Dopamine: Functions, Signaling, and Association with Neurological Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Dopamine: Functions, Signaling, and Association with Neurological Diseases Cellular and Molecular Neurobiology (2019) 39:31–59 https://doi.org/10.1007/s10571-018-0632-3 REVIEW PAPER Dopamine: Functions, Signaling, and Association with Neurological Diseases Marianne O. Klein1 · Daniella S. Battagello1 · Ariel R. Cardoso1 · David N. Hauser2 · Jackson C. Bittencourt1,3 · Ricardo G. Correa2 Received: 21 August 2018 / Accepted: 2 November 2018 / Published online: 16 November 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract The dopaminergic system plays important roles in neuromodulation, such as motor control, motivation, reward, cognitive function, maternal, and reproductive behaviors. Dopamine is a neurotransmitter, synthesized in both central nervous sys- tem and the periphery, that exerts its actions upon binding to G protein-coupled receptors. Dopamine receptors are widely expressed in the body and function in both the peripheral and the central nervous systems. Dopaminergic signaling pathways are crucial to the maintenance of physiological processes and an unbalanced activity may lead to dysfunctions that are related to neurodegenerative diseases. Unveiling the neurobiology and the molecular mechanisms that underlie these illnesses may contribute to the development of new therapies that could promote a better quality of life for patients worldwide. In this review, we summarize the aspects of dopamine as a catecholaminergic neurotransmitter and discuss dopamine signaling pathways elicited through dopamine receptor activation in normal brain function. Furthermore, we describe the potential involvement of these signaling pathways in evoking the onset and progression of some diseases in the nervous system, such as Parkinson’s, Schizophrenia, Huntington’s, Attention Deficit and Hyperactivity Disorder, and Addiction. A brief descrip- tion of new dopaminergic drugs recently approved and under development treatments for these ailments is also provided. Keywords Dopamine pathway · Neurotransmitter · Central nervous system · Neurodegenerative diseases Abbreviations CDK5 Cyclin-dependent kinase 5 AD Alzheimer’s disease CK1 Casein kinase 1 ADHD Attention deficit/hyperactivity disorder CK2 Casein kinase 2 ALDH Aldehyde dehydrogenase COMT Catechol-O-methyl transferase BDNF Brain-derived neurotropic factor CREB cAMP Response element-binding protein CaMKII Calcium/calmodulin-dependent kinase II CSF Cerebral spinal fluid cAMP Cyclic 3,5 adenine-monophosphate DAG Diacylglycerol DARPP-32 cAMP-Regulated phosphoprotein 32-kDa Marianne O. Klein and Daniella S. Battagello have contributed DAT Dopamine transporter equally to the work. DJ-1 PARK7 (Parkinson disease protein 7) DOPAC 3,4-Dihydroxyphenylacetic acid * Jackson C. Bittencourt DOPAL 3,4-Dihydroxyphenylaldehyde [email protected] ELKs Glutamine, leucine, lysine, and serine-rich * Ricardo G. Correa protein [email protected] ERK Extracellular-signal regulated kinases 1 Laboratory of Chemical Neuroanatomy, Department FDA US Food and Drug Administration of Anatomy, Institute of Biomedical Sciences, University GABA γ-Amino butyric acid of São Paulo (USP), São Paulo 05508-000, Brazil GIRK G protein inwardly rectifying potassium 2 Center for Translational Neuroscience, Sanford Burnham channel Prebys (SBP) Medical Discovery Institute, 10901 North GPCR G protein-coupled receptor Torrey Pines Rd., La Jolla, CA 92037, USA GRK G protein-coupled receptor kinase 3 Center for Neuroscience and Behavior, Institute GSK3 Glycogen synthase kinase 3 of Psychology, USP, São Paulo, Brazil Vol.:(0123456789)1 3 32 Cellular and Molecular Neurobiology (2019) 39:31–59 GSTM2 Glutathione transferase and sympathetic nervous systems (Loewi 1921; Dale 1935, GTP Guanosine triphosphate 1937; von Euler 1946). Subsequently, the physiological roles HVA Homovanillic acid of another chemical transmitter, dopamine, were described HD Huntington’s disease by Carlsson et al. (1957). Chemical transmitters such as HTT Huntingtin gene acetylcholine and dopamine belong to a class of molecules IGF Insulin growth factor termed neurotransmitters that are the primary mode of cell- IP3 Inositol trisphosphate to-cell communication in the nervous system and associated JNK c-Jun kinase with many diseases. L-DOPA Levodopa Typically, neurotransmitters are synthesized endoge- LB Lewy bodies nously and act as signaling molecules (Wurtman et al. 1980). LRRK2 Leucine-rich repeat kinase 2 