Defining the Mechanisms of Neutrophil Exocytosis Using Proteomic Techniques

Total Page:16

File Type:pdf, Size:1020Kb

Defining the Mechanisms of Neutrophil Exocytosis Using Proteomic Techniques University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 8-2005 Defining the mechanisms of neutrophil exocytosis using proteomic techniques. George Lominadze 1978- University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Recommended Citation Lominadze, George 1978-, "Defining the mechanisms of neutrophil exocytosis using proteomic techniques." (2005). Electronic Theses and Dissertations. Paper 852. https://doi.org/10.18297/etd/852 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. DEFINING THE MECHANISMS OF NEUTROPHIL EXOCYTOSIS USING PROTEOMIC TECHNIQUES By George Lominadze B.S. University of Louisville, 2000 A Dissertation Submitted to the Faculty of the Graduate School of the University of Louisville in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of Biochemistry and Molecular Biology University of Louisville Louisville, Kentucky August 2005 DEFINING THE MECHANISMS OF NEUTROPHIL EXOCYTOSIS USING PROTEOMIC TECHNIQUES By George Lominadze B.S., University of Louisville, 20000 A Dissertation Approved on June 1, 2005 by the following Thesis Committee Thesis Director ii ACKNOWLEDGEMENTS I would like to thank my mentor, Dr. Kenneth McLeish for his guidance, trust, support, and patience. I would also like to thank Dr. Richard Ward, who has acted as a co-mentor on the granule proteome project. I am very grateful to other members of my dissertation committee, Dr. Jon Klein, Dr. Robert Gray, and Dr. William Dean. I also wish to express my gratitude to Dr. Madhavi Rane for her insightful suggestions, encouragement and advice. I thank Dr. David Powell for carrying out the ESI-MSIMS analysis at Vanderbilt University. Finally, I would like to thank my parents and my brother for being a perfect family. 111 ABSTRACT DEFINING THE MECHANISMS OF NEUTROPHIL EXOCYTOSIS USING PROTEOMIC TECHNIQUES George Lominadze June 1,2005 Exocytosis of intracellular granules is critical for conversion of inactive, circulating neutrophils to fully activated cells. The p38 MAPK pathway plays a central role in neutrophil exocytosis, although its mechanism of action is unknown. We used several proteomic approaches to identify granule proteins and find targets of the p38 MAPK and its downstream kinase, MK2, on granules. Our analysis identified 286 proteins on neutrophil granules, four of which were known MK2 substrates. Known p38 substrates were not detected. However, MRP-14 was identified as a novel p38 MAPK substrate. MRP-14 was phosphorylated by p38 MAPK in neutrophils upon cell stimulation and translocated to plasma membranes and gelatinase granules, as well as to Triton X-IOO-insoluble structures at the base of lamellipodia. Phosphorylation of the MRP-14 by p38 MAPK increased binding to actin in vitro. These results suggest that MRP-14 is a potential mediator of p38 MAPK-dependent exocytosis in human neutrophils. IV TABLE OF CONTENTS PAGE ACKNOWLEDGEMENTS ....................................................................... .iii ABSTRACT ......................................................................................... .iv LIST OF TABLES ................................................................................. vii LIST OF FIGURES ................................................................................ .ix CHAPTER I. GENERAL INTRODUCTION Role ofNeutrophils in Host Defense and Tissue Damage ........................... 1 Neutrophil Granules and Their Role in Neutrophil Function ....................... .2 Neutrophil Granule Exocytosis ......................................................... 8 Application ofProteomics to Protein and Phosphoprotein Identification ........ 27 II. PROTEOMIC ANALYSIS OF HUMAN NEUTROPHIL GRANULES Foreword .............. ".................................................................. 37 Introduction .............................................................................. 38 Methods ...................................................................................40 Results .................................................................................... 44 Discussion ................................................................................ 72 III. MYELOID-RELATED PROTEIN-14 IS A P38 MAPK SUBSTRATE IN HUMAN NEUTROPHILS Foreword ................................................................................. 80 Introduction .............................................................................. 