Phenotypic Variability in Gap Junction Syndromic Skin Disorders: Experience from KID and Clouston Syndromes’ Clinical Diagnostics

Total Page:16

File Type:pdf, Size:1020Kb

Phenotypic Variability in Gap Junction Syndromic Skin Disorders: Experience from KID and Clouston Syndromes’ Clinical Diagnostics J Appl Genetics (2015) 56:329–337 DOI 10.1007/s13353-014-0266-1 HUMAN GENETICS • CASE REPORT Phenotypic variability in gap junction syndromic skin disorders: experience from KID and Clouston syndromes’ clinical diagnostics Anna Kutkowska-Kaźmierczak & Katarzyna Niepokój & Katarzyna Wertheim-Tysarowska & Aleksandra Giza & Maria Mordasewicz-Goliszewska & Jerzy Bal & Ewa Obersztyn Received: 3 February 2014 /Revised: 5 December 2014 /Accepted: 17 December 2014 /Published online: 10 January 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Connexins belong to the family of gap junction mutation in GJB6), who are the first reported patients proteins which enable direct cell-to-cell communication of Polish origin suffering from this disorder. Phenotype by forming channels in adjacent cells. Mutations in diversity among patients with the same genotypes report- connexin genes cause a variety of human diseases and, ed to date is also summarized. The conclusion is that in a few cases, result in skin disorders. There are signif- proper diagnosis of these syndromes is still challenging icant differences in the clinical picture of two rare auto- and should always be followed by molecular verification. somal dominant syndromes: keratitis–ichthyosis–deafness (KID) syndrome and hidrotic ectodermal dysplasia Keywords Keratitis–ichthyosis–deafness syndrome . KID . (Clouston syndrome), which are caused by GJB2 and Hidrotic ectodermal dysplasia . Clouston syndrome . GJB6 mutations, respectively. This is despite the fact GJB2 . GJB6 that, in both cases, malfunctioning of the same family proteins and some overlapping clinical features (nail dystrophy, hair loss, and palmoplantar keratoderma) is observed. KID syndrome is characterized by progressive Introduction vascularizing keratitis, ichthyosiform erythrokeratoderma, and neurosensory hearing loss, whereas Clouston syn- Two rare congenital disorders, keratitis–ichthyosis–deafness drome is characterized by nail dystrophy, hypotrichosis, (KID) syndrome [OMIM 148210] and Clouston syndrome and palmoplantar keratoderma. The present paper pre- (hidrotic ectodermal dysplasia 2) [OMIM 129500], are caused sents a Polish patient with sporadic KID syndrome by mutations in genes coding connexin proteins (GJB2 and caused by the mutation of p.Asp50Asn in GJB2.The GJB6, respectively), and both of them have skin patient encountered difficulties in obtaining a correct manifestation. diagnosis. The other case presented is that of a family Despite the malfunctioning of proteins from the same with Clouston syndrome (caused by p.Gly11Arg family and some overlapping of such clinical features as nail dystrophy, hair loss, and palmoplantar keratoderma, the clin- ical picture of these syndromes differs significantly. Communicated by: Michal Witt KID syndrome is a very rare congenital autosomal domi- nant disorder of keratinization with abnormal differentiation ź * : : A. Kutkowska-Ka mierczak ( ) K. Niepokój of the epidermis and aberrant formation of the cornified layer. K. Wertheim-Tysarowska : A. Giza : J. Bal : E. Obersztyn Department of Medical Genetics, The Institute of Mother and Child, The illness is characterized by progressive vascularizing ker- ul.Kasprzaka 17a, 01-211 Warsaw, Poland atitis, ichthyosiform erythrokeratoderma, and neurosensory e-mail: [email protected] hearing loss. Most patients with KID syndrome are sporadic; only about M. Mordasewicz-Goliszewska One Day Pediatric Department, The Institute of Mother and Child, 100 have been reported so far. The syndrome was first de- Warsaw, Poland scribed in 1915 by Frederick S. Burns in a 16-year-old boy 330 J Appl Genetics (2015) 56:329–337 with congenital atypical ichthyosiform erythrokeratoderma, Clinical reports palmoplantar keratosis, and sensorineural hearing loss (Burns 1915). The term “KID syndrome” was later introduced as an Patient 1 acronym of the first letters of the main clinical symptoms. There are, however, arguments that this acronym does not The proband is the first and only child of nonconsanguineous define the disorder precisely; for example, changes in the skin parents. He was born at 35 weeks of gestation after