<<

Surrogate Endpoints in Oncology Clinical Trials: Are We There Yet? From a Practical Perspective

Qian Shi, PhD., Professor of Biostatistics and Oncology

ASA Biopharmaceutical Section Regulatory-Industry Statistics Workshop September 24, 2020

©2020 MFMER | slide-1 What We Know

©2020 MFMER | slide-2 Surrogate Endpoints

Make drug development Un-validated surrogate endpoints can produce erroneous faster, more efficient, safer, conclusions regarding the efficacy or safety of therapies and more feasible

Shi and Sargent, Int J Clin Oncol. 2009

©2020 MFMER | slide-3 Individual- vs. Trial-level Surrogacy

Prognostic association Treatment effect correlation

R2 = 0.85

Prognostic does NOT guarantee surrogacy

Munshi N et al., JAMA Oncol, 2017

©2020 MFMER | slide-4 Trial-level Surrogacy – Primary Validation

Treatment effect correlation

R2 = 0.85 Context of Use: A substitute for “true” in future trials

* 2 ** 2 R WLS and R Copula

*Sargent et al. JCO, 2005/2007; **Buyse et al. Biostatistics, 2000 ©2020 MFMER | slide-5 What We Have Learned

©2020 MFMER | slide-6 R2 and R2 Critical trial-level factors that impact the WLS Copula estimation accuracy and variability: most commonly used estimates • Number of trials • Range of the treatment effect sizes

Variability Bias

Shi et al. CSDA, 2011 ©2020 MFMER | slide-7 Subgroups in All • Previously untreated follicular lymphoma Comers Trials • Surrogate endpoint: CR30 • True clinical endpoint: PFS

Shi et al, JCO 2017

©2020 MFMER | slide-8 Treatment Mechanisms • Previously untreated advance colorectal cancer • Surrogate endpoint: PFS • True clinical endpoint: OS

Pre-biologics Era Post-biologics Era

Buyse et al, JCO 2007 Shi et al, JCO 2014

©2020 MFMER | slide-9 Changing Standard of • Early stage colon caner after curative resection Care • Surrogate endpoint: DFS • True clinical endpoint: OS

Sargent et al, Shi et al, ASCO JCO 2007 2019 Oral •3-year DFS •Stage III •Stage II & III •2-year DFS •Oxa /IRi •Stage III •5FU •Stage II & III •Oxa/IRI +/- •5FU biologics Sargent et al, Sargent, et al, JCO 2005 EJC 2011

5FU+LVProlonged SAR FOLFOX Prolonged SAR, TTR, OS 1978 1995 2007 1998 2004 2009 Shi et al, JCO 2013 Salem et al, ASCO GI poster 2018

©2020 MFMER | slide-10 Novel – New Challenges

©2020 MFMER | slide-11 Surrogate Endpoints in Oncology Trials

Endpoint Events Measures Surveillance

True clinical Overall Survival Deaths Death certificates Patient contact endpoint

Deaths Imaging, blood test, Routine examinations Traditional surrogate -free BM biopsy, etc. endpoint Survival (SOC, standard Disease Status (RECIST, IMWG) processes)

Study specific PSA, MRD, ctDNA, Biomarker Biomarker Status Treatment specific cognitive functions Novel Outside of routine examination surrogate endpoint Composite Biomarker status + Disease status Endpoint involving Disease Status MRD requiring CR dependent Biomarker Deaths

©2020 MFMER | slide-12 Surrogate Endpoints in Oncology Trials

Endpoint Events Measures Surveillance Source of heterogeneities

True clinical Overall Survival• Patient selectionDeaths for testingDeath certificates Patient contact endpoint • Testing methods

Deaths Imaging, blood test, Routine examinations Traditional surrogate Disease-free • Testing time points BM biopsy, etc. endpoint Survival (SOC, standard Disease Status (RECIST, IMWG) processes)

Study specific PSA, MRD, ctDNA, Biomarker Biomarker Status Treatment specific cognitive functions Novel Outside of routine examination surrogate endpoint Composite Biomarker status + Disease status Endpoint involving Disease Status MRD requiring CR dependent Biomarker Deaths

©2020 MFMER | slide-13 Sensitivity Level – Deeper Responses Defined by Biomarkers

Minimal Residual Disease Clinical Utility Lower Higher • More accurately defining Sensitivity Sensitivity cure

Non- MRD+ MRD+ responders Statistical Challenges: Conversion rate differ per • Testing • Assay Conversion • Laboratory • Specimen

Responders MRD- MRD- • Disease characteristics Response Rate ↓ • Regimen

©2020 MFMER | slide-14 Dynamics of Responses Over Time

RECIST Responses Response Reversing?

Directing Treatment? MRD Responses

Response Lasts?

©2020 MFMER | slide-15 Biomarker Testing – Planning to Data Collection

Number of Testing • Single vs. many • Varying across patients

Timing of Testing • Treatment dependence • Response dependence

Patient Selection • Response dependence • Randomization

©2020 MFMER | slide-16 Proposals

©2020 MFMER | slide-17 General Criteria and Principles of Developing Candidate Surrogate Endpoints

• Clinically meaningful: • Capture the targeted treatment effect • Correlates the treatment effect on true endpoint • Statistically meaningful: • Programmable derivations based on necessary data elements • Consistency across all trials • Consistency from evaluation to future use • Practically useful in further trials: • Provides utility advantages compared to the true endpoints • Data elements needed can be routinely collected in the future trials

©2020 MFMER | slide-18 IPD from RCTs are Critical for Surrogacy Evaluations

• Individual patient data (IPD) from RCTs • Unbiased estimates of treatment effects within trials • Consistent derivations across trials • Evaluate (and develop) surrogate endpoints with no published treatment effect data • RCT selections: Inclusive • Prespecified inclusion/exclusion criteria • More is better (specificity) • Population heterogeneities (universality) • Treatment class and treatment sequencing (universality)

©2020 MFMER | slide-19 Call for Long-term and Large Scale of Collaborations

• Harmonization of testing methods • Common testing time points • Common data collection •Share Data!!

©2020 MFMER | slide-20 QUESTIONS & ANSWERS

©2020 MFMER | slide-21