Neurotransmitters are stored in vesicles in presynaptic ter- MAPK Mitogen-activated protein kinase minals and released into the synaptic cleft in response to an MAPT Microtubule-associated protein action potential or after a graded potential threshold is met MAT Monoamine transporter (Kanner and Schuldiner 1987; Attwell et al. 1993; Steinhardt MAO Monoamine oxidase et al. 1994). Once released, they can elicit a physiological mTORC2 mTOR complex 2 response in postsynaptic or nearby cells. In general, neuro- NAc Nucleus accumbens transmission occurs quickly and the compound is rapidly NET Norepinephrine transporter (i) metabolized by enzymes (Kanner and Schuldiner 1987), NMDA Glutamate N-methyl-D-aspartate (ii) taken back up by presynaptic neuron (Iversen 1971), or Parkin PRKN (iii) bound to postsynaptic neurons or target cells’ receptors PD Parkinson’s disease (Garris et al. 1994). PDPK1 Phosphatidylinositol-dependent kinase 1 Many compounds are released by cells, but bona fide neu- PIP2 Phosphatidylinositol-2-phosphate rotransmitters must meet a distinct set of criteria (Sourkes PIP3 Phosphatidylinositol-3-phosphate 2009): (i) the compound should be synthesized in presyn- PKA Protein kinase A aptic neurons; (ii) when the presynaptic neuron is activated, PKC Protein kinase C the release of this compound should lead to an effect on PLC Phospholipase C postsynaptic neuron(s) or target cell(s); (iii) when adminis- PP1 Protein phosphatase 1 tered exogenously, similar outcomes to endogenous stimula- PP2A Protein phosphatase 2A tion would occur; and (iv) a mechanism of neurotransmitter PP2B Protein phosphatase 2B removal, from synaptic cleft after signaling, should be in RGS Regulators of G protein signaling place. RIM Rab3a-interacting molecule Neurotransmitters can be subdivided according to their ROS Reactive oxygen species molecular identity: small organic molecules, peptides, mon- RTK Receptor tyrosine kinase oamines, nucleotides, and amino acids (Kandel et al. 2013). SNCA α-Synuclein A functional classification may also be utilized, since these STEP Striatal-enriched tyrosine phosphatase molecules can act as excitatory or inhibitory transmitters SZ Schizophrenia and can also bind to fast response ionotropic receptors or TAAR​ Trace amine-associated receptors slower response metabotropic receptors (Kandel et al. 2013). VMAT2 Vesicular monoamine transporter For instance, glutamate-containing synapses are mainly fast VTA Ventral tegmental area excitatory and frequently observed in memory storage ele- ments (Dingledine et al. 1999). In contrast, γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in Background the central nervous system (CNS) and binds to ionotropic (GABAA) and metabotropic (GABAB) receptors (Werhahn Initially, studies on neural cell communication focused et al. 1999). Acetylcholine is the neurotransmitter that sig- exclusively on electrophysiological aspects but, in the begin- nals from neuron to muscle at the neuromuscular junction, ning of twentieth century, scientists such as John N. Lang- and is also present in many brain regions where it binds to ley and Thomas R. Elliot introduced the concept of chemi- muscarinic (metabotropic) or nicotinic (ionotropic) receptors cal release upon nerve stimulation (Elliott 1905; Sourkes (Fambrough et al. 1973; Whitehouse et al. 1986; Jones et al. 2009; Starke 2014). These ideas were confirmed later by 2012). Recently, a number of reports have indicated that the work of Otto Loewi, Henry Dale, Ulf von Euler, and neuron terminals can co-release different neurotransmitters others, who demonstrated that acetylcholine and adrena- which may present synergistic functions (Bartfai et al. 1988; line acted as chemical transmitters in the parasympathetic Hnasko and Edwards 2012). 1 3 Cellular and Molecular Neurobiology (2019) 39:31–59 33 The monoamine transmitters share many biochemical the primary metabolic route involves a two-step synthesis in characteristics, i.e., they are small charged molecules, nor- the cytosol. Tyrosine hydroxylase (the rate-limiting enzyme) mally cannot cross the blood–brain barrier (Kortekaas et al. converts tyrosine to levodopa (L-DOPA) using tetrahydrobi- 2+ 2005), synthesized from amino acids by short metabolic opterin, oxygen (O 2), and iron (Fe ) as cofactors. L-DOPA routes and regulated by one rate-limiting enzymatic reaction can then be converted to dopamine by aromatic L-amino (Stahl 1985). In general, monoamine neurotransmitters exert acid decarboxylase (DOPA decarboxylase), having pyridoxal their actions on neuronal circuitry by binding to metabo- phosphate as a cofactor (Christenson et al. 1970). A minor tropic receptors, and have a slower modulation compared synthesis pathway may also occur, in which p-tyramine can to the fast neurotransmission mediated by glutamate and be converted to dopamine through Cytochrome P450 2D6 GABA (Beaulieu and Gainetdinov 2011), with the excep- activity in the substantia nigra (Bromek et al. 2011; Fergu- tion of serotonin which can also bind to ionotropic receptors son and Tyndale 2011). Following synthesis in dopaminergic (MacDermott et al. 1999; Lee et al. 2010).
