Magnetotactic Bacteria from Extreme Environments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genomic Insights Into the Uncultured Genus &Lsquo
The ISME Journal (2014) 8, 2463–2477 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE Genomic insights into the uncultured genus ‘Candidatus Magnetobacterium’ in the phylum Nitrospirae Wei Lin1,2,7, Aihua Deng3,7, Zhang Wang4, Ying Li2,5, Tingyi Wen3, Long-Fei Wu2,6, Martin Wu4 and Yongxin Pan1,2 1Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth’s Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China; 2France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, China; 3CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; 4Department of Biology, University of Virginia, Charlottesville, VA, USA; 5State Key Laboratory of Agro-Biotechnology and Laboratoire International Associe Franco-Chinois de Bio-Mineralisation et Nano-Structures, College of Biological Sciences, China Agricultural University, Beijing, China and 6Laboratoire de Chimie Bacte´rienne, Aix-Marseille Universite´, CNRS, Marseille Cedex 20, France Magnetotactic bacteria (MTB) of the genus ‘Candidatus Magnetobacterium’ in phylum Nitrospirae are of great interest because of the formation of hundreds of bullet-shaped magnetite magneto- somes in multiple bundles of chains per cell. These bacteria are worldwide distributed in aquatic environments and have important roles in the biogeochemical cycles of iron and sulfur. However, except for a few short genomic fragments, no genome data are available for this ecologically important genus, and little is known about their metabolic capacity owing to the lack of pure cultures. Here we report the first draft genome sequence of 3.42 Mb from an uncultivated strain tentatively named ‘Ca. -
The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment
life Article The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment Sierra R. Athen, Shivangi Dubey and John A. Kyndt * College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA; [email protected] (S.R.A.); [email protected] (S.D.) * Correspondence: [email protected] Abstract: The Eastern Nebraska Salt Marshes contain a unique, alkaline, and saline wetland area that is a remnant of prehistoric oceans that once covered this area. The microbial composition of these salt marshes, identified by metagenomic sequencing, appears to be different from well-studied coastal salt marshes as it contains bacterial genera that have only been found in cold-adapted, alkaline, saline environments. For example, Rubribacterium was only isolated before from an Eastern Siberian soda lake, but appears to be one of the most abundant bacteria present at the time of sampling of the Eastern Nebraska Salt Marshes. Further enrichment, followed by genome sequencing and metagenomic binning, revealed the presence of several halophilic, alkalophilic bacteria that play important roles in sulfur and carbon cycling, as well as in nitrogen fixation within this ecosystem. Photosynthetic sulfur bacteria, belonging to Prosthecochloris and Marichromatium, and chemotrophic sulfur bacteria of the genera Sulfurimonas, Arcobacter, and Thiomicrospira produce valuable oxidized sulfur compounds for algal and plant growth, while alkaliphilic, sulfur-reducing bacteria belonging to Sulfurospirillum help balance the sulfur cycle. This metagenome-based study provides a baseline to understand the complex, but balanced, syntrophic microbial interactions that occur in this unique Citation: Athen, S.R.; Dubey, S.; inland salt marsh environment. -
Geobiology of Marine Magnetotactic Bacteria Sheri Lynn Simmons
Geobiology of Marine Magnetotactic Bacteria by Sheri Lynn Simmons A.B., Princeton University, 1999 Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Oceanography at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY and the WOODS HOLE OCEANOGRAPHIC INSTITUTION June 2006 c Woods Hole Oceanographic Institution, 2006. Author.............................................................. Joint Program in Oceanography Massachusetts Institute of Technology and Woods Hole Oceanographic Institution May 19, 2006 Certified by. Katrina J. Edwards Associate Scientist, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution Thesis Supervisor Accepted by......................................................... Ed DeLong Chair, Joint Committee for Biological Oceanography Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Geobiology of Marine Magnetotactic Bacteria by Sheri Lynn Simmons Submitted to the MASSACHUSETTS INSTITUTE OF TECHNOLOGY and the WOODS HOLE OCEANOGRAPHIC INSTITUTION on May 19, 2006, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Oceanography Abstract Magnetotactic bacteria (MTB) biomineralize intracellular membrane-bound crystals of magnetite (Fe3O4) or greigite (Fe3S4), and are abundant in the suboxic to anoxic zones of stratified marine environments worldwide. Their population densities (up to 105 cells ml−1) and high intracellular iron content suggest a potentially significant role in iron -
Coupled Physiology and Genomic Studies of Isolate 1L, a Sulfate-Reducing Bacterium From
Coupled Physiology and Genomic studies of Isolate 1L, a sulfate-reducing bacterium from the Prairie Pothole Lake Region A Senior Research Thesis Presented in partial fulfillment of the requirements for graduation with research distinction in Microbiology in the undergraduate colleges of The Ohio State University By Mackenzie Lynes The Ohio State University April 2016 Project Advisor: Michael Wilkins, Departments of Microbiology and School of Earth Sciences Table of Contents Abstract _____________________________________________________________________________________________2 1. Introduction_________________________________________________________________________________3 2. Methods a. Experimental Design_______________________________________________________________5 b. Monitoring Growth_________________________________________________________________5 c. Isolation Techniques_______________________________________________________________6 d. Assessment of Isolate Purity ______________________________________________________6 e. Characterization____________________________________________________________________7 f. Anaerobic media and stock preparation__________________________________________9 g. Genomic Analyses __________________________________________________________________9 3. Results and Discussion a. Isolates from Enrichments _______________________________________________________11 b. Characterization of Isolate 1L____________________________________________________12 c. Genome Analysis__________________________________________________________________14 -
Iron-Biomineralizing Organelle in Magnetotactic Bacteria: Function
Iron-biomineralizing organelle in magnetotactic bacteria: function, synthesis and preservation in ancient rock samples Matthieu Amor, François Mathon, Caroline Monteil, Vincent Busigny, Christopher Lefèvre To cite this version: Matthieu Amor, François Mathon, Caroline Monteil, Vincent Busigny, Christopher Lefèvre. Iron- biomineralizing organelle in magnetotactic bacteria: function, synthesis and preservation in ancient rock samples. Environmental Microbiology, Society for Applied Microbiology and Wiley-Blackwell, 2020, 10.1111/1462-2920.15098. hal-02919104 HAL Id: hal-02919104 https://hal.archives-ouvertes.fr/hal-02919104 Submitted on 7 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Iron-biomineralizing organelle in magnetotactic bacteria: function, synthesis 2 and preservation in ancient rock samples 3 4 Matthieu Amor1, François P. Mathon1,2, Caroline L. Monteil1 , Vincent Busigny2,3, Christopher 5 T. Lefevre1 6 7 1Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies 8 of Aix-Marseille, CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France 9 2Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France. 10 3Institut Universitaire de France, 75005 Paris, France 11 1 12 Abstract 13 Magnetotactic bacteria (MTB) are ubiquitous aquatic microorganisms that incorporate iron 14 from their environment to synthesize intracellular nanoparticles of magnetite (Fe3O4) or 15 greigite (Fe3S4) in a genetically controlled manner. -
The Microbial Sulfur Cycle at Extremely Haloalkaline Conditions of Soda Lakes
REVIEW ARTICLE published: 21 March 2011 doi: 10.3389/fmicb.2011.00044 The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes Dimitry Y. Sorokin1,2*, J. Gijs Kuenen 2 and Gerard Muyzer 2 1 Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia 2 Department of Biotechnology, Delft University of Technology, Delft, Netherlands Edited by: Soda lakes represent a unique ecosystem with extremely high pH (up to 11) and salinity (up to Martin G. Klotz, University of Louisville, saturation) due to the presence of high concentrations of sodium carbonate in brines. Despite USA these double extreme conditions, most of the lakes are highly productive and contain a fully Reviewed by: Aharon Oren, The Hebrew University functional microbial system. The microbial sulfur cycle is among the most active in soda lakes. of Jerusalem, Israel One of the explanations for that is high-energy efficiency of dissimilatory conversions of inorganic