Mild and Highly Efficient Transfer Hydrogenation of Aldehyde and Ketone Catalyzed by Rubidium Phosphate

Total Page:16

File Type:pdf, Size:1020Kb

Mild and Highly Efficient Transfer Hydrogenation of Aldehyde and Ketone Catalyzed by Rubidium Phosphate J. Cent. South Univ. (2016) 23: 1603−1610 DOI: 10.1007/s11771-016-3214-x Mild and highly efficient transfer hydrogenation of aldehyde and ketone catalyzed by rubidium phosphate HUANG Yun-jing(黄云敬), YANG Wei-jun(阳卫军), QIN Ming-gao(秦明高), ZHAO Hao-liang(赵昊良) College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China © Central South University Press and Springer-Verlag Berlin Heidelberg 2016 + Abstract: Rubidium phosphate can be more conveniently obtained by extracting trace Rb from the salt lake brine. Rb3PO4 was found to be an excellent heterogeneous catalyst for transfer hydrogenation. Rb3PO4 lost 70% of its active sites after adsorbing water, but the remaining was not affected. The reductions of aldehydes and ketones, when promoted by Rb3PO4, were allowed at room temperature. The activities of substrates at room temperature followed a descending order of 2,6-dichlorobenzaldehyde> 4-bromobenzaldehyde>benzaldehyde>acetophenone>anisaldehyde>butanone. A new catalytic cycle postulating a six-membered cyclic transition state for the reductions of aldehydes and ketones was proposed. These results exploited the catalytic usage of Rb3PO4 and worth in industrial application. Key words: rubidium phosphate; transfer hydrogenation; heterogeneous catalysis; cyclic transition state not to mention their reusability. To find a more efficient 1 Introduction and environmental friendly catalyst for transfer hydrogenation, mild basic Rb3PO4 was used to promote Hydrogenation of carbonyl compounds, which is the reduction (Scheme 1) in this work. Now, Rb3PO4 can important in both organic synthesis and industrial be more conveniently obtained by our new process of application [1−4], was performed with hazardous extracting trace Rb+ from the salt lake brine [16]. With molecular H2 and specifically treated catalysts under the similar structure as Rb3PO4 [17], anhydrous K3PO4 very rigorous conditions before the Meerwein-Ponndorf- was also used as catalyst to go comparing with Rb3PO4. Verley (MPV) reaction was reported [5]. Although MPV Surprisingly, the experiment results indicated that the reaction is carried out at mild temperature by using catalytic property of rubidium phosphate is very high. secondary alcohols such as 2-propanol as H donors, large The reaction can be generated at room temperature. A amounts of Al alkoxides are required to catalyze the new catalytic cycle postulating a six-membered cyclic reduction with high yields [6]. Nickel phthalocyanine [7], transition state for the reductions of aldehydes and ruthenium [8], iridium [9], rhodium [10], and gold [11] ketones is proposed. have also been reported to promote H transfer efficiently. However, these precious metals are costly and toxic, and 2 Experimental the ligands are insufficiently active [12]. Alkali carbonates are often used as additives in All chemicals were analytically pure. Rb3PO4 and catalytic transfer hydrogenation. BACKVALL [13] K3PO4 were obtained from Shanghai Energy Lithium reported that with base additives RuCl2(PPh3)2 could Industrial Co., Ltd. They were calcined at 600 °C before form active dihydride catalyst RuH2(PPh)3. Base use and their structures after calcined had been additives have accelerated the reaction greatly. The confirmed as Rb3PO4/K3PO4 by XRD. Catalytic transfer importance of the base is illustrated by KOH and NaOH hydrogenation was typically carried out using 6.0 mmol used alone without any transition metal or ligands for the carbonyl substrate and 50.0 mL of 2-propanol as reduction of some aromatic aldehydes and ketones reductant and