83 Materials and Methods ..................................................................40 Results .................................................................................... 95 Discussion .............................................................................. 117 IV. SUMMARY AND FINAL CONCLUSIONS ....................................... 126 v REFERENCES .................................................................................. .131 APPENDIX ....................................................................................... 161 CURRICULUM VITAE ........................................................................ 193 VI LIST OF TABLES PAGE TABLE 1. Known Proteins of Neutrophil Granules ................................................. 13 2. Proteins Identified From 2D Gels of Neutrophil Granules ............................ 56 3. A Complete List of Proteins Identified on Neutrophil Granules ..................... 59 4. Supplementary Table 1: Peptides Used for Identification of Proteins From More Than One 2D-HPLC ESI-MS/MS Experiment. ....................................... 162 5. Supplementary Table 2: Peptides Used for Identification of Proteins From a Single 2D-HPLC ESI-MS/MS Experiment. ............................................. 176 6. Proteins Rejected as Granule Components ............................................ 181 Vll LIST OF FIGURES PAGE FIGURE 1. A diagram of granule biogenesis during stages of neutrophil maturation ............ 5 2. Schematic representation of the steps leading to secretary granule exocytosis .... .1 0 3. Assessment of purity of granule fractions .............................................. .45 4. 2D gels of whole granules ................................................................ .48 5. 2D gels of gelatinase granule proteins fractionated by carbonate lysis and by ammonium sulfate precipitation of Triton X-100 solubilized proteins .............. 52 6. 2D gels of specific granule proteins fractionated by carbonate lysis and by ammonium sulfate precipitation of Triton X-I00 solubilized proteins .............. 54 7. Assessment of actin content on neutrophil granules by western blotting ........... 69 8. Phosphorylation of urea-solubilized gelatinase granule proteins by MAPKAPK-2 and p38 MAPK in the presence of [y32p]ATP ............................................ 81 9. Identification ofp38 MAPK substrates in human neutrophil lysate .................... 97 10. In vitro phosphorylation ofMRP14 by p38 MAPK ................................... 99 11. Phosphorylation of MRP 14 by p38 MAPK in intact neutrophils ................... 102 12. P38 MAPKphosphorylates MRP14 on Thr-I13 ...................................... 105 13. P38 MAPK phosphorylates wild type hrMRP14, but not the TI13A mutant. .. 107 14. Phosphorylation-induced redistribution ofMRP-14 in intact neutrophils ........ .110 15. Association ofMRP-14 with neutrophil granule and plasma membrane/secretory vesicle fractions ........................................................................... .113 Vlll 16. Translocation ofMRP-14 to neutrophil gelatinase granule and plasma membrane/secretory vesicle fractions in tMLP-stimulated neutrophils ............ 115 17. Phosphorylation by p38 MAPK enhanced actin binding ofMRP-14/MRP-8 .... 118 IX CHAPTER I GENERAL INTRODUCTION Role of Neutrophils in Host Defense and Tissue Damage Neutrophils (also called polymorphonuclear leukocytes or PMNs) are phagocytic granulocytes that are crucial to host defense. These cells provide the initial cellular response at sites of infection and inflammation. Upon exposure to pro-inflammatory chemo attractants , chemokines, and cytokines, neutrophils are transformed from benign circulating cells to cells capable of adhesion to vascular endothelium, migration along chemoattractant gradients to sites of infection or trauma, phagocytosis of opsonized pathogens, and the release of antimicrobial agents [1]. In all of the above-mentioned processes, exocytosis of mobilizable membrane-bound compartments plays a central role. Although the infiltration of neutrophils into injured tissue protects it from invading pathogens, substantial evidence exists showing that neutrophil-induced host tissue injury contributes to inflammatory diseases, ischemia-reperfusion injury, and impaired wound healing [2-5]. Upon neutrophil activation the secretion of granule proteinases, peroxidases and cationic peptides acts in concert with the release of reactive oxygen intermediates to promote chemotaxis by digestion of extