273-0979(01)00914-4 Article electronically published on June 12, 2001 Profinite groups, by J. S. Wilson, Clarendon Press, Oxford, 1998, ix+284 pp., $115.00, ISBN 0-19-850082-3 Profinite groups, by L. Ribes and P. Zalesskii, Springer, New York, 2000, xiv+ 435 pp., $109.00, ISBN 3-540-66986-8 Analytic pro-p groups, by J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, 2nd edition, Cambridge University Press, Cambridge, UK, 1999, xviii+ 368 pp., $59.95, ISBN 0-521-65011-9 New horizons in pro-p groups, by M. du Sautoy, D. Segal, and A. Shalen (eds.), Birkh¨auser, Boston, 2000, xiii+423 pp., $79.00, ISBN 0-8176-4171-8 The theory of profinite groups is flourishing! This is the first immediate obser- vation from looking at the four books on the subject which have come out in the last two years. The subject, which only two decades ago was somewhat remote, has made its way to mainstream mathematics in several different ways. What is a profinite group? A profinite group G is a topological group which is Hausdorff, compact and totally disconnected. A more meaningful equivalent definition is that G is the inverse limit of finite groups. As such, much of the theory of finite groups can be carried over to profinite groups. The origin of the subject lies in Galois theory: If E is an infinite algebraic Galois extension of a field F and G =Gal(E=F) is the group of the automorphisms of E fixing F , then the classical Galois theory does not hold anymore.
    [Show full text]
  • ON the RESIDUAL FINITENESS of GENERALISED FREE PRODUCTS of NILPOTENT GROUPS by GILBERT BAUMSLAG(I)
    ON THE RESIDUAL FINITENESS OF GENERALISED FREE PRODUCTS OF NILPOTENT GROUPS BY GILBERT BAUMSLAG(i) 1. Introduction. 1.1. Notation. Let c€ be a class of groups. Then tfë denotes the class of those groups which are residually in eS(2), i.e., GeRtë if, and only if, for each x e G (x # 1) there is an epimorph of G in ^ such that the element corresponding to x is not the identity. If 2 is another class of groups, then we denote by %>•Qt the class of those groups G which possess a normal subgroup N in # such that G/NeSi(f). For convenience we call a group G a Schreier product if G is a generalised free product with one amalgamated subgroup. Let us denote by , . _> o(A,B) the class of all Schreier products of A and B. It is useful to single out certain subclasses of g (A, B) by specifying that the amalgamated subgroup satisfies some condition T, say; we denote this subclass by °(A,B; V). Thus o(A,B; V) consists of all those Schreier products of A and B in which the amalgamated subgroup satisfies the condition T. We shall use the letters J5", Jf, and Í» to denote, respectively, the class of finite groups, the class of finitely generated nilpotent groups without elements of finite order, and the class of free groups. 1.2. A negative theorem. The simplest residually finite(4) groups are the finitely generated nilpotent groups (K. A. Hirsch [2]). In particular, then, (1.21) Jf c k3F.
    [Show full text]
  • Engulfing in Word-Hyperbolic Groups 1 Introduction
    ISSN 1472-2739 (on-line) 1472-2747 (printed) 743 Algebraic & Geometric Topology Volume 2 (2002) 743–755 ATG Published: 9 September 2002 Engulfing in word-hyperbolic groups G. A. Niblo B. T. Williams Abstract We examine residual properties of word-hyperbolic groups, ad- apting a method introduced by Darren Long to study the residual properties of Kleinian groups. AMS Classification 20E26; 20F67, 20F65 Keywords Word hyperbolic groups, residual finiteness, engulfing 1 Introduction A group is said to be residually finite if the intersection of its finite index sub- groups is trivial. Equivalently it is residually finite if the trivial subgroup is closed in the profinite topology. It is an open question whether or not word hyperbolic groups are residually finite. Evidence that they may be comes from the observation that many familiar groups in this class are linear and there- fore residually finite by an application of Selberg’s lemma. Furthermore there are geometric methods for establishing the residual finiteness of free groups [5], surface groups [11] and some reflection groups [13] that may generalise. Nonetheless the general question seems hard to settle, hindered by the appar- ent difficulty of establishing that a given group contains any proper finite index subgroups at all. In [8] Long hypothesised this difficulty away by assuming that the groups he studied satisfied an engulfing property: Definition 1.1 A subgroup H in a group G is said to be engulfed if H is contained in a proper finite index subgroup of G. The group G has the engulfing property with respect to a class H of subgroups of G if every subgroup in the class H is engulfed in G.