Recommended publications
  • Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: a Steered-Glutamatergic Perspective
    brain sciences Review Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective Amjad H. Bazzari * and H. Rheinallt Parri School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)1212044186 Received: 7 October 2019; Accepted: 29 October 2019; Published: 31 October 2019 Abstract: The molecular pathways underlying the induction and maintenance of long-term synaptic plasticity have been extensively investigated revealing various mechanisms by which neurons control their synaptic strength. The dynamic nature of neuronal connections combined with plasticity-mediated long-lasting structural and functional alterations provide valuable insights into neuronal encoding processes as molecular substrates of not only learning and memory but potentially other sensory, motor and behavioural functions that reflect previous experience. However, one key element receiving little attention in the study of synaptic plasticity is the role of neuromodulators, which are known to orchestrate neuronal activity on brain-wide, network and synaptic scales. We aim to review current evidence on the mechanisms by which certain modulators, namely dopamine, acetylcholine, noradrenaline and serotonin, control synaptic plasticity induction through corresponding metabotropic receptors in a pathway-specific manner. Lastly, we propose that neuromodulators control plasticity outcomes through steering glutamatergic transmission, thereby gating its induction and maintenance. Keywords: neuromodulators; synaptic plasticity; learning; memory; LTP; LTD; GPCR; astrocytes 1. Introduction A huge emphasis has been put into discovering the molecular pathways that govern synaptic plasticity induction since it was first discovered [1], which markedly improved our understanding of the functional aspects of plasticity while introducing a surprisingly tremendous complexity due to numerous mechanisms involved despite sharing common “glutamatergic” mediators [2].
    [Show full text]
  • Multiplexed Neurochemical Signaling by Neurons of the Ventral Tegmental
    Journal of Chemical Neuroanatomy 73 (2016) 33–42 Contents lists available at ScienceDirect Journal of Chemical Neuroanatomy journal homepage: www.elsevier.com/locate/jchemneu Multiplexed neurochemical signaling by neurons of the ventral tegmental area David J. Barker, David H. Root, Shiliang Zhang, Marisela Morales* Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, United States A R T I C L E I N F O A B S T R A C T Article history: The ventral tegmental area (VTA) is an evolutionarily conserved structure that has roles in reward- Received 26 June 2015 seeking, safety-seeking, learning, motivation, and neuropsychiatric disorders such as addiction and Received in revised form 31 December 2015 depression. The involvement of the VTA in these various behaviors and disorders is paralleled by its Accepted 31 December 2015 diverse signaling mechanisms. Here we review recent advances in our understanding of neuronal Available online 4 January 2016 diversity in the VTA with a focus on cell phenotypes that participate in ‘multiplexed’ neurotransmission involving distinct signaling mechanisms. First, we describe the cellular diversity within the VTA, Keywords: including neurons capable of transmitting dopamine, glutamate or GABA as well as neurons capable of Reward multiplexing combinations of these neurotransmitters. Next, we describe the complex synaptic Addiction Depression architecture used by VTA neurons in order to accommodate the transmission of multiple transmitters. Aversion We specifically cover recent findings showing that VTA multiplexed neurotransmission may be mediated Co-transmission by either the segregation of dopamine and glutamate into distinct microdomains within a single axon or Dopamine by the integration of glutamate and GABA into a single axon terminal.
