Heart Sounds That Matter

Total Page:16

File Type:pdf, Size:1020Kb

Heart Sounds That Matter Slide 1 ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 2 ___________________________________ HEART SOUNDS ___________________________________ THAT MATTER Willard Baker, Jr. MMS PA-C ___________________________________ DFAAPA ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 3 ___________________________________ Objectives • After attending this workshop the attendees will be able to distinguish between normal and abnormal heart sounds ___________________________________ • Attendees will utilize case study histories, and physical findings to determine the etiology of the heart sounds. • Attendees will utilizes the Student Auscultation Manikin II (SAM II) system. This will allow the attendees to audibly distinguish between ___________________________________ various cardiac sounds using an infrared stethoscope. • Utilize the mnemonic TPLRP to help identify specific murmurs. ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 4 ___________________________________ First Things First! History ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 5 ___________________________________ Exam of the Patient • Position of the Patient ___________________________________ • Procedure of the exam • Possible sounds or things palpated ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 6 ___________________________________ Position of the Patient • Upright ___________________________________ • Upright and leaning forward • Recumbent at 30degrees • Left lateral decubitus ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 7 ___________________________________ Procedure of the Exam • Observation (inspection) – does the patient look sick, neck, chest, extremities ___________________________________ • Palpation of the four cardiac points – Aortic, Pulmonic, Tricuspid, Mitral, neck, femoral and radial pulses • Auscultation - (APTM), neck, back and blood pressure ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 8 Palpable Sensations ___________________________________ Possible Heart Sounds • S1, S2, ___________________________________ • S3, S4 • Rate & Rhythm • Thrill • Lifts ___________________________________ • Murmurs *** ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 9 ___________________________________ S1,S2,S3&S4 • S1 High Pitch Sound Diaphragm ___________________________________ • S2 • S3 Low Pitch Sound Left Lateral Decubitus May be • Bell Normal or Pathological S4 S3 early diastole S4 late diastole ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 10 ___________________________________ Normal S3 Third Trimester of ___________________________________ Pregnancy Small Children Young Adults ___________________________________ *** ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 11 ___________________________________ Pathological S3 • Ventricular Dysfunction: ___________________________________ • Myocardial ischemia • Cardiomyopathies • Myocarditis ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 12 ___________________________________ Normal S4 • Trained Athletes ___________________________________ • Healthy Older People ___________________________________ ___________________________________ *** ___________________________________ ___________________________________ ___________________________________ Slide 13 ___________________________________ Pathological S4 • Associated with hypertension ___________________________________ • Hypertrophic Heart Disease • Aortic Stenosis • Cardiac Heart Disease ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 14 ___________________________________ A Split S2 • Physiological – normal & associate with deep inspiration ___________________________________ • Paradoxical – abnormal & associated Left Bundle Branch Block (LBB) ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 15 ___________________________________ Rate & Rhythm • Rate – Bradycardic, Normal, Tachycardic ___________________________________ • Rhythm – Normal, Regularly Irregular, Irregularly Irregular, & pauses ___________________________________ *** ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 16 ___________________________________ Rhythm • Regularly Irregular – Premature Ventricular Contractions (PVC’s), Blocks (Mobitz I or II) ___________________________________ • Irregularly Irregular – Atrial Fibrillation & Complete Heart Block • Pause – Sick Sinus Syndrome ___________________________________ *** ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 17 ___________________________________ Cardiac Rub • Pericarditis – inflammation of the pericardium ___________________________________ ___________________________________ *** ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 18 Pericardial Effusion or ___________________________________ Tamponade • Distant or muffled heart sounds ___________________________________ • Associated JVD • Pulsus paradoxus ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 19 ___________________________________ Murmurs • Innocent ___________________________________ • Pathological • Caused by turbulence: • strictured valve • incompetent valve ___________________________________ • septal defect • hypertrophic obstructive cardiomyopathy (HOCM) ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 20 ___________________________________ Murmur Timing • Systolic – S1 “Lub” • Aortic Stenosis ___________________________________ • Pulmonary Stenosis • Mitral Insufficiency • Tricuspid Insufficiency • Diastolic –S2 “Dub” • Mitral Stenosis ___________________________________ • Tricuspid Stenosis ALL Diastolic Murmurs • Aortic Insufficiency Are Pathological • Pulmonary Insufficiency ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 21 ___________________________________ Pathology Potentials • Aortic – Stenosis & Insufficient (Regurgitation) ___________________________________ • Mitral – Stenosis & Insufficient • Tricuspid – Stenosis & Insufficient • Pulmonic – Stenosis & Insufficient • HOCM – Stenosis ___________________________________ • Artrioseptal Defect • Ventioculoseptal Defect ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 22 ___________________________________ Murmur Evaluation - Typical • TIMING (DIASTOLIC/SYSTOLIC) (early, mid, late) ___________________________________ • AFFECTED BY BREATHING (YES Rt./NO Lt.) • LOCATION – heard best(2ND ICS LT., 4TH ICS LT, etc.) • [Aortic, Pulmonic, Mitral, Tricuspid] • INTENSITY (1/6,2/6,3/6,4/6-thrill,5/6, 6/6) ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 23 ___________________________________ Murmur Evaluation - Typical • RADIATES (LT. AXILLA, NECK, BACK, LEAN) ___________________________________ • QUALITY (HARSH,BLOWING,MUSICAL) • PATTERN (CRESENDO,DECRESENDO, HOLOSYSTOLIC) • PITCH (HIGH-DIAPH./LOW-BELL or Both) ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 24 ___________________________________ Murmur Evaluation – Modified • Timing ___________________________________ • Affected by inspiration
Recommended publications
  • Essentials of Bedside Cardiology CONTEMPORARY CARDIOLOGY
    Essentials of Bedside Cardiology CONTEMPORARY CARDIOLOGY CHRISTOPHER P. CANNON, MD SERIES EDITOR Aging, Heart Disease and Its Management: Facts and Controversies, edited by Niloo M. Edwards, MD, Mathew S. Maurer, MD, and Rachel B. Wellner, MD, 2003 Peripheral Arterial Disease: Diagnosis and Treatment, edited by Jay D. Coffman, MD, and Robert T. Eberhardt, MD, 2003 Essentials ofBedside Cardiology: With a Complete Course in Heart Sounds and Munnurs on CD, Second Edition, by Jules Constant, MD, 2003 Primary Angioplasty in Acute Myocardial Infarction, edited by James E. Tcheng, MD,2002 Cardiogenic Shock: Diagnosis and Treatment, edited by David Hasdai, MD, Peter B. Berger, MD, Alexander Battler, MD, and David R. Holmes, Jr., MD, 2002 Management of Cardiac Arrhythmias, edited by Leonard I. Ganz, MD, 2002 Diabetes and Cardiovascular Disease, edited by Michael T. Johnstone and Aristidis Veves, MD, DSC, 2001 Blood Pressure Monitoring in Cardiovascular Medicine and Therapeutics, edited by William B. White, MD, 2001 Vascular Disease and Injury: Preclinical Research, edited by Daniell. Simon, MD, and Campbell Rogers, MD 2001 Preventive Cardiology: Strategies for the Prevention and Treatment of Coronary Artery Disease, edited by JoAnne Micale Foody, MD, 2001 Nitric Oxide and the Cardiovascular System, edited by Joseph Loscalzo, MD, phD and Joseph A. Vita, MD, 2000 Annotated Atlas of Electrocardiography: A Guide to Confident Interpretation, by Thomas M. Blake, MD, 1999 Platelet Glycoprotein lIb/IlIa Inhibitors in Cardiovascular Disease, edited by A. Michael Lincoff, MD, and Eric J. Topol, MD, 1999 Minimally Invasive Cardiac Surgery, edited by Mehmet C. Oz, MD and Daniel J. Goldstein, MD, 1999 Management ofAcute Coronary Syndromes, edited by Christopher P.
    [Show full text]
  • Comparison of Traditional and Plethysmographic Methods for Measuring Pulsus Paradoxus
    ARTICLE Comparison of Traditional and Plethysmographic Methods for Measuring Pulsus Paradoxus Jeff A. Clark, MD, FAAP; Mary Lieh-Lai, MD, FAAP; Ron Thomas, PhD; Kalyani Raghavan, MD; Ashok P. Sarnaik, MD, FAAP, FCCM Background: In the evaluation of patients with acute (PPpleth) on the pulse oximeter. Mean difference and asthma, pulsus paradoxus (PP) is an objective and non- 95% confidence intervals were calculated for each invasive indicator of the severity of airway obstruction. method. The 2 methods were also analyzed for correla- However, in children PP may be difficult or impossible tion and agreement using the Pearson product moment to measure. Indwelling arterial catheters facilitate the mea- correlation and a Bland and Altman plot. surement of PP, but they are invasive and generally re- served for critically ill patients. Results: Patients with status asthmaticus had higher PPausc and PPpleth readings compared with nonasthmatic pa- Objective: To determine the utility of the plethysmo- tients. Pulsus paradoxus measured by plethysmography graphic waveform (PPpleth) of the pulse oximeter in mea- in patients with and without asthma was similar to PPausc suring PP. readings (mean difference, 0.6 mm Hg; 95% confidence interval, −0.6 to 2.1 mm Hg). Individual PPpleth readings Methods: Patients from the pediatric intensive care showed significant correlation and agreement with PPausc unit, emergency department, and inpatient wards of a readings in patients both with and without asthma. tertiary care pediatric hospital were eligible for the study. A total of 36 patients (mean age [SD], 11.2 [4.7] Conclusion: Measurement of PP using the pulse oxim- years) were enrolled in the study.
    [Show full text]
  • Practical Cardiac Auscultation
    LWW/CCNQ LWWJ306-08 March 7, 2007 23:32 Char Count= Crit Care Nurs Q Vol. 30, No. 2, pp. 166–180 Copyright c 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins Practical Cardiac Auscultation Daniel M. Shindler, MD, FACC This article focuses on the practical use of the stethoscope. The art of the cardiac physical exam- ination includes skillful auscultation. The article provides the author’s personal approach to the patient for the purpose of best hearing, recognizing, and interpreting heart sounds and murmurs. It should be used as a brief introduction to the art of auscultation. This article also attempts to illustrate heart sounds and murmurs by using words and letters to phonate the sounds, and by presenting practical clinical examples where auscultation clearly influences cardiac diagnosis and treatment. The clinical sections attempt to go beyond what is available in standard textbooks by providing information and stethoscope techniques that are valuable and useful at the bedside. Key words: auscultation, murmur, stethoscope HIS article focuses on the practical use mastered at the bedside. This article also at- T of the stethoscope. The art of the cardiac tempts to illustrate heart sounds and mur- physical examination includes skillful auscul- murs by using words and letters to phonate tation. Even in an era of advanced easily avail- the sounds, and by presenting practical clin- able technological bedside diagnostic tech- ical examples where auscultation clearly in- niques such as echocardiography, there is still fluences cardiac diagnosis and treatment. We an important role for the hands-on approach begin by discussing proper stethoscope selec- to the patient for the purpose of evaluat- tion and use.
    [Show full text]
  • Mosby: Mosby's Nursing Video Skills
    Mosby: Mosby's Nursing Video Skills Procedural Guideline for Assessing Apical Pulse Procedure Steps 1. Verify the health care provider’s orders. 2. Gather the necessary equipment and supplies. 3. Perform hand hygiene. 4. Provide for the patient’s privacy. 5. Introduce yourself to the patient and family if present. 6. Identify the patient using two identifiers. 7. Assess for factors that can affect the apical pulse rate and rhythm, such as medical history, disease processes, age, exercise, position changes, medications, temperature, or sympathetic stimulation. 8. Gloves are only worn if nurse will be in contact with bodily fluids or the patient is in protective precautions. 9. Help the patient into a supine or sitting position, and expose the sternum and the left side of the chest. 10. Locate the point of maximal impulse (PMI, or apical impulse). To do this, find the angle of Louis, which feels like a bony prominence just below the suprasternal notch. 11. Slide your fingers down each side of the angle to find the second intercostal space (ICS). Carefully move your fingers down the left side of the sternum to the fifth intercostal space and over to the left midclavicular line. 12. Feel the PMI as a light tap about 1 to 2 centimeters in diameter, reflecting the apex of the heart. 13. If the PMI is not where you would expect, as in a patient whose left ventricle is enlarged, inch your fingers along the fifth intercostal space until you feel the PMI. 14. Remember where you felt the PMI: over the apex of the heart in the fifth intercostal space at the left midclavicular line.
    [Show full text]
  • Pulsus Paradoxus
    ERJ Express. Published on December 6, 2012 as doi: 10.1183/09031936.00138912 Pulsus paradoxus Olfa Hamzaoui1, Xavier Monnet2,3, Jean‐Louis Teboul2,3 1. Hôpitaux Universitaires Paris‐Sud, Hôpital Antoine Béclère, Service de Réanimation Médicale, 157, rue de la Porte de Trivaux, 92141 Clamart, France. 2. Hôpitaux Universitaires Paris‐Sud, Hôpital de Bicêtre, service de réanimation médicale, 78, rue du Général Leclerc, Le Kremlin‐Bicêtre, F‐94270 France. 3. Université Paris‐Sud, Faculté de médecine Paris‐Sud, EA4533, Le Kremlin‐Bicêtre, 63, rue Gabriel Péri, F‐94270 France. Address for correspondence: Prof. Jean‐Louis Teboul Service de réanimation médicale Centre Hospitalier Universitaire de Bicêtre 78, rue du Général Leclerc 94 270 Le Kremlin‐Bicêtre France e‐mail: jean‐[email protected] Phone: + 33 1 45 21 35 47 Fax: + 33 1 45 21 35 51 1 Copyright 2012 by the European Respiratory Society. Abstract Systolic blood pressure normally falls during quiet inspiration in normal individuals. Pulsus paradoxus is defined as a fall of systolic blood pressure of more than 10 mmHg during the inspiratory phase. Pulsus paradoxus can be observed in cardiac tamponade and in conditions where intrathoracic pressure swings are exaggerated or the right ventricle is distended, such as severe acute asthma or exacerbations of chronic obstructive pulmonary disease. Both the inspiratory decrease in left ventricular stroke volume and the passive transmission to the arterial tree of the inspiratory decrease in intrathoracic pressure contribute to the occurrence of pulsus paradoxus. During cardiac tamponade and acute asthma, biventricular interdependence (series and parallel) plays an important role in the inspiratory decrease in left ventricular stroke volume.
    [Show full text]
  • Auscultation of Abdominal Arterial Murmurs
    Auscultation of abdominal arterial murmurs C. ARTHUR MYERS, D.O.,° Flint, Michigan publications. Goldblatt's4 work on renal hyperten- sion has stimulated examiners to begin performing The current interest in the diagnostic value of ab- auscultation for renal artery bruits in their hyper- dominal arterial bruits is evidenced by the number tensive patients. of papers and references to the subject appearing in Stenosis, either congenital or acquired, and aneu- the recent literature. When Vaughan and Thoreki rysms are responsible for the vast majority of audi- published an excellent paper on abdominal auscul- ble renal artery bruits (Fig. 2). One should be tation in 1939, the only reference they made to highly suspicious of a renal artery defect in a hy- arterial murmurs was that of the bruit of abdominal pertensive patient with an epigastric murmur. Moser aortic aneurysm. In more recent literature, however, and Caldwell5 have produced the most comprehen- there is evidence of increased interest in auscultat- sive work to date on auscultation of the abdomen ing the abdomen for murmurs arising in the celiac, in renal artery disease. In their highly selective superior mesenteric, splenic, and renal arteries. series of 50 cases of abdominal murmurs in which The purpose of this paper is to review some of aortography was performed, renal artery disease the literature referable to the subject of abdominal was diagnosed in 66 per cent of cases. Their con- murmurs, to present some cases, and to stimulate clusions were that when an abdominal murmur of interest in performing auscultation for abdominal high pitch is found in a patient with hypertension, bruits as a part of all physical examinations.
    [Show full text]
  • Intra-Operative Auscultation of Heart and Lungs Sounds: the Importance of Sound Transmission
    Intra-Operative Auscultation of more readily when stethoscopes are used. Loeb Heart and Lungs Sounds: (2) has reported that the response time to detect an abnormal value on an intraoperative The Importance of Sound monitor display and it was 61 seconds with 16% Transmission of the abnormal values not being recognized in 5 minutes. Whereas, Copper et al, (3) found the Anthony V. Beran, PhD* meantime between an event and detection with a stethoscope was 34 seconds. This Introduction suggests that changes in cardio-pulmonary function may be detected more readily with a Sometimes we put so much emphasis on stethoscope (1). Auscultation of heart and lung electronic monitoring devices we forget that sounds during perioperative period is useful our own senses often detect things before a only if the Esophageal Stethoscope provides machine can. Seeing condensation in airway strong, clear transmission of the sounds to the device or clear mask can serve to indicate the anesthesia provider. This study evaluates the presence of ventilation before the signal has sound transmission properties of several even reached the equipment. Sometimes the Esophageal Stethoscopes currently available in sense of smell can be the first thing to aid in the the market. detection of a disconnected airway device or circuit. Similarly, in some situations listening for Methods the presence of abnormal heart or airway sounds can help detect the onset of critical To evaluate the sound transmission properties incidents quicker than electronic monitors. But of the Esophageal Stethoscopes in vitro study in recent years the art of listening has changed was performed. A system that simulates the in the practice of Anesthesia.