pregnancy are not ichthyosis but ichthyosis-like erythrokeratoderma, and complicated by the mother’s hypertension and a herpes sim- keratitis can be absent at the onset of the illness (Skinner et al. plex infection. His birth weight was 2,630 g (25th–50th 1981). centile), length 51 cm (95th centile), head circumference Clouston syndrome, or hidrotic ectodermal dysplasia, 32 cm (25th–50th centile), the Apgar score was 6 points in is another autosomal dominant rare disorder character- the 1st minute and 8 points in the 5th minute. The audiologic ized by nail dystrophy, hypotrichosis, and palmoplantar screening after birth revealed deafness. He was noted to have keratoderma. The clinical expression can vary, but nails generally hyperkeratotic skin, especially thick on the back, are predominantly affected. They are thick, hyperplastic, and congenital ichthyosis was suspected. In the second week, and deformed with onycholysis. Hair is dry, fine, and a very thick hyperkeratotic layer of the skin on the back was brittle, and may be absent from the scalp, axillary, and removed by the parents during his bath. Histopathologic in- pubic region. Moderate to severe hyperkeratosis is often vestigation of skin biopsy did not confirm ichthyosis. The next present, with reduced keratinocytes desquamation (Kibar suspected disease was Netherton syndrome, but the patient’s et al. 1996). Sweating and the teeth are normal (Hassed hair evaluation did not reveal bamboo hair, which is typical for et al. 1996). this syndrome. Menkes syndrome was also considered in the Two cases are described in the present paper: that of a differential diagnosis elsewhere. Polish patient with sporadic KID syndrome who encountered The boy was examined for the first time in the Genetics difficulties in obtaining a correct diagnosis and a family with Department of the Institute of Mother and Child in Warsaw Clouston syndrome who are the first reported patients of (Poland) in the 4th year of his life (Fig. 1). He had hyperker- Polish origin. atotic skin all over the body but especially over his joints, Fig 1 Phenotype characteristics of patient 1: a, d wart-like hyperkeratotic plaques on an erythematous base on the cheek, ears, and chin; b reticulated hyperkeratosis on the hands with normal nails; c hyperkeratotic skin over elbow; e acanthosis nigricans in the axillary region and around the nipple J Appl Genetics (2015) 56:329–337 331 reticulated hyperkeratosis on the hands and feet, with normal but the hair, eyebrows, and eyelashes were normal (Fig. 2). nails. Wart-like hyperkeratotic plaques on an erythematous His head circumference was within the normal range. Cerebral base, which were initially interpreted as ichthyotic but, in fact, ultrasound at the age of 6 months was described as normal and turned out to be ichthyosis-like erythrokeratoderma, were the psychomotor development of this child at the age of 4 years symmetrically located on the cheeks, ears, and chin. He also was normal. had deep furrows around the mouth and eyes. Eyebrows, eyelashes, and body hair were absent. His scalp hair was stiff Patient 3 and dry. Acanthosis nigricans in the axillary and inner elbow regions and also around the nipples was observed. The patient The patient was the 30-year-old father of patient 2 who had manifested sensorineural hearing loss, photophobia, never been diagnosed previously. He had partial alopecia and hypohidrosis, and increased susceptibility to cutaneous infec- sparse eyebrows and eyelashes. His nails were thickened and tions. His dentition was regular. Ophthalmologic examination dysplastic, with subungual hyperkeratosis, severe curvature, at the age of 5 years did not reveal keratitis. Somatic and and yellow discoloration. The skin of his palms and soles was psychomotor development was normal. The diagnosis of KID hyperkeratotic and mildly hyperpigmented on the joints. syndrome was suggested. Sweating and teeth were normal. The patient had normal eyebrows and eyelashes in his early childhood, and then he Patient 2 lost them. Progressive hair loss began after the age of 22 years. Several members of this family were also affected (his brother, The proband is the first and only child of nonconsanguineous mother, and uncle) (Fig. 3). His mother has similar signs, apart parents. He was born at 41 weeks of gestation after an un- from hair, which was present (it was, however, always sparse). complicated pregnancy. His birth weight was 3,820 g (75th The diagnosis of familial Clouston syndrome was suggested. centile), length 56 cm (>95th centile), head circumference 32 cm (5th centile), the Apgar score was 9 points in the 1st minute. and 10 points in the 3rd minute. At the age of 8 months, he was admitted to the Genetic Counseling Depart- Methods ment of the Institute of Mother and Child in Warsaw because of hypotonia and retardation in motor development. Physical In the three patients described herein, DNA was isolated from examination showed dysplastic nails of the fingers and toes, peripheral blood leukocytes using Genomic Maxi AX (A&A Fig. 2 Phenotype characteristics of patients 2, a, b dysplastic nails and toes, and 3, c thickened, dysplastic nails, d plantar hyperkeratosis, d partial alopecia, sparse eyebrows and eyelashes, normal teeth 332 J Appl Genetics (2015) 56:329–337 Fig. 3 Pedigree of the family of patients
Recommended publications
  • Ectodermal Dysplasias: a New Clinical-Genetic Classification
    J Med Genet 2001;38:579–585 579 Ectodermal dysplasias: a new clinical-genetic J Med Genet: first published as 10.1136/jmg.38.9.579 on 1 September 2001. Downloaded from classification Manuela Priolo, Carmelo Laganà Abstract many case reports and personal communica- The ectodermal dysplasias (EDs) are a tions in their listing of EDs, as well as large and complex nosological group of conditions traditionally classified under other diseases, first described by Thurnam in headings, for example dyskeratosis congenita11 1848. In the last 10 years more than 170 and keratitis-ichthyosis-deafness (KID) syn- diVerent pathological clinical conditions drome12 (poikiloderma and immune defect have been recognised and defined as EDs, diseases and erythrokeratodermas, respec- all sharing in common anomalies of the tively). Further, they did not appear to hair, teeth, nails, and sweat glands. Many consider variability of expression and may are associated with anomalies in other have reported, as distinct diseases, conditions organs and systems and, in some condi- that reflect variable expression of the same tions, with mental retardation. pathological entity. Moreover, they included The anomalies aVecting the epidermis pathological conditions which, in our opinion, and epidermal appendages are extremely do not strictly fulfil the diagnostic criteria for variable and clinical overlap is present EDs, such as conditions with secondary among the majority of EDs. Most EDs are involvement of epidermal derivatives rather defined by particular clinical signs (for than a primary defect. We abandoned the 1-2- example, eyelid adhesion in AEC syn- 3-4 designation of EDs, because we believe drome, ectrodactyly in EEC).
    [Show full text]
  • Blueprint Genetics Ectodermal Dysplasia Panel
    Ectodermal Dysplasia Panel Test code: DE0401 Is a 25 gene panel that includes assessment of non-coding variants. Is ideal for patients with a clinical suspicion of ectodermal dysplasia (hidrotic or hypohidrotic) or Ellis-van Creveld syndrome. About Ectodermal Dysplasia Ectodermal Dysplasia (ED) is a group of closely related conditions of which more than 150 different syndromes have been identified. EDs affects the development or function of teeth, hair, nails and sweat glands. ED may present as isolated or as part of a syndromic disease and is commonly subtyped according to sweating ability. The clinical features of the X-linked and autosomal forms of hypohidrotic ectodermal dysplasia (HED) can be indistinguishable and many of the involved genes may lead to phenotypically distinct outcomes depending on number of defective alleles. The most common EDs are hypohidrotic ED and hydrotic ED. X-linked hypohidrotic ectodermal dysplasia (HED) is caused by EDA mutations and explain 75%-95% of familial HED and 50% of sporadic cases. HED is characterized by three cardinal features: hypotrichosis (sparse, slow-growing hair and sparse/missing eyebrows), reduced sweating and hypodontia (absence or small teeth). Reduced sweating poses risk for episodes of hyperthermia. Female carriers may have some degree of hypodontia and mild hypotrichosis. Isolated dental phenotypes have also been described. Mutations in WNT10A have been reported in up to 9% of individuals with HED and in 25% of individuals with HED who do not have defective EDA. Approximately 50% of individuals with heterozygous WNT10A mutation have HED and the most consistent clinical feature is severe oligodontia of permanent teeth.