    [Show full text]
  • Midbrain Dopaminergic and Gabaergic Neurons' Responses To
    Institute of Zoology and Biomedical Research Topic: Midbrain dopaminergic and GABAergic neurons' responses to the aversive stimulus across alternating brain states of urethane anaesthetized rat - electrophysiological in vivo studies. Supervisor: dr hab. Tomasz Błasiak (Department of Neurophysiology and Chronobiology) [email protected] Background information: Ventral tegmental area (VTA) is one of the main sources of dopamine (DA) in the mammalian brain. This structure is the centre of dopaminergic pathways and plays a key role in regulation of motivation (Wise, 2005), goaldirected behaviours, reinforcement learning or reacting to reward-related cues (Schultz, 1997; Morita, 2013). Better understanding of how DA circuits work and are modulated can contribute to explanation of mechanisms of dysfunctions laying at the root of some nervous system disorders such as addiction, anxiety, PTSD or some of depression symptoms (anhedonia or lack of motivation). It has been shown that, occurrence of unexpected reward, reward-related cue or novelty causes phasic release of DA in VTA target structures (Goto et al, 2007). Those phasic changes in DA neurons activity lie at the root of forming reward prediction error (RPE) signal which encodes difference between expected and delivered reward - updating reward expectations and forming the basis for learning (Schultz, 2016). DA neurons also code response to the aversive or noxious stimuli by development of quick, short latency pause in firing. For a long time, it has been assumed that DA neurons code both reward and aversive stimuli homogenously across the entire dopaminergic neurons population forming positive and negative prediction error signals respectively (Schultz, 1998; Ungless et al., 2004).
    [Show full text]
  • The Prospective Value of Dopamine Receptors on Bio-Behavior of Tumor
    Journal of Cancer 2019, Vol. 10 1622 Ivyspring International Publisher Journal of Cancer 2019; 10(7): 1622-1632. doi: 10.7150/jca.27780 Review The Prospective Value of Dopamine Receptors on Bio-Behavior of Tumor Xu Wang1,2, Zhi-Bin Wang1,2, Chao Luo1,2,4, Xiao-Yuan Mao1,2, Xi Li1,2, Ji-Ye Yin1,2, Wei Zhang1,2,3, Hong-Hao Zhou1,2,3, Zhao-Qian Liu1,2,3 1. Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China; 2. Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China; 3. National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China; 4. School of Life Sciences, Central South University, Changsha, Hunan 410078. Corresponding author: Professor Zhao-Qian Liu: Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China. Tel: +86 731 89753845, Fax: +86 731 82354476, E-mail: [email protected]. © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.06.10; Accepted: 2019.02.07; Published: 2019.03.03 Abstract Dopamine receptors are belong to the family of G protein-coupled receptor. There are five types of dopamine receptor (DR), including DRD1, DRD2, DRD3, DRD4, and DRD5, which are divided into two major groups: the D1-like receptors (DRD1 and DRD5), and the D2-like receptors (DRD2, DRD3, and DRD4).