solvent. The mixture was placed in a [14−15]. It is known to all that KOH and NaOH could two-neck round-bottom flask and heated in air with a react with alcohols which is the H donator in this reflux device whereupon 0.4 mmol calcined Rb3PO4 or reaction. So, when the reaction is finished, KOH and 4.0 mmol calcined K3PO4 was added. Liquids were NaOH dissolved in the solvent are hard to be separated, sampled (0.1 mL each time) at regular time intervals and Foundation item: Project(21576074) supported by the National Natural Science Foundation of China Received date: 2015−05−26; Accepted date: 2015−08−30 Corresponding author: YANG Wei-jun, Professor, PhD; Tel: +86−731−88821449; E-mail: [email protected] 1604 J. Cent. South Univ. (2016) 23: 1603−1610 Scheme 1 Catalytic transfer hydrogenation of carbonyl compounds analyzed by gas chromatography. Gas chromatography analysis was performed on a Shimadzu GC-2014 equipped with a 0.5 mm i.d. _25 m PEG20000 capillary column and flame ionization detector. The products were identified by comparison with an authentic sample through gas chromatography and mass spectrometry. To test the reusability of Rb3PO4, the used sample was recovered by filtration after reaction and washed with 2-propanol. It was reused for another reaction after drying. 3 Results and discussion Fig. 2 Conversion of 2,6-dichlorobenzaldehyde promoted by dry Rb PO and wet Rb PO (Reaction conditions: 6.0 mmol 3.1 Operational conditions for Rb PO 3 4 3 4 3 4 substrate, 50.0 mL of 2-propanol as solvent, 0.4 mmol Rb PO , Oxygen and H O in the air, which may be adsorbed 3 4 2 70 °C, air) on the surface cations, poison the catalyst. Although nitrogen environment can reduce the content of the that water adsorption may significantly affect its catalytic interaction between oxygen and H O in the air and the 2 activity. As a result, Rb PO lost nearly 70% of active catalysts, it also rendered the operation more 3 4 sites (Fig. 2). Then, the exposure time was prolonged to complicated. Therefore, comparative experiments were 2.0 h, during which Rb PO totally turned into a conducted (Fig. 1) in order to find out whether nitrogen 3 4 concentrated solution because of copious water protection was necessary. adsorption. The Rb PO solution was used to promote H One system was opened to the air with a 3 4 transformation, the catalytic activity of which remained reflux device and the other one was protected by N2 (Fig. 1). Nitrogen protection plays little effect in the partially with even more water adsorbed. After 1.0 h, reaction as shown. 27% of 2,6-dichlorobenzaldehyde was converted into The influences of water on the catalytic properties corresponding alcohols. of moisture-vulnerable anhydrous alkali metal Equimolar anhydrous K3PO4 was used as catalyst to compounds with extremely high hygroscopicity were go comparing with Rb3PO4. After 1.0 h, only 14% of also evaluated (Fig. 2). 2,6-dichlorobenzaldehyde was converted. So, even Rb3PO4 was fully saturated in air, its catalytic activity Anhydrous Rb3PO4, which was exposed in air for 20 min on purpose, became wet and viscous, suggesting was higher than that of anhydrous K3PO4. Then, 4.0 mmol K3PO4 (ten times of Rb3PO4) was used to promote the reaction, with other conditions being the same as those shown in Fig. 2. After 1.0 h, 98% conversion was observed. K3PO4 that had been exposed in air for 2.0 h and turned into concentrated solution was then used to catalyze the reaction. After another 1.0 h, 33% of 2,6-dichlorobenzaldehyde turned into corresponding alcohols. Water exerted similar effect on the activity of K3PO4 to that on Rb3PO4. 