    [Show full text]
  • Separability of Solvable Subgroups in Linear Groups
    Separability of Solvable Subgroups in Linear Groups Roger Alperin and Benson Farb∗ August 11, 2004 Abstract Let Γ be a finitely generated linear group over a field of charac- teristic 0. Suppose that every solvable subgroup of Γ is polycyclic. Then any solvable subgroup of Γ is separable. This conclusion is false without the hypothesis that every solvable subgroup of Γ is polycyclic. 1 Introduction A subgroup S of a finitely generated group Γ is called separable (in Γ) if S is the intersection of all the subgroups of finite index containing S. This can be restated: for every x 6∈ S, there is a finite quotient π :Γ → G of Γ with π(x) ∈/ π(S); that is, x and S are separated in some finite quotient G. When S is the trivial subgroup, separability of S in Γ is the same as Γ being residually finite. It is a basic problem of infinite group theory to determine which sub- groups S of a given Γ are separable; see, e.g., [ALR, Be, Gi, H, HW, MR] for some recent progress on this problem. Apart from applications in geometric topology (see, e.g. [AH, Mc] and the references therein, and Corollary 1.2 below), separability also arises when studying the profinite topology on Γ: a subgroup S is closed in this topology precisely when it is separable. In this paper we will consider finitely generated linear groups Γ over a field K of characteristic 0, that is subgroups Γ < GL(n, K). Malcev proved that every finitely generated linear group Γ is residually finite.
    [Show full text]
  • Grothendieck's Problems Concerning Profinite Completions And
    Annals of Mathematics, 160 (2004), 359–373 Grothendieck’s problems concerning profinite completions and representations of groups By Martin R. Bridson and Fritz J. Grunewald Abstract In 1970 Alexander Grothendieck [6] posed the following problem: let Γ1 and Γ2 be finitely presented, residually finite groups, and let u :Γ1 → Γ2 be a homomorphism such that the induced map of profinite completionsu ˆ : Γˆ1 → Γˆ2 is an isomorphism; does it follow that u is an isomorphism? In this paper we settle this problem by exhibiting pairs of groups u : P→ Γ such that Γ is a direct product of two residually finite, hyper- bolic groups, P is a finitely presented subgroup of infinite index, P is not abstractly isomorphic to Γ, butu ˆ : Pˆ → Γˆ is an isomorphism. The same construction allows us to settle a second problem of Grothendieck by exhibiting finitely presented, residually finite groups P that have infinite index in their Tannaka duality groups clA(P ) for every commu- tative ring A =0. 1. Introduction The profinite completion of a group Γ is the inverse limit of the di- rected system of finite quotients of Γ; it is denoted by Γ.ˆ If Γ is residually finite then the natural map Γ → Γˆ is injective. In [6] Grothendieck discov- ered a remarkably close connection between the representation theory of a finitely generated group and its profinite completion: if A = 0 is a commu- tative ring and u :Γ1 → Γ2 is a homomorphism of finitely generated groups, thenu ˆ : Γˆ1 → Γˆ2 is an isomorphism if and only if the restriction functor ∗ → uA : RepA(Γ2) RepA(Γ1) is an equivalence of categories, where RepA(Γ) is the category of finitely presented A-modules with a Γ-action.