    [Show full text]
  • Systolic Murmurs
    Murmurs and the Cardiac Physical Exam Carolyn A. Altman Texas Children’s Hospital Advanced Practice Provider Conference Houston, TX April 6 , 2018 The Cardiac Physical Exam Before applying a stethoscope….. Some pearls on • General appearance • Physical exam beyond the heart 2 Jugular Venous Distention Pallor Cyanosis 3 Work of Breathing Normal infant breathing Quiet Tachypnea Increased Rate, Work of Breathing 4 Beyond the Chest Clubbing Observed in children older than 6 mos with chronic cyanosis Loss of the normal angle of the nail plate with the axis of the finger Abnormal sponginess of the base of the nail bed Increasing convexity of the nail Etiology: ? sludging 5 Chest ❖ Chest wall development and symmetry ❖ Long standing cardiomegaly can lead to hemihypertrophy and flared rib edge: Harrison’s groove or sulcus 6 Ready to Examine the Heart Palpation Auscultation General overview Defects Innocent versus pathologic 7 Cardiac Palpation ❖ Consistent approach: palm of your hand, hypothenar eminence, or finger tips ❖ Precordium, suprasternal notch ❖ PMI? ❖ RV impulse? ❖ Thrills? ❖ Heart Sounds? 8 Cardiac Auscultation Where to listen: ★ 4 main positions ★ Inching ★ Ancillary sites: don’t forget the head in infants 9 Cardiac Auscultation Focus separately on v Heart sounds: • S2 normal splitting and intensity? • Abnormal sounds? Clicks, gallops v Murmurs v Rubs 10 Cardiac Auscultation Etiology of heart sounds: Aortic and pulmonic valves actually close silently Heart sounds reflect vibrations of the cardiac structures after valve closure Sudden
    [Show full text]
  • Bradycardia; Pulse Present
    Bradycardia; Pulse Present History Signs and Symptoms Differential • Past medical history • HR < 60/min with hypotension, acute • Acute myocardial infarction • Medications altered mental status, chest pain, • Hypoxia / Hypothermia • Beta-Blockers acute CHF, seizures, syncope, or • Pacemaker failure • Calcium channel blockers shock secondary to bradycardia • Sinus bradycardia • Clonidine • Chest pain • Head injury (elevated ICP) or Stroke • Digoxin • Respiratory distress • Spinal cord lesion • Pacemaker • Hypotension or Shock • Sick sinus syndrome • Altered mental status • AV blocks (1°, 2°, or 3°) • Syncope • Overdose Heart Rate < 60 / min and Symptomatic: Exit to Hypotension, Acute AMS, Ischemic Chest Pain, Appropriate NO Acute CHF, Seizures, Syncope, or Shock Protocol(s) secondary to bradycardia Typically HR < 50 / min YES Airway Protocol(s) AR 1, 2, 3 if indicated Respiratory Distress Reversible Causes Protocol AR 4 if indicated Hypovolemia Hypoxia Chest Pain: Cardiac and STEMI Section Cardiac Protocol Adult Protocol AC 4 Hydrogen ion (acidosis) if indicated Hypothermia Hypo / Hyperkalemia Search for Reversible Causes B Tension pneumothorax 12 Lead ECG Procedure Tamponade; cardiac Toxins Suspected Beta- IV / IO Protocol UP 6 Thrombosis; pulmonary Blocker or Calcium P Cardiac Monitor (PE) Channel Blocker Thrombosis; coronary (MI) A Follow Overdose/ Toxic Ingestion Protocol TE 7 P If No Improvement Transcutaneous Pacing Procedure P (Consider earlier in 2nd or 3rd AVB) Notify Destination or Contact Medical Control Revised AC 2 01/01/2021 Any local EMS System changes to this document must follow the NC OEMS Protocol Change Policy and be approved by OEMS 1 Bradycardia; Pulse Present Adult Cardiac Adult Section Protocol Pearls • Recommended Exam: Mental Status, HEENT, Skin, Heart, Lungs, Abdomen, Back, Extremities, Neuro • Identifying signs and symptoms of poor perfusion caused by bradycardia are paramount.
    [Show full text]
  • Arrhythmia What Is It?