3.2 Reductions of aldehydes and ketones To demonstrate the efficiency of Rb PO , 3 4 Fig. 1 Conversion of 2,6-dichlorobenzaldehyde in air and N2 comparative experiments were carried out on every (Reaction conditions: 6.0 mmol substrate, 50.0 mL of substrate by using K3PO4 as hydrogenation catalyst 2-propanol as solvent, 0.4 mmol Rb3PO4, 70 °C) (Table 1). Different amounts of catalyst were used to J. Cent. South Univ. (2016) 23: 1603−1610 1605 Table 1 Reductions of aldehydes and ketones with 2-propanol Entry Substrate Catalyst Temperature/°C Time/h Conversion/% Product Selectivity/% Cl a 1 2,6-dichlorobenzaldehyde K3PO4 80 2.0 100 100 OH Cl Cl b 2 2,6-dichlorobenzaldehyde Rb3PO4 80 2.0 100 100 OH Cl Cl a 3 2,6-dichlorobenzaldehyde Rb3PO4 20 15.0 42.0 100 OH Cl a 4 4-bromobenzaldehyde K3PO4 60 2.5 52.1 Br 95 OH b 5 4-bromobenzaldehyde Rb3PO4 60 5.0 56.2 Br 95 OH a 6 4-bromobenzaldehyde Rb3PO4 20 15.0 31.4 Br 95 OH a 7 Benzaldehyde K3PO4 80 8.5 82.6 100 OH a 8 Benzaldehyde Rb3PO4 80 3.0 85.8 100 OH a 9 Benzaldehyde Rb3PO4 20 15.0 58.7 100 OH a 10 Anisaldehyde K3PO4 80 5.0 48.9 98 a 11 Anisaldehyde Rb3PO4 80 3.0 56.3 98 a 12 Acetophenone K3PO4 80 9.0 37.0 100 a 13 Acetophenone Rb3PO4 80 4.0 42.3 100 a 14 Butanone K3PO4 80 32.0 13.8 100 a 15 Butanone Rb3PO4 80 10.0 14.9 100 a 16 Butanone Rb3PO4 20 40.0 2.3 100 aReaction conditions: 6.0 mmol substrate, 50.0 mL 2-propanol as solvent, 4.0 mmol catalyst, air; b0.4 mmol catalyst. promote the hydrogenation of aldehydes and ketones to 3.3 High efficiency of Rb3PO4 shorten the reaction time. IVANOV et al [5] reported that alcohols could be The rate of reaction was increased by electron- adsorbed on base catalysts via their hydroxyl hydrogen withdrawing groups on the benzene ring (Entries 1−6, bound to the oxygen of base catalysts and their hydroxyl Table 1) and decreased by electron-donating groups oxygen bound to the surface cation of base catalysts, and (Entries 10 and 11, Table 1). The reduction of butanone that aldehydes and ketones could be absorbed through was much slower due to reversible H transformation. The their oxygen atoms bound to the surface cation of base reduction did happen at room temperature very slowly, catalysts.
Recommended publications
  • P-Cymene Based Ruthenium Complexes As Catalysts
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE QUÍMICA E BIOQUÍMICA p-Cymene Based Ruthenium Complexes as Catalysts Joel David Avelino Fonseca MESTRADO EM QUÍMICA TECNOLÓGICA Especialização em Química Tecnológica e Qualidade 2011 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE QUÍMICA E BIOQUÍMICA p-Cymene Based Ruthenium Complexes as Catalysts Joel David Avelino Fonseca MESTRADO EM QUÍMICA TECNOLÓGICA Especialização em Química Tecnológica e Qualidade Dissertação de mestrado orientada pela Professora Dra. Maria Helena Garcia 2011 p-Cymene Based Ruthenium Complexes as Catalysts This project took place in the School of Chemistry of the University of Leeds, United Kingdom, under the scope of Erasmus Placements. It was co-supervised by Dr. Patrick C. McGowan and Dr. John A. Blacker Acknowledgements First, I would like to express my deepest gratitude to Professor Patrick C. McGowan for giving me the opportunity of doing my master placement in his work group, also for his mentorship, guidance, insightful discussions, continuous support, patience and encouragements during ten months at the University of Leeds. Then I would like to thank Professor John A. Blacker for his valuable discussions and suggestions during my research. My special thanks to Professor Maria H. Garcia for being so supportive in the decision of going abroad, for making this placement possible, for her mentorship, guidance and carefully reviewing the dissertation. I would like to thank the European Commission for providing financial support, namely by giving me an ERASMUS Placement scholarship. I am thankful to all the colleagues with whom I have shared the laboratory, namely from the McGowan and Halcrow groups, who have made my work days so pleasant.