    [Show full text]
  • Virtual Retraction Properties in Groups
    VIRTUAL RETRACTION PROPERTIES IN GROUPS ASHOT MINASYAN Abstract. If G is a group, a virtual retract of G is a subgroup which is a retract of a finite index subgroup. Most of the paper focuses on two group properties: property (LR), that all finitely generated subgroups are virtual retracts, and property (VRC), that all cyclic subgroups are virtual retracts. We study the permanence of these properties under commensurability, amalgams over retracts, graph products and wreath products. In particular, we show that (VRC) is stable under passing to finite index overgroups, while (LR) is not. The question whether all finitely generated virtually free groups satisfy (LR) motivates the remaining part of the paper, studying virtual free factors of such groups. We give a simple criterion characterizing when a finitely generated subgroup of a virtually free group is a free factor of a finite index subgroup. We apply this criterion to settle a conjecture of Brunner and Burns. 1. Introduction Recall that a subgroup H of a group K is called a retract if there is a homomorphism ρ : K ! H which restricts to the identity map on H. This is equivalent to K splitting as a semidirect product N o H, where N = ker ρ. In this case the map ρ is called a retraction of K onto H. Definition 1.1. Let G be a group and let H be a subgroup of G. We will say that H is a virtual retract of G, denoted H 6vr G, if there exists a subgroup K 6 G such that jG : Kj < 1, H ⊆ K and H is a retract of K.
    [Show full text]
  • Residual Properties of Automorphism Groups of (Relatively) Hyperbolic Groups Gilbert Levitt Ashot Minasyan
    Residual properties of automorphism groups of (relatively) hyperbolic groups Gilbert Levitt Ashot Minasyan We show that Out(G) is residually finite if G is one-ended and hyperbolic relative to virtually polycyclic subgroups. More generally, if G is one-ended and hyperbolic relative to proper residually finite subgroups, the group of outer automorphisms preserving the peripheral structure is residually finite. We also show that Out(G) is virtually residually p-finite for every prime p if G is one-ended and toral relatively hyperbolic, or infinitely- ended and virtually residually p-finite. 20F67, 20F28; 20E26 1 Introduction A group G is residually finite if, given any g = 1, there exists a homomorphism ϕ from G to a finite group such that ϕ(g) = 1. Residual finiteness is an important property of groups. It is equivalent to the statement that G embeds into its profinite completion. Well known theorems of Mal’cev claim that finitely generated residually finite groups are Hopfian, and finitely presented residually finite groups have solvable word problem. Many groups are known to be residually finite (in particular, finitely generated linear groups), but it is a big open question whether all (Gromov) hyperbolic groups are residually finite. It is a standard and classical fact [5] that the automorphism group Aut(G) is residually finite if G is finitely generated and residually finite, but this is not true for the outer automorphism group Out(G). Indeed, any finitely presented group may be represented as Out(G) with G finitely generated and residually finite [8]. A special case of our main theorem is: Corollary 1.1 If G is one-ended, and hyperbolic relative to a family P = {P1,..., Pk} of virtually polycyclic groups, then Out(G) is residually finite.
    [Show full text]
  • Profinite Rigidity in the Snappea Census
    PROFINITE RIGIDITY IN THE SNAPPEA CENSUS GILES GARDAM ABSTRACT. A well-known question asks whether any two non-isometric finite volume hyperbolic 3-manifolds are distinguished from each other by the finite quotients of their fundamental groups. At present, this has been proved only when one of the manifolds is a once-punctured torus bundle over the circle. We give substantial computational evidence in support of a positive answer, by showing that no two manifolds in the SnapPea census of 72 942 finite volume hyperbolic 3-manifolds have the same finite quotients. 1. INTRODUCTION A standard approach to studying infinite groups is through their finite quotients. While this has serious limitations in general – exemplified by the existence of infinite groups having no non-trivial finite quotients – in many contexts, the finite quotients of a group encode much important information about it. For instance, the fundamental group of any compact 3-manifold is residually finite, so it has enough finite quotients that every non-trivial element survives in one. The question of how much is encoded in the finite quotients of a 3-manifold group has gathered much attention in recent years. One well-known open question, attributed to Long and Reid in [Ago14, Question 1], is the following: Question 1. Let M and N be finite volume hyperbolic 3-manifolds. If p1 M and p1N ∼ have the same finite quotients, does this imply that p1 M = p1N? ∼ By Mostow Rigidity, p1 M = p1N implies that M and N are isometric. It is convenient to collect the totality of the finite quotients of a (finitely generated) group G into a single algebraic object, namely its profinite completion Gb, the inverse limit of the inverse system of its finite quotients, as we introduce in Section 2.1.
    [Show full text]