    [Show full text]
  • 5-HT7 Receptor Neuroprotection Against Excitotoxicity in the Hippocampus,” AFPC, Quebec City, June 2012
    5-HT7 Receptor Neuroprotection against Excitotoxicity in the Hippocampus by Seyedeh Maryam Vasefi A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Pharmacy Waterloo, Ontario, Canada, 2014 ©Seyedeh Maryam Vasefi 2014 i AUTHOR'S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Introduction and Objectives: The PDGFβ receptor and its ligand, PDGF-BB, are expressed throughout the central nervous system (CNS), including the hippocampas. Several reports confirm that PDGFβ receptors are neuroprotective against N-methyl-D-asparate (NMDA)-induced cell death in hippocampal neurons. NMDA receptor dysfunction is important for the expression of many symptoms of mental health disorders such as schizophrenia. The serotonin (5-HT) type 7 receptor was the most recent of the 5-HT receptor family to be identified and cloned. 5-HT receptors interact with several signaling systems in the CNS including receptors activated by the excitatory neurotransmitter glutamate such as the NMDA receptor. Although there is extensive interest in targeting the 5-HT7 receptor with novel therapeutic compounds, the function and signaling properties of 5-HT7 receptors in neurons remains poorly characterized. Methods: The SH-SY5Y neuroblastoma cell line, primary hippocampal cultures, and hippocampal slices were treated with 5-HT7 receptor agonists and antagonists. Western blotting was used to measure PDGFß receptor expression and phosphorylation as well as NMDA receptor subunit expression and phosphorylation levels.
    [Show full text]
  • Dopaminergic Microtransplants Into the Substantia Nigra of Neonatal Rats with Bilateral 6-OHDA Lesions
    The Journal of Neuroscience, May 1995, 15(5): 3548-3561 Dopaminergic Microtransplants into the Substantia Nigra of Neonatal Rats with Bilateral 6-OHDA Lesions. I. Evidence for Anatomical Reconstruction of the Nigrostriatal Pathway Guido Nikkhah,1,2 Miles G. Cunningham,3 Maria A. Cenci,’ Ronald D. McKay,4 and Anders Bj6rklund’ ‘Department of Medical Cell Research, University of Lund, S-223 62 Lund, Sweden, *Neurosurgical Clinic, Nordstadt Hospital, D-301 67 Hannover, Germany, 3Harvard Medical School, Boston, Massachusetts 02115, and 4 Laboratory of Molecular Biology, NINDS NIH, Bethesda, Maryland 20892 Reconstruction of the nigrostriatal pathway by long axon [Key words: target reinnervation, axon growth, neural growth derived from dopamine-rich ventral mesencephalic transplantation, tyrosine hydroxylase immunohistochem- (VM) transplants grafted into the substantia nigra may en- istry, Fos protein, Fluoro-Gold] hance their functional integration as compared to VM grafts implanted ectopically into the striatum. Here we report on In the lesioned brain of adult recipients dopamine-rich grafts a novel approach by which fetal VM grafts are implanted from fetal ventral mesencephalon (VM) are unable to reinner- unilaterally into the substantia nigra (SN) of 6-hydroxydo- vate the caudate-putamen unless they are placed close to, or pamine (SOHDA)-lesioned neonatal pups at postnatal day within, the denervated target structure (BjGrklund et al., 1983b; 3 (P3) using a microtransplantation technique. The results Nikkhah et al., 1994b). The failure of regenerating dopaminergic demonstrate that homotopically placed dopaminergic neu- axons to reinnervate the striatum from more distant implantation rons survive and integrate well into the previously sites, including their normal site of origin, the substantia nigra 6-OHDA-lesioned neonatal SN region.
    [Show full text]
  • Identification of Key Pathways and Genes in Dementia Via Integrated Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440371; this version posted July 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Identification of Key Pathways and Genes in Dementia via Integrated Bioinformatics Analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440371; this version posted July 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract To provide a better understanding of dementia at the molecular level, this study aimed to identify the genes and key pathways associated with dementia by using integrated bioinformatics analysis. Based on the expression profiling by high throughput sequencing dataset GSE153960 derived from the Gene Expression Omnibus (GEO), the differentially expressed genes (DEGs) between patients with dementia and healthy controls were identified. With DEGs, we performed a series of functional enrichment analyses. Then, a protein–protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network was constructed, analyzed and visualized, with which the hub genes miRNAs and TFs nodes were screened out. Finally, validation of hub genes was performed by using receiver operating characteristic curve (ROC) analysis.
