Galois Automorphisms on Harish-Chandra Series and Navarro's Self-Normalizing Sylow 2-Subgroup Conjecture A. A. Schaeffer Fry Department of Mathematical and Computer Sciences Metropolitan State University of Denver Denver, CO 80217, USA
[email protected] Abstract G. Navarro has conjectured a necessary and sufficient condition for a finite group G to have a self-normalizing Sylow 2-subgroup, which is given in terms of the ordinary irreducible characters of G. In a previous article, the author has reduced the proof of this conjecture to showing that certain related statements hold for simple groups. In this article, we describe the action of Galois automorphisms on the Howlett{Lehrer parametrization of Harish-Chandra induced characters. We use this to complete the proof of the conjecture by showing that the remaining simple groups satisfy the required conditions. Mathematics Classification Number: 20C15, 20C33 Keywords: local-global conjectures, characters, McKay conjecture, self-normalizing Sylow sub- groups, finite simple groups, Lie type, Harish-Chandra series 1 Introduction 2πi=n Throughout, we write Qn := Q(e ) to denote the extension field of Q obtained by adjoining nth roots of unity in C. In particular, if a finite group G has size n, then Qn is a splitting field for G and the group Gal(Qn=Q) acts on the set of irreducible ordinary characters, Irr(G), of G. In [Nav04], G. Navarro conjectured a refinement to the well-known McKay conjecture that incorporates this action of Gal(Qn=Q). Specifically, the \Galois-McKay" conjecture posits that if Q Q 0 ` is a prime, σ 2 Gal( n= ) sends every ` root of unity to some `th power, and P 2 Syl`(G) is a Sylow `-subgroup of G, then the number of characters in Irr`0 (G) that are fixed by σ is the same as the number of characters in Irr`0 (NG(P )) fixed by σ.