    [Show full text]
  • Transfer Hydrogenation: Employing a Simple, in Situ Prepared Catalytic System
    Transfer Hydrogenation: Employing a Simple, in situ Prepared Catalytic System Thesis by Eleanor Pei Ling Ang In Partial Fulfillment of the Requirements For the Degree of Master of Science King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia © April, 2017 Eleanor Ang Pei Ling All Rights Reserved 2 EXAMINATION COMMITTEE PAGE The thesis of Eleanor Pei Ling Ang is approved by the examination committee. Committee Chairperson: Prof. Kuo-Wei Huang Committee Members: Prof. Jörg Eppinger Prof. Zhiping Lai 3 ABSTRACT Transfer hydrogenation has been recognized to be an important synthetic method in both academic and industrial research to obtain valuable products including alcohols. Transition metal catalysts based on precious metals, such as Ru, Rh and Ir, are typically employed for this process. In recent years, iron-based catalysts have attracted considerable attention as a greener and more sustainable alternative since iron is earth abundant, inexpensive and non-toxic. In this work, a combination of iron disulfide with chelating bipyridine ligand was found to be effective for the transfer hydrogenation of a variety of ketones to the corresponding alcohols in the presence of a simple base. It provided a convenient and economical way to conduct transfer hydrogenation. A plausible role of sulfide next to the metal center in facilitating the catalytic reaction is demonstrated. 4 ACKNOWLEDGEMENTS I would like to express my gratitude to my supervisor, Professor Kuo-Wei Huang, for his guidance, support, valuable insights and advice throughout the course of this research. I would also like to acknowledge Prof. Jörg Eppinger and Prof. Zhiping Lai for their kind agreement to be part of my examination committee.
    [Show full text]
  • Tio2 Photocatalysis for Transfer Hydrogenation
    molecules Review TiO2 Photocatalysis for Transfer Hydrogenation Dongge Ma 1,* , Shan Zhai 1, Yi Wang 1, Anan Liu 2 and Chuncheng Chen 3 1 School of Science, Beijing Technology and Business University, Beijing 100048, China; [email protected] (S.Z.); [email protected] (Y.W.) 2 Basic Experimental Center for Natural Science, University of Science and Technology Beijing, Beijing 100083, China; [email protected] 3 Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; [email protected] * Correspondence: [email protected]; Tel.: +86-010-68985573 Academic Editor: Yasuharu Yoshimi Received: 15 December 2018; Accepted: 15 January 2019; Published: 17 January 2019 Abstract: Catalytic transfer hydrogenation reactions, based on hydrogen sources other than gaseous H2, are important processes that are preferential in both laboratories and factories. However, harsh conditions, such as high temperature, are usually required for most transition-metal catalytic and organocatalytic systems. Moreover, non-volatile hydrogen donors such as dihydropyridinedicarboxylate and formic acid are often required in these processes which increase the difficulty in separating products and lowered the whole atom economy. Recently, TiO2 photocatalysis provides mild and facile access for transfer hydrogenation of C=C, C=O, N=O and C-X bonds by using volatile alcohols and amines as hydrogen sources. Upon light excitation, TiO2 photo-induced holes have the ability to oxidatively take two hydrogen atoms off alcohols and amines under room temperature. Simultaneously, photo-induced conduction band electrons would combine with these two hydrogen atoms and smoothly hydrogenate multiple bonds and/or C-X bonds.