    [Show full text]
  • The Genetics of Bipolar Disorder
    Molecular Psychiatry (2008) 13, 742–771 & 2008 Nature Publishing Group All rights reserved 1359-4184/08 $30.00 www.nature.com/mp FEATURE REVIEW The genetics of bipolar disorder: genome ‘hot regions,’ genes, new potential candidates and future directions A Serretti and L Mandelli Institute of Psychiatry, University of Bologna, Bologna, Italy Bipolar disorder (BP) is a complex disorder caused by a number of liability genes interacting with the environment. In recent years, a large number of linkage and association studies have been conducted producing an extremely large number of findings often not replicated or partially replicated. Further, results from linkage and association studies are not always easily comparable. Unfortunately, at present a comprehensive coverage of available evidence is still lacking. In the present paper, we summarized results obtained from both linkage and association studies in BP. Further, we indicated new potential interesting genes, located in genome ‘hot regions’ for BP and being expressed in the brain. We reviewed published studies on the subject till December 2007. We precisely localized regions where positive linkage has been found, by the NCBI Map viewer (http://www.ncbi.nlm.nih.gov/mapview/); further, we identified genes located in interesting areas and expressed in the brain, by the Entrez gene, Unigene databases (http://www.ncbi.nlm.nih.gov/entrez/) and Human Protein Reference Database (http://www.hprd.org); these genes could be of interest in future investigations. The review of association studies gave interesting results, as a number of genes seem to be definitively involved in BP, such as SLC6A4, TPH2, DRD4, SLC6A3, DAOA, DTNBP1, NRG1, DISC1 and BDNF.
    [Show full text]
  • SZDB: a Database for Schizophrenia Genetic Research
    Schizophrenia Bulletin vol. 43 no. 2 pp. 459–471, 2017 doi:10.1093/schbul/sbw102 Advance Access publication July 22, 2016 SZDB: A Database for Schizophrenia Genetic Research Yong Wu1,2, Yong-Gang Yao1–4, and Xiong-Jian Luo*,1,2,4 1Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China; 2Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China; 3CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China 4YGY and XJL are co-corresponding authors who jointly directed this work. *To whom correspondence should be addressed; Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; tel: +86-871-68125413, fax: +86-871-68125413, e-mail: [email protected] Schizophrenia (SZ) is a debilitating brain disorder with a Introduction complex genetic architecture. Genetic studies, especially Schizophrenia (SZ) is a severe mental disorder charac- recent genome-wide association studies (GWAS), have terized by abnormal perceptions, incoherent or illogi- identified multiple variants (loci) conferring risk to SZ. cal thoughts, and disorganized speech and behavior. It However, how to efficiently extract meaningful biological affects approximately 0.5%–1% of the world populations1 information from bulk genetic findings of SZ remains a and is one of the leading causes of disability worldwide.2–4 major challenge. There is a pressing
    [Show full text]
  • Prominence of the Dopamine D2 Short Isoform in Dopaminergic Pathways
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 7731–7736, June 1998 Neurobiology Prominence of the dopamine D2 short isoform in dopaminergic pathways ZAFAR U. KHAN*†,LADISLAV MRZLJAK*, ANTONIA GUTIERREZ‡,ADELAIDA DE LA CALLE‡, AND PATRICIA S. GOLDMAN-RAKIC* *Section of Neurobiology, Yale University School of Medicine, New Haven, CT 06510; and ‡Department of Cell Biology, University of Malaga, Malaga 29071, Spain Contributed by P. S. Goldman-Rakic, April 15, 1998 ABSTRACT As a result of alternative splicing, the D2 gene opment. Affinity purification of the antisera was as described of the dopamine receptor family exists in two isoforms. The D2 elsewhere (12). In brief, peptide (5 mg) was coupled to1gof long is characterized by the insertion of 29 amino acids in the activated thiopropyl-Sepharose 6B (Pharmacia LKB). Phos- third cytoplasmic loop, which is absent in the short isoform. We phate-buffered saline (PBS) diluted antiserum (1:5) was circu- have produced subtype-specific antibodies against both the D2 lated through the column. After washing with PBS, the antibody short and D2 long isoforms and found a unique compartmen- was eluted with glycinezHCl, pH 2.3, and dialyzed against PBS. talization between these two isoforms in the primate brain. The Membrane Preparation. Adult rhesus monkey (Macaca mu- D2 short predominates in the cell bodies and projection axons of latta) brains were used for the preparation of tissue membranes the dopaminergic cell groups of the mesencephalon and hypo- as described earlier (13). Briefly, brain tissues were homogenized thalamus, whereas the D2 long is more strongly expressed by with 10% sucrose in TriszHCl, pH 7.4, and centrifuged at 3,000 neurons in the striatum and nucleus accumbens, structures rpm in a Sorvall for 5 min.