    [Show full text]
  • Practice Parameter for the Diagnosis and Management of Primary Immunodeficiency
    Practice parameter Practice parameter for the diagnosis and management of primary immunodeficiency Francisco A. Bonilla, MD, PhD, David A. Khan, MD, Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD, David I. Bernstein, MD, Joann Blessing-Moore, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Chief Editor: Francisco A. Bonilla, MD, PhD Co-Editor: David A. Khan, MD Members of the Joint Task Force on Practice Parameters: David I. Bernstein, MD, Joann Blessing-Moore, MD, David Khan, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Primary Immunodeficiency Workgroup: Chairman: Francisco A. Bonilla, MD, PhD Members: Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD GlaxoSmithKline, Merck, and Aerocrine; has received payment for lectures from Genentech/ These parameters were developed by the Joint Task Force on Practice Parameters, representing Novartis, GlaxoSmithKline, and Merck; and has received research support from Genentech/ the American Academy of Allergy, Asthma & Immunology; the American College of Novartis and Merck.
    [Show full text]
  • Proceedings of the 16Th Annual Meeting of the Society for Pediatric Dermatoiogy
    SPECIAL ARTICLE Pediatric Dermatology Vol. 9 No. 1 66-76 Proceedings of the 16th Annual Meeting of the Society for Pediatric Dermatoiogy WiUiamsburg, Virginia June 3a-July 3, 1991 Eleanor £. Sahn, M.D. Medical University of South Carolina Charleston, South Carolina A. Howiand Hartley, M.D. Children's Hospital National Medical Center Washington, D.C. Stephen Gellis, M.D. Children's Hospital Medical Center Boston, Massachusetts James E. Rasmussen, M.D. University of Michigan Medical Center Ann Arbor, Michigan Monday, July 1, 1991 ture by the newspaper account he received, dated December 17, 1799, telling of General George Dr. Alfred T. Lane (Stanford University) orga- Washington's death. We learn the story of General nized the sixteenth annual meeting of the Society Washington's rapid demise, probably from bacterial for Pediatric Dermatology, held in Wiliiamsburg, infection, hastened by the medical treatments of the Virgitiia. The seventh annual Sidney Hurwitz Lec- day, including frequent and copious blood letting. ture was delivered by Dr. Rona M. MacKie (Uni- There was a current saying, "more people died an- versity of Glasgow) on "Melanoma: Risk Factors in nually from lancets than from swords." Dysplastic Nevus Syndrome." President Anne Lucky (Cincinnati, Ohio) welcomed the society MELANOMA: RISK FACTORS AND members to Wiliiamsburg and introduced the first DYSPLASTIC NEVUS SYNDROME speaker. Dr. Rona MacKie first discussed risk factors in mel- anoma, citing several large case control studies car- COLONIAL MEDICINE ried out in western Canada, Scotland, Scandinavia, Dr. Tor A. Shwayder (Henry Ford Hospital) pre- and Germany. The frequency of melanoma has dou- sented a delightful and professional "Character In- bled each decade in Scandinavia, the United King- terpreter Portrayal of Iseiac Shwayder, Medical dom, and Germany.
    [Show full text]
  • CDH3 Mutation Associated with Ectodermal Dysplasia and Hair Abnormalities
    CASE REPORT CDH3 mutation associated with ectodermal dysplasia and hair abnormalities Afnan Hasanain (1) Mohammed G. Alsaedi (2) Maram A. Aljohani (2) Shereen M. Abd El-Ghany (3,4) Abdulmonem Almutawa (5,6) (1) Consultant Dermatologist, King Faisal Specialist center Jeddah (2) Medical intern at Ibn Sina National College for Medical Science (3) Department of Pediatrics, Ibn Sina National College for Medical Studies, Jeddah, Kingdom of Saudi Arabia (4) Department of Pediatrics, Hematology and Oncology Unit, Ain Shams University, Cairo, Egypt (5) Deputy Chairman, Department of Pathology and Laboratory Medicine (6) Consultant Pathologist and Dermato-pathologist, King Faisal specialist Hospital and Research Centre, Jeddah Corresponding author: Dr. Afnan Hasanain Affiliations: Consultant Dermatologist, King Faisal Specialist center Jeddah, Saudi Arabia Tel.: 0593331003 Email: [email protected] Received: October 2019; Accepted: November 2019; Published: December 1, 2019. Citation: Afnan Hasanain et al. CDH3 mutation associated with ectodermal dysplasia and hair abnormalities. World Family Medicine. 2019; 17(12): 111-117. DOI: 10.5742MEWFM.2019.93720 Abstract Background: Hypotrichosis with juvenile macular Results: Hair examination revealed multiple dystrophy (HJMD) is a rare autosomal recessive short, sparse and lusterless appearance with few disorder characterized by impaired hair growth alopecic patches and plaques. The skin was dry with and progressive macular degeneration, leading to normal temperature. The Macula exhibited retinal