    [Show full text]
  • Transfer Hydrogenation of Olefins Catalysed by Nickel Nanoparticles
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE ARTICLE IN PRESS TET19911_proofprovided by Repositorio 26 October Institucional 2009 de la Universidad 1/7 de Alicante Tetrahedron xxx (2009) 1–7 Contents lists available at ScienceDirect Tetrahedron journal homepage: www.elsevier.com/locate/tet 55 1 56 2 Transfer hydrogenation of olefins catalysed by nickel nanoparticles 57 3 58 4 59 ** * 5 Francisco Alonso , Paola Riente, Miguel Yus 60 6 Departamento de Quı´mica Orga´nica, Facultad de Ciencias and Instituto de Sı´ntesis Orga´nica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain 61 7 62 8 63 9 article info abstract 64 10 65 11 Article history: Nickel nanoparticles have been found to effectively catalyse the hydrogen-transfer reduction of a variety 66 12 Received 22 September 2009 of non-functionalised and functionalised olefins using 2-propanol as the hydrogen donor. The hetero- 67 13 Received in revised form geneous process has been shown to be highly chemoselective for certain substrates, with all the cor- 68 14 October 2009 responding alkanes being obtained in high yields. A synthesis of the natural dihydrostilbene brittonin 69 14 Accepted 15 October 2009 A is also reported based on the use of nickel nanoparticles. 15 Available online xxx 70 16 Ó 2009 Published by Elsevier Ltd. 71 17 Keywords: PROOF 72 18 Hydrogen transfer 73 19 Reduction 74 Olefins 75 20 Nickel nanoparticles 21 76 22 77 23 78 24 79 25 1. Introduction of chiral ligands. In contrast with the reduction of carbonyl com- 80 26 pounds, the hydrogen-transfer reduction of olefins has been little 81 27 The reduction of carbon–carbon double bonds is one of the studied, mainly involving noble-metal catalysts.
    [Show full text]
  • Catalytic Transfer Hydrogenation
    Catalytic Transfer Hydrogenation GOTTFRIED BRIEGER* and TERRY J. NESTRICK Department of Chemistry, Oakland University, Rochester, Michigan 48063 Received August 20, 1973 (Revised Manuscript Received November 2, 1973) Contents In 1952, Braude, Linstead, et made the sugges- tion that catalytic hydrogen transfer from an organic I. Introduction 567 donor molecule to a variety of organic acceptors might I I. Reaction Conditions 568 be possible under mild conditions. In fact, sporadic use A. Nature of the Donor 568 had been made in the past of unsaturated compounds as B. Effect of Solvents 569 hydrogen acceptors in catalytic dehydrogenation reac- C. Effect of Temperature 569 tions. However, few systematic studies were directed D. Effect of Catalyst 570 toward the reverse process, catalytic transfer hydrogena- E. Other Variables 570 tion. I I I. Applicability 570 Knowledge of the basic reaction, however, goes back A. Reduction of Multiple Bonds 570 to the turn of the century, when Knoevenage14 first ob- 1. Olefins 570 2. Acetylenes 570 served that dimethyl 1,4-dihydroterephthaIate dispropor- 3. Carbonyl Compounds 571 tionated readily in the presence of palladium black to di- 4. Nitriles 571 methyl terephthalate and (mostly cis) hexahydroterephthal- 5. Imines, Hydroxylamines, Hydrazones 571 ate. Several years later, Wieland5 observed the same 6. Azo Compounds 571 reaction with dihydronaphthalene. Wieland predicted that 7. Nitro Compounds 571 B. Hydrogenolysis 571 the reaction would also occur with the then unknown 1, Nitriles 571 dihydrobenzenes, a prediction confirmed by the work of 2. Halides 571 Zelinski and Pavlov‘ and Corson and Ipatieff‘ in the 3. Allylic and Benzylic Functional Groups 571 1930’s.