Yanhe Ma, Institute of Microbiology sulfur compounds, both oxidative and reductive, sufficient to cope with costly life at double Chinese Academy of Sciences, China extreme conditions. The oxidative part of the sulfur cycle is driven by chemolithoautotrophic *Correspondence: haloalkaliphilic sulfur-oxidizing bacteria (SOB), which are unique for soda lakes. The haloalkaliphilic Dimitry Y. Sorokin, Winogradsky Institute of Microbiology, Russian SOB are present in the surface sediment layer of various soda lakes at high numbers of up to Academy of Sciences, Prospect 60-let 106 viable cells/cm3. The culturable forms are so far represented by four novel genera within the Octyabrya 7/2, 117312 Moscow, Russia Gammaproteobacteria, including the genera Thioalkalivibrio, Thioalkalimicrobium, Thioalkalispira, e-mail: [email protected]; and Thioalkalibacter. -
Uva-DARE (Digital Academic Repository)
UvA-DARE (Digital Academic Repository) Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp. nov., and Desulfonatronovibrio magnus sp. nov. Sorokin, D.Y.; Tourova, T.P.; Kolganova, T.V.; Detkova, E.N.; Galinski, E.A.; Muyzer, G. DOI 10.1007/s00792-011-0370-7 Publication date 2011 Document Version Final published version Published in Extremophiles Link to publication Citation for published version (APA): Sorokin, D. Y., Tourova, T. P., Kolganova, T. V., Detkova, E. N., Galinski, E. A., & Muyzer, G. (2011). Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp. nov., and Desulfonatronovibrio magnus sp. nov. Extremophiles, 15(3), 391-401. https://doi.org/10.1007/s00792-011-0370-7 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to:UvA-DARE Library is of a servicethe University provided by of the Amsterdam, library of the UniversitySecretariat, of Amsterdam Singel 425, (https 1012://dare.uva.nl) WP Amsterdam, The Netherlands. -
Delft University of Technology Desulfonatronospira Sulfatiphila Sp
Delft University of Technology Desulfonatronospira sulfatiphila sp. Nov., and Desulfitispora elongata sp. nov., two novel haloalkaliphilic sulfidogenic bacteria from soda lakes Sorokin, Dimitry Y.; Chernyh, Nikolai A. DOI 10.1099/ijsem.0.001640 Publication date 2017 Document Version Accepted author manuscript Published in International Journal of Systematic and Evolutionary Microbiology Citation (APA) Sorokin, D. Y., & Chernyh, N. A. (2017). Desulfonatronospira sulfatiphila sp. Nov., and Desulfitispora elongata sp. nov., two novel haloalkaliphilic sulfidogenic bacteria from soda lakes. International Journal of Systematic and Evolutionary Microbiology, 67(2), 396-401. [001640]. https://doi.org/10.1099/ijsem.0.001640 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. International Journal of Systematic and Evolutionary Microbiology Desulfonatronospira sulfatiphila sp. nov., and Desulfitispora elongata sp. nov., the two novel haloalkaliphilic sulfidogenic bacteria from soda lakes --Manuscript Draft-- Manuscript Number: IJSEM-D-16-00918R1 Full Title: Desulfonatronospira sulfatiphila sp. nov., and Desulfitispora elongata sp. -
'Candidatus Desulfonatronobulbus Propionicus': a First Haloalkaliphilic
Delft University of Technology ‘Candidatus Desulfonatronobulbus propionicus’ a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes Sorokin, D. Y.; Chernyh, N. A. DOI 10.1007/s00792-016-0881-3 Publication date 2016 Document Version Accepted author manuscript Published in Extremophiles: life under extreme conditions Citation (APA) Sorokin, D. Y., & Chernyh, N. A. (2016). ‘Candidatus Desulfonatronobulbus propionicus’: a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes. Extremophiles: life under extreme conditions, 20(6), 895-901. https://doi.org/10.1007/s00792-016-0881-3 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. Extremophiles DOI 10.1007/s00792-016-0881-3 ORIGINAL PAPER ‘Candidatus Desulfonatronobulbus propionicus’: a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes D. Y. Sorokin1,2 · N. A. Chernyh1 Received: 23 August 2016 / Accepted: 4 October 2016 © Springer Japan 2016 Abstract Propionate can be directly oxidized anaerobi- from its members at the genus level. -
Desulfonatronovibrio Halophilus Sp. Nov., a Novel Moderately Halophilic Sulfate-Reducing Bacterium from Hypersaline Chloride–Sulfate Lakes in Central Asia