    [Show full text]
  • Ectodermal Dysplasia (Generic Term)
    Ectodermal Dysplasia (generic term) Authors: Doctor Kathleen Mortier1, Professor Georges Wackens1 Creation date: September 2004 Scientific Editor: Professor Antonella Tosti 1Department of stomatology and maxillofacial surgery, AZ VUB Brussels, Belgium [email protected] Definition Clinical classification of Ectodermal dysplasias References Definition Ectodermal dysplasias (EDs) are a heterogeneous group of disorders characterized by developmental dystrophies of ectodermal structures, such as hypohidrosis, hypotrichosis, onychodysplasia and hypodontia or anodontia. About 160 clinically and genetically distinct hereditery ectodermal dysplasias have been cataloged. In the early seventies there existed no definition and no classification. Freire-Maia and Pinheiro tried to put some order in the field of ectodermal dysplasias. Firstly, the group should be defined before an attempt was made to list its conditions. Secondly, the group was so large that it was necessary to split it into several subgroups. So they decided that an ED should present any two of the signs that affected the four structures widely mentioned by the authors who studied the classic EDs – hair, teeth, nails and sweat glands – with or without any other sign (see blow). The system is arbitrary without biological relevance to the pathogenesis and genetics of the specific disorder. However, classification based on clinical signs and symptoms is all that has been available until recently, since the pathogenesis and molecular genetics of the disorder are largely unknown. Clinical classification of Ectodermal dysplasias (Pinheiro and Freire-Maia, 1994) Unknown cause Conditions AD AR XL ? AD? AR? XL? Subgroup 1-2-3-4 1. Christ-Siemens-Touraine (CST) syndrome (MIM 305100; XR BDE 0333; POS 3208; FMP 1) 2.
    [Show full text]
  • Collodion Baby Case Report
    Faridpur Med. Coll. J. 2016;11(1):00-00 Case Report A Case Report on Congenital Ichthyosis - Collodion Baby MK Hassan1, AK Saha2, P Begum3, T Akter4, SK Saha5 Abstract: Collodion baby describes a highly characteristic clinical entity in newborns encased in a yellowish translucent membrane resembling collodion. In most cases the condition either precedes the development of one of a variety of ichthyoses, the commonest of which are lamellar ichthyosis and non-bullous ichthyosiform erythroderma, or occasionally represents an initial phase of other ichthyoses such as ichthyosis vulgaris. In at least 10% of all cases of collodion baby, the condition is followed by a mild ichthyosis of lamellar type, so mild as to be considered more or less normal, so-called self-healing collodion baby or 'lamellar ichthyosis of the newborn'. In this report, we present a severe form of ichthyosis. Key words: Ichthyosis, Lamellar, Harlequin ichthyosis, Newborn diseases, Skin diseases. Introduction: The term collodion baby (CB) (lamellar desquamation/ Although self-healing collodion baby was firstly exfoliation of the newborn), describes a highly thought to be an autosomal recessive condition, it is characteristic clinical entity in newborns encased in a most likely genetically heterogeneous1. yellowish translucent membrane resembling collodion. Since 1884, when Hallopeau used the term collodion In most cases the condition either precedes the baby for the first time, about 270 cases have been development of one of a variety of ichthyosis, the sporadically reported including familial, self healing commonest of which are the autosomal recessive, cases and localized forms 2-4. rarely autosomal dominant forms of lamellar ichthyosis and non-bullous ichthyosiform erythroderma, or Case report: occasionally represents an initial phase of other ichthyoses such as ichthyosis vulgaris, X-linked ichthyosis, Netherton's syndrome, neutral lipid storage We present a child, born as a result of the first, disease or the Sjögren-Larsson syndrome.