    [Show full text]
  • 1 Development of Methods for Measurement of the Integrity Of
    Development of Methods for Measurement of the Integrity of Dopaminergic Pathways in a Rat Model of Parkinson’s Disease1 ¢¡¤£¦¥¨§ © ¨ § £ Department of Cognitive Science, Carleton University [email protected] Bruce Hutcheon Department of Neuroscience, Carleton University [email protected] Introduction Parkinson’s disease (PD) is a progressive neurological disorder manifested by difficulty initiating movement, muscular rigidity, resting tremor, and other postural abnormalities. It is associated with a loss of neurons in the midbrain that supply the forebrain with dopamine. The resulting chemical deficit in forebrain structures results in a disruption of integrated motor output. Before a description of the experimental studies is given, an outline of the anatomy and basic operation of the motor circuits is needed. The regions of the brain that participate in voluntary movements are the basal ganglia, motor nuclei of the brain stem, red nucleus, and cerebellum. The region of interest in the case of PD is the basal ganglia. 1. The basal ganglia consists of four subcortical nuclei (see Figure 1): striatum [ST] (a collective term for the caudate nucleus and putamen), 2. globus pallidus (consisting of external [GPe] and internal segments [GPi]), 3. subthalamic nucleus [STN], and 4. substantia nigra [SN] (consisting of the pars compacta [SNc] and pars reticulata [SNr]). 1 Report Carleton University Cognitive Science Technical 2002-08 URL http://www.carleton.ca/iis/TechReports © 2002 Edina ¦ ! "¦#$&%('*)+-, .0/21$,34.05(/0% 1 Figure 1: Coronal section of the basal ganglia (adapted from Nieuwenhuys et al. 1981) These nuclei participate in a feedback loop which begins at the motor cortex, proceeds through the basal ganglia (with the striatum as the input centre), to the thalamus (the main conduit for sensory information reaching the brain), and back to the motor cortex.
    [Show full text]
  • Harnessing Serotonergic and Dopaminergic Pathways for Lymphoma Therapy: Evidence and Aspirations Nicholas M
    Seminars in Cancer Biology 18 (2008) 218–225 Review Harnessing serotonergic and dopaminergic pathways for lymphoma therapy: Evidence and aspirations Nicholas M. Barnes a, , John Gordon b a Division of Neuroscience, The Medical School, Vincent Drive, Birmingham B15 2TT, United Kingdom b Division of Immunity & Infection, The Medical School, Vincent Drive, Birmingham B15 2TT, United Kingdom Abstract Growing evidence supports the notion that pharmaceutical targeting of the 5-hydroxytryptamine (5-HT) and dopamine (DA) systems offers the potential to treat human immune system disorders. This review describes this emerging area of research, which has the benefit of being supported by a relatively detailed understanding of these monoamine systems within other tissues of the body. Furthermore, the availability of a number of pharmaceutical agents originally developed to manipulate central monoamine function, offer many suitable drug candidates to test their therapeutic potential in the immune pathology arena. © 2008 Published by Elsevier Ltd. Keywords: Lymphoma; Novel drug targets; Serotonin; Dopamine; Drug reprofiling Contents 1. Introduction ............................................................................................................ 218 2. 5-HT—the serotonergic pathway.......................................................................................... 219 2.1. Synthesis and metabolism of 5-HT.................................................................................. 219 2.2. 5-HT receptors and transporter ....................................................................................
    [Show full text]