    [Show full text]
  • Highly Selective Vapor and Liquid Phase Transfer Hydrogenation of Diaryl and Polycyclic Ketones with Secondary Alcohols in the Presence of Magnesium Oxide As Catalyst
    catalysts Article Highly Selective Vapor and Liquid Phase Transfer Hydrogenation of Diaryl and Polycyclic Ketones with Secondary Alcohols in the Presence of Magnesium Oxide as Catalyst Marek Gli ´nski*, Anna Markowska, Laura Wro ´nska , Anna Jerzak and Magdalena Tarkowska Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; [email protected] (A.M.); [email protected] (L.W.); [email protected] (A.J.); [email protected] (M.T.) * Correspondence: [email protected] Abstract: MgO has been shown to catalyze an almost quantitative hydrogen transfer from 2-octanol as the hydrogen donor to benzophenone to form benzhydrol, a useful intermediate product in the pharmaceutical industry. The hydrogen transfer from a series of alcohols to the carbonyl group of benzophenone, its ten derivatives, four polycyclic ketones, and 2-naphthyl phenyl ketone was carried out in liquid (LP) or vapor phase (VP). The dependence of reactivity on the structure of the hydrogen donor, reaction temperature, donor-acceptor ratio, amount of catalyst, and the type and position of substituents has been established. For both reaction modes, optimal conditions for selective synthesis Citation: Gli´nski,M.; Markowska, of the alcohols were determined and side reactions were investigated. The results indicate that the A.; Wro´nska,L.; Jerzak, A.; Tarkowska, M. Highly Selective reactivity of the ketone is suppressed by the presence of a methyl substituent in the ortho position to Vapor and Liquid Phase Transfer a much greater extent in LP mode. A scale-up was demonstrated in the liquid phase mode. Hydrogenation of Diaryl and Polycyclic Ketones with Secondary Keywords: magnesium oxide; transfer hydrogenation; benzophenones; 2-octanol; selective reduction Alcohols in the Presence of Magnesium Oxide as Catalyst.
    [Show full text]
  • JM-8759ZP Published Mainmanuscript
    Issue in Honor of Prof. Jürgen Martens ARKIVOC 2015 (ii) 20-33 Transfer hydrogenation of ketones in the presence of half sandwich ruthenium (II) complexes bearing imidazoline and benzimidazole ligand Neslihan Şahin,a Serpil Demir,b and İsmail Özdemir*b a Cumhuriyet University, Faculty of Science and Art, Department of Chemistry, Sivas, Turkey b Inönü University, Catalysis Research and Application Centre, 44280 Malatya, Turkey E-mail: [email protected] Dedicated to Prof. Jürgen Martens in appreciation of his outstanding contributions to synthetic organic chemistry DOI: http://dx.doi.org/10.3998/ark.5550190.p008.759 Abstract This article explores the possibility of using imidazoline and benzimidazole derivatives as interesting ligands due to the fact that they are structurally simple, readily available, inexpensive, and they allow easy introduction of various substituents into their structure. Therefore, N- substituted imidazoline and benzimidazole ligands and their new ruthenium complexes 6 [RuCl2(η -p-cymene)(L)] (L = N-substituted imidazoline/benzimidazole) were synthesized and characterized. The catalytic performances of new complexes are investigated for the transfer hydrogenation of ketones. Furthermore, corresponding secondary alcohols were also obtained in good yields. Keywords: Azole ligands, ruthenium, transfer hydrogenation, ketones Introduction Transfer hydrogenation is a potentially useful protocol for the reduction of carbonyl compounds to their corresponding alcohols, which are key intermediates in pharmaceuticals,
    [Show full text]
  • Carbonyl Reduction and Biomass: a Case Study of Sustainable Catalysis Alain You Li , Audrey Moores* †Centre for Green Chemistr
    Alain You Li and Audrey Moores. Carbonyl Reduction and Biomass: A Case Study of Sustainable Catalysis, ACS Sustainable Chemistry & Engineering 2019 7 (12), 10182-10197 DOI: 10.1021/acssuschemeng.9b00811 Carbonyl Reduction and Biomass: a Case Study of Sustainable Catalysis † † Alain You Li , Audrey Moores* †Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada. *[email protected] Graphical abstract Abstract Catalysis plays a major role at mitigating the environmental impact of the chemical industry, drastically cutting its energy and material consumption. For this perspective, we have chosen C=O reduction in the context of biomass as a benchmark reaction to introduce and illustrate essential aspects of green catalysis. We first covered the most used C=O hydrogenation substrates made from biomass. Then, we looked at alternative energy sources to convective heating, discussed the use of greener solvents and reductants, and listed a few precious metal- free catalytic systems. Finally we looked at various hydrogen sources, including bio-sourced ones. In particular, we emphasized the use of metrics in order to quantify the actual impact of these innovations. Keywords Catalysis – Hydrogenation – Biomass – Solvent - Energy Synopsis (1 sentence 20 words) C=O reduction of biomass was used as a benchmark to give an overview of recent developments in catalysis Alain You Li and Audrey Moores. Carbonyl Reduction and Biomass: A Case Study of Sustainable Catalysis,
    [Show full text]
  • Transfer Hydrogenations and Kinetic Resolutions Van Dirk Klomp
    transferhydrogenations and kineticresolutions DirkKlomp transferhydrogenationsandkineticresolutions DirkKlomp Uitnodiging voorhetbijwonenvande openbareverdedigingvan hetproefschriften destellingenop maandag 13maart2006 13.00uur endedaaraan voorafgaandetoelichting voorniet-chemiciom 12.30uur indeSenaatszaalvande TechnischeUniversiteitDelft Mekelweg5teDelft Naafloopvande plechtigheidbentuookvan hartewelkomopdereceptie inhetzelfdegebouw. DirkKlomp Esdoornlaan32 1521EBWormerveer 075-6223403 [email protected] Stellingen behorende bij het proefschrift transfer hydrogenations and kinetic resolutions van Dirk Klomp 1- De door Kao et al. gebruikte structuurbepalende verbinding fructose voor de synthese van de mesoporeuze silica SBA-1 bepaalt niet de structuur van het materiaal. H.-M. Kao, C.-C. Ting, A. S. T. Chiang, C.-C. Teng, C.-H. Chen, Chem. Commun. 2005 ,1058-1060. 2- Het door Kim et al. gesuggereerde mechanisme voor de deactivering van het enzym α-CT in de hydrolyse van β-lactonen, waarbij het lacton opent op de 4-positie, is zeer onwaarschijnlijk. D. H. Kim, J. Park, S. J. Chung, J. D. Park, N.-K. Park, J. H. Han, Bioorg. Med. Chem. 2002 , 10 , 2553-2560. 3- Psychologisch gezien betekent de omschakeling door wetenschappelijke tijdschriften van papieren versies naar elektronische, een verlies aan kennis voor de wetenschapper. 4- Omdat de aarde langzamer gaat draaien is soms de toevoeging van schrikkelsecondes noodzakelijk. Wetenschappers die deze secondes pas willen toevoegen op het moment dat ze zijn opgespaard tot een schrikkeluur, omdat de toevoegingen storingen kunnen veroorzaken in elektronische apparatuur, hebben de menselijke factor uit het oog verloren. 5- In de weekeindes waarin een nieuw boek over Harry Potter uitkomt, is het aantal kinderen dat op de eerstehulpafdeling van het ziekenhuis belandt bijna half zo groot als in andere weekeindes. Gwilym et al. hebben de afname over de lange termijn waarschijnlijk onderschat.
    [Show full text]
  • Ruthenium-Phenol Catalysts for Transfer Hydrogenation Reactions
    (19) TZZ __T (11) EP 2 915 584 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 09.09.2015 Bulletin 2015/37 B01J 31/22 (2006.01) B01J 31/02 (2006.01) (21) Application number: 14157826.0 (22) Date of filing: 05.03.2014 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • Paciello, Rocco GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 67098 Bad Dürkheim (DE) PL PT RO RS SE SI SK SM TR • Limburg, Carolin Designated Extension States: 68199 Mannheim (DE) BA ME (74) Representative: Reitstötter Kinzebach (71) Applicant: BASF SE Patentanwälte 67056 Ludwigshafen (DE) Sternwartstrasse 4 81679 München (DE) (54) Ruthenium-phenol catalysts for transfer hydrogenation reactions (57) The present invention is directed towards a cat- alyst in transfer hydrogenation reactions. In particular, alyst which is obtainable by contacting in situ a ruthenium thepresent invention isdirected to amethod for preparing precursor and a phenol derivative. Furthermore, the menthone starting from isopulegol. present invention is directed towards the use of said cat- EP 2 915 584 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 915 584 A1 Description [0001] The present invention is directed towards a catalyst which is obtainable by contacting in situ a ruthenium precursor and a phenol derivative. Furthermore, the present invention is directed towards the use of said catalyst in 5 transfer hydrogenation reactions. In particular, the present invention is directed to a method for preparing menthone starting from isopulegol.
    [Show full text]
  • Unexpectedly Fast Catalytic Transfer Hydrogenation of Aldehydes By
    G Model CATTOD-9135; No. of Pages 6 ARTICLE IN PRESS Catalysis Today xxx (2014) xxx–xxx View metadata, citation and similar papers at core.ac.uk brought to you by CORE Contents lists available at ScienceDirect provided by Repository of the Academy's Library Catalysis Today j ournal homepage: www.elsevier.com/locate/cattod Unexpectedly fast catalytic transfer hydrogenation of aldehydes by formate in 2-propanol–water mixtures under mild conditions a b a,b,∗ a,1 Imre Szatmári , Gábor Papp , Ferenc Joó , Ágnes Kathó a University of Debrecen, Department of Physical Chemistry, P.O. Box 7, H-4010 Debrecen 10, Hungary b MTA-DE Homogeneous Catalysis and Reaction Mechanisms Research Group, P.O. Box 7, H-4010 Debrecen 10, Hungary a r t i c l e i n f o a b s t r a c t Article history: Unsaturated aldehydes were efficiently reduced by transfer hydrogenation from sodium formate in Received 16 April 2014 water–2-propanol mixtures using a water-soluble Ru(II)-tertiary phosphine catalyst. The reaction yielded Received in revised form 24 May 2014 unsaturated alcohols with complete selectivity and without hydrogenation or isomerization of C C bonds Accepted 18 June 2014 of the substrates. Very high reaction rate was observed in the transfer hydrogenation of cinnamaldehyde Available online xxx ◦ −1 −1 ◦ already at 30 C with turnover frequency of 160 h and this increased to 3800 h at 70 C. Consequently, the method is applicable to the synthesis of unsaturated alcohols in case of heat sensitive or highly volatile Keywords: aldehydes, too.
    [Show full text]
  • Strong Solvent Effects on Catalytic Transfer Hydrogenation of Ketones with [Ir(Cod)(NHC)(PR3)] Catalysts in 2-Propanol-Water
    catalysts Article Strong Solvent Effects on Catalytic Transfer Hydrogenation of Ketones with [Ir(cod)(NHC)(PR3)] Catalysts in 2-Propanol-Water Mixtures Krisztina Orosz 1,2,Gábor Papp 1, Ágnes Kathó 1, Ferenc Joó 1,3 and Henrietta Horváth 3,* 1 Department of Physical Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary; [email protected] (K.O.); [email protected] (G.P.); [email protected] (Á.K.); [email protected] (F.J.) 2 Doctoral School of Chemistry, University of Debrecen, H-4002 Debrecen, Hungary 3 MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, P.O. Box 400, H-4002 Debrecen, Hungary * Correspondence: [email protected] Received: 29 November 2019; Accepted: 19 December 2019; Published: 21 December 2019 Abstract: The synthesis and characterization of the new Ir(I)-complexes [IrCl(cod)(Bnmim)], [Ir(cod)(emim)(PPh3)]Cl and [Ir(cod)(Bnmim)(mtppms)] are reported. The zwitterionic complexes [Ir(cod)(NHC)(mtppms)] and Na2[Ir(cod)(NHC)(mtppts)] (NHC = emim, bmim or Bnmim; mtppms-Na and mtppts-Na3 = sodium salts of mono- and trisulfonated triphenylphosphine, respectively) were found to be effective precatalysts for transfer hydrogenation of aromatic and 1 aliphatic ketones in basic 2-propanol-water mixtures with initial turnover frequencies up to 510 h− at 80 ◦C, and their catalytic performances were compared to those of [IrCl(cod)(NHC)] complexes (NHC = emim, bmim, Bnmim, IMes) and [Ir(cod)(emim)(PPh3)]Cl. Three of the catalysts were characterized by single-crystal X-ray diffraction. The reaction rates of the transfer hydrogenation of acetophenone and benzophenone showed strong dependence on the water concentration of the solvent, indicating preferential solvation of the catalytically active metal complexes.
    [Show full text]