    [Show full text]
  • Anhidrotic Ectodermal Dysplasia and Immunodeficiency: the Role of NEMO E D Carrol, a R Gennery, T J Flood, G P Spickett, M Abinun
    340 CASE REPORT Arch Dis Child: first published as 10.1136/adc.88.4.340 on 1 April 2003. Downloaded from Anhidrotic ectodermal dysplasia and immunodeficiency: the role of NEMO E D Carrol, A R Gennery, T J Flood, G P Spickett, M Abinun ............................................................................................................................. Arch Dis Child 2003;88:340–341 Streptococcus pneumoniae. We found that he had associated spe- Anhidrotic (hypohidrotic) ectodermal dysplasia associated cific antibody deficiency (SPAD), in particular antipolysaccha- with immunodeficiency (EDA-ID; OMIM 300291) is a ride antibody deficiency.1 He initially responded well to intra- newly recognised primary immunodeficiency caused by venous immunoglobulin (IVIg) replacement, but as one of the κ mutations in NEMO, the gene encoding nuclear factor B possible explanations for his SPAD was a maturational delay of κ κ (NF- B) essential modulator, NEMO, or inhibitor of B the immune system, this was stopped after two years and his γ kinase (IKK- ). This protein is essential for activation of the specific antibody production was reassessed. The original κ transcription factor NF- B, which plays an important role diagnosis was confirmed, as well as low IgG2 subclass level in human development, skin homoeostasis, and immunity. and very low specific antibody response to tetanus toxoid. He was recommenced on IVIg replacement, and at follow up at age 11 years he has remained free of major infections with no evidence of bronchiectasis on high resolution chest computer- e present an update on the first reported patient ised tomography (CT) scanning. However, his serum IgA 1 with EDA-ID syndrome subsequently shown to be remains very high and that of IgM is declining, suggestive of 2 Wcaused by NEMO mutation, and our current under- ongoing immune dysregulation (table 1).
    [Show full text]
  • COVID-19 and Ectodermal Dysplasias
    COVID-19 and ectodermal dysplasias. Recommendations are necessary. Michele Callea: Unit of Dentistry, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy [email protected] Colin Eric Willoughby: Ulster University and Belfast Health and Social Care Trust, NI, UK [email protected] Diana Perry: UK Ectodermal Dysplasia Society President [email protected] Ulrike Holzer: Leader of EDIN Ectodermal Dysplasia International Network. Austria [email protected] Giulia Fedele: Presidente ANDE, Associazione Nazionale Displasia Ectodermica. Italy [email protected] Antonio Cárdenas Tadich: Pediatrics Service, Regional Hospital of Antofagasta, Chile [email protected] Francisco Cammarata-Scalisi: Pediatrics Service, Regional Hospital of Antofagasta, Chile [email protected] Conflict of interest: None Running title: COVID-19 and ectodermal dysplasias Sources of support if any: None Disclaimer: “We confirm that the manuscript has been read and approved by all the authors, that the requirements for authorship as stated earlier in this document have been met, and that each author believes that the manuscript represents honest work” Corresponding author: Francisco Cammarata-Scalisi: MD, MSc in Genetics, Servicio de Pediatría, Hospital Regional de Antofagasta, Chile [email protected] Cell: +56 9 57411721 This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version
    [Show full text]
  • Spectrum of Ichthyoses in an Austrian Ichthyosis Cohort from 2004 to 2017
    Original Article Submitted: 17.1.2019 DOI: 10.1111/ddg.13968 Accepted: 14.6.2019 Conflict of interest None. Spectrum of ichthyoses in an Austrian ichthyosis cohort from 2004 to 2017 : Supporting information for this article is available on the WWW under https://doi.org/10.1111/ddg.13968 Magdalena Seidl-Philipp1, Summary Ulrich A. Schatz2, Background: Ichthyoses are a heterogeneous disease group, which makes clinical Irina Gasslitter3, Verena classification challenging. An ichthyosis cohort at a center for genodermatoses is pre- Moosbrugger- Martinz1, sented in detail. Stefan Blunder1, Anna S. Patients and Methods: Patients with clinically and/or genetically confirmed Schossig2, Johannes Zschocke2, ichthyosis seen from 2004 to 2017 and listed in a database were included. Disease on- Matthias Schmuth1, set, phenotype, histology, comorbidities and family history were described in detail. Robert Gruber1 In genetically tested patients, the prevalence of various ARCI genes, ARCI phenoty- pes and syndromic ichthyoses, as well as genotype-phenotype correlation and year/ (1) Department of Dermatology, method of genetic testing was assessed. Venereology and Allergology, Medical Results : Of all 198 patients who were included in the cohort, 151 were genetically tested. University of Innsbruck, Innsbruck, 81 had ichthyosis vulgaris, 43 X-linked ichthyosis, 38 autosomal recessive congenital Austria ichthyosis (ARCI), 9 keratinopathic ichthyosis (KPI) and one exfoliative ichthyosis. 26 (2) Department of Human Genetics, individuals suffered from syndromic ichthyoses. A good genotype-phenotype corre- Medical University of Innsbruck, lation was observed for common ichthyoses and KPI; the correlation was less good Innsbruck, Austria in syndromic ichthyoses. In 91 % of ARCI patients an accurate diagnosis was obtained (3) Department of Internal Medicine by genetic testing.