    Arrhythmia What is it? Most of us have felt our heart race or skip a beat. It’s fairly normal every once and a while. But for some people, it’s a sign of arrhythmia – a disorder of your heart rate or rhythm – that needs to be checked out by a specialist. If you have an arrhythmia (there are multiple types), your heart either beats: • too fast • too slow or • with an irregular pattern Did You Know? This change in your heart rhythm is usually caused by a “glitch” Our heart beats an average of in your heart’s electrical activity, which tells the heart when to 70 to 80 times a minute and contract and pump blood to the body. Your heart doesn’t beat over 100,000 times a day! It’s with the regularity of a Swiss watch, and many factors can cause no wonder millions of people an irregularity. notice palpitations such as skipping a beat, fluttering or a Some of these factors include: racing heart. • having had a heart attack • having heart failure • blood chemistry imbalances • abnormal hormone levels • alcohol, caffeine and other substances or medicines • a variety of inherited abnormalities 8 Tips for Staying Heart Healthy with Arrhythmias Living with an arrhythmia varies tremendously from one person to the next. It will depend on the type of arrhythmia you have, how serious it is and the recommended treatment. Some people can take a single medication to correct their heart’s rhythm; others undergo electrophysiology studies or require a pacemaker or implantable defibrillator. No matter what kind of arrhythmia you have, there are things you can do to keep your heart healthy and ticking as it should.
    [Show full text]
  • Jugular Venous Pressure
    NURSING Jugular Venous Pressure: Measuring PRACTICE & SKILL What is Measuring Jugular Venous Pressure? Measuring jugular venous pressure (JVP) is a noninvasive physical examination technique used to indirectly measure central venous pressure(i.e., the pressure of the blood in the superior and inferior vena cava close to the right atrium). It is a part of a complete cardiovascular assessment. (For more information on cardiovascular assessment in adults, see Nursing Practice & Skill ... Physical Assessment: Performing a Cardiovascular Assessment in Adults ) › What: Measuring JVP is a screening mechanism to identify abnormalities in venous return, blood volume, and right heart hemodynamics › How: JVP is determined by measuring the vertical distance between the sternal angle and the highest point of the visible venous pulsation in the internal jugular vein orthe height of the column of blood in the external jugular vein › Where: JVP can be measured in inpatient, outpatient, and residential settings › Who: Nurses, nurse practitioners, physician assistants, and treating clinicians can measure JVP as part of a complete cardiovascular assessment What is the Desired Outcome of Measuring Jugular Venous Pressure? › The desired outcome of measuring JVP is to establish the patient’s JVP within the normal range or for abnormal JVP to be identified so that appropriate treatment may be initiated. Patients’ level of activity should not be affected by having had the JVP measured ICD-9 Why is Measuring Jugular Venous Pressure Important? 89.62 › The JVP is
    [Show full text]
  • The Carotid Bruit on September 25, 2021 by Guest
    AUGUST 2002 221 Pract Neurol: first published as 10.1046/j.1474-7766.2002.00078.x on 1 August 2002. Downloaded from INTRODUCTION When faced with a patient who may have had a NEUROLOGICAL SIGN stroke or transient ischaemic attack (TIA), one needs to ask oneself some simple questions: was the event vascular?; where was the brain lesion, and hence its vascular territory?; what was the cause? A careful history and focused physical examination are essential steps in getting the right answers. Although one can learn a great deal about the state of a patient’s arteries from expensive vascular imaging techniques, this does not make simple auscultation of the neck for carotid bruits redundant. In this brief review, we will therefore defi ne the place of the bruit in the diagnosis and management of patients with suspected TIA or stroke. WHY ARE CAROTID BRUITS IMPORTANT? A bruit over the carotid region is important because it may indicate the presence of athero- sclerotic plaque in the carotid arteries. Throm- boembolism from atherosclerotic plaque at the carotid artery bifurcation is a major cause of TIA and ischaemic stroke. Plaques occur preferentially at the carotid bifurcation, usually fi rst on the posterior wall of the internal carotid artery origin. The growth of these plaques and their subsequent disintegration, surface ulcera- tion, and capacity to throw off emboli into the Figure 1 Where to listen for a brain and eye determines the pattern of subse- bifurcation/internal carotid quent symptoms. The presence of an arterial http://pn.bmj.com/ artery origin bruit – high up bruit arising from stenosis at the origin of the under the angle of the jaw.
    [Show full text]