Extremophiles (2012) 16:411–417 DOI 10.1007/s00792-012-0440-5 ORIGINAL PAPER Desulfonatronovibrio halophilus sp. nov., a novel moderately halophilic sulfate-reducing bacterium from hypersaline chloride–sulfate lakes in Central Asia D. Y. Sorokin • T. P. Tourova • B. Abbas • M. V. Suhacheva • G. Muyzer Received: 10 February 2012 / Accepted: 22 March 2012 / Published online: 10 April 2012 Ó The Author(s) 2012. This article is published with open access at Springerlink.com Abstract Four strains of lithotrophic sulfate-reducing soda lakes. The isolates utilized formate, H2 and pyruvate as bacteria (SRB) have been enriched and isolated from electron donors and sulfate, sulfite and thiosulfate as electron anoxic sediments of hypersaline chloride–sulfate lakes in acceptors. In contrast to the described species of the genus the Kulunda Steppe (Altai, Russia) at 2 M NaCl and pH Desulfonatronovibrio, the salt lake isolates could only tolerate 7.5. According to the 16S rRNA gene sequence analysis, high pH (up to pH 9.4), while they grow optimally at a neutral the isolates were closely related to each other and belonged pH. They belonged to the moderate halophiles growing to the genus Desulfonatronovibrio, which, so far, included between 0.2 and 2 M NaCl with an optimum at 0.5 M. On the only obligately alkaliphilic members found exclusively in basis of their distinct phenotype and phylogeny, the described halophilic SRB are proposed to form a novel species within the genus Desulfonatronovibrio, D. halophilus (type strain T T T Communicated by A. Oren. HTR1 = DSM24312 = UNIQEM U802 ). The GenBank/EMBL accession numbers of the 16S rRNA gene Keywords Sulfate-reducing bacteria (SRB) Á sequences of the HTR strains are GQ922847, HQ157562, HQ157563 and JN408678; the dsrAB gene sequences of (halo)alkaliphilic SRB Desulfonatronovibrio Á Hypersaline lakes Á Halophilic obtained in this study are JQ519392-JQ519396. -
Desulfovibrio Magneticus RS-1 Contains an Iron- and Phosphorus-Rich Organelle Distinct from Its Bullet- Shaped Magnetosomes
Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet- shaped magnetosomes Meghan E. Byrnea, David A. Ballb,1, Jean-Luc Guerquin-Kernc,d,1, Isabelle Rouillere,f, Ting-Di Wuc,d, Kenneth H. Downingb, Hojatollah Valie,f,g, and Arash Komeilia,2 aDepartment of Plant and Microbial Biology, University of California, Berkeley, CA 94720; bLawrence Berkeley National Laboratory, Berkeley, CA 94720; cInstitut National de la Santé et de la Recherche Médicale, U759, 91405 Orsay, France; dInstitut Curie, Laboratoire de Microscopie Ionique, 91405 Orsay, France; and eFacility for Electron Microscopy Research, fDepartment of Anatomy and Cell Biology, and gDepartment of Earth and Planetary Sciences, McGill University, Montreal, QC, Canada H3A 2B2 Edited by Caroline S. Harwood, University of Washington, Seattle, WA, and approved May 17, 2010 (received for review February 2, 2010) Intracellular magnetite crystal formation by magnetotactic bacteria crystals, and genes found in the MAI have been shown to play has emerged as a powerful model for investigating the cellular and a role in the formation of the magnetite crystals and the magne- molecular mechanisms of biomineralization, a process common to tosome chain (7). all branches of life. Although magnetotactic bacteria are phylo- Although knowledge of magnetite biomineralization is growing, genetically diverse and their crystals morphologically diverse, our current understanding is based on studies of a relatively nar- studies to date have focused on a few, closely related species row subset of magnetotactic bacterial strains. All studies cited with similar crystal habits. Here, we investigate the process of above have focused on MB that belong to the α-Proteobacteria magnetite biomineralization in Desulfovibrio magneticus sp. -
A Species of Magnetotactic Deltaproteobacterium Was Detected
A species of magnetotactic deltaproteobacterium was detected at the highest abundance during an algal bloom Hongmiao Pan, Yi Dong, Zhaojie Teng, Jinhua Li, Wenyan Zhang, Tian Xiao, Long-Fei Wu To cite this version: Hongmiao Pan, Yi Dong, Zhaojie Teng, Jinhua Li, Wenyan Zhang, et al.. A species of magneto- tactic deltaproteobacterium was detected at the highest abundance during an algal bloom. FEMS Microbiology Letters, Wiley-Blackwell, 2019, 366 (22), 10.1093/femsle/fnz253. hal-02448980 HAL Id: hal-02448980 https://hal-amu.archives-ouvertes.fr/hal-02448980 Submitted on 22 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A species of magnetotactic deltaproteobacterium was detected at the highest abundance during an algal bloom Hongmiao Pan1,2,3,5, Yi Dong1,2,3,5, Zhaojie Teng1, Jinhua Li2,4,5, Wenyan Zhang1,2,3,5, Tian Xiao1,2,3,5*, Long-Fei Wu5,6 1 CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China 2 Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China 3 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China 4 Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.