    [Show full text]
  • NGS Oncology)
    UNIVERSITY OF MINNESOTA PHYSICIANS OUTREACH LABS Submit this form along with the appropriate Molecular requisition (Molecular Diagnostics or MOLECULAR DIAGNOSTICS (612) 273-8445 DATE: TIME COLLECTED: PCU/CLINIC: Molecular NGS Oncology). AM PM PATIENT IDENTIFICATION DIAGNOSIS (Dx) / DIAGNOSIS CODES (ICD-9) - OUTPATIENTS ONLY SPECIMEN TYPE: o Blood (1) (2) (3) (4) PLEASE COLLECT 5-10CC IN ACD-A OR EDTA TUBE ORDERING PHYSICIAN NAME AND PHONE NUMBER: Tests can be ordered as a full panel, or by individual gene(s). Please contact the genetic counselor with any questions at 612-624-8948 or by pager at 612-899-3291. _______________________________________________ Test Ordered- EPIC: Next generation sequencing(Next Gen) Sunquest: NGS Ectodermal dysplasia epidermolysis bullosa simplex with Acne inversa muscular dystrophy Full panel PLEC Full panel EDA Epidermolytic hyperkeratosis NCSTN EDARADD Full panel PSENEN MSX1 KRT1 PSEN1 KRT85 KRT10 Acrodermatitis enteropathica PVRL4 Erythroderma, congenital, with NFKBIA palmoplantar keratoderma, SLC39A4 IKBKG hypotrichosis, and hyper IgE Amyloidosis, primary localized Ectodermal dysplasia/skin fragility DSG1 cutaneous, 1 syndrome Erythrokeratodermia variabilis with PKP1 erythema gyratum repens Full panel Ectrodactyly, ectodermal dysplasia, GJB4 OSMR and cleft lip/palate syndrome 3 Familial benign pemphigus IL31RA TP63 ATP2C1 Atrichia with papular lesions Focal facial dermal dysplasia 3 Focal dermal hypoplasia TWIST2 HR PORCN Epidermodysplasia verruciformis Autosomal recessive hypohidrotic Glomuvenous malformations
    [Show full text]
  • Clouston Syndrome*
    SYNDROME IN QUESTION 417 s Do you know this syndrome? Clouston syndrome* Sarah Sanches1 Priscila Regina Orso Rebellato1 Andréa Buosi Fabre1 Giovana Liz Marioto de Campos1 DOI: http://dx.doi.org/10.1590/abd1806-4841.20175716 CASE REPORT Female patient, 15 years of age, complained of changes in Physical examination revealed nail plate dystrophy and her toenails, plantar hyperkeratosis, and a history of dull and brit- subungual hyperkeratosis on the toenails, plantar hyperkeratosis, tle hair since 2 years of age. According to the mother’s report, the and absence of hair on the limbs. Hair was brittle, and the hair shaft patient had never had a haircut and had never had other comorbid- was thick and irregular. The patient presented good hair density ities. Moreover, the patient’s parents were not consanguineous, and and showed no dental changes (Figure 1). there were no other similar cases in the family. Trichogram revealed hair shafts with irregular helical twists (Figure 2). Skin biopsy of her right forearm revealed a single hair fol- licle in the dermis, but sebaceous and eccrine glands were preserved. Based on the skin and adnexal alterations presented above, the clinical condition was diagnosed as Clouston syndrome (hidrot- ic ectodermal dysplasia). A B A B FIGURE 2: Trichogram: A: Presence of irregular helical twist. B: He- lical twist detail C FIGURE 1: A: Dull and brittle dry hair. B: Plantar keratoderma. C: Nail plate dystrophy Received on 20.02.2016 Approved by the Advisory Board and accepted for publication on 28.05.2016 * Work conducted at the Dermatology Outpatient Clinic, Hospital Universitário Evangélico de Curitiba, Faculdade Evangélica do Paraná (HUEC-FEPAR), Curitiba PR, Brazil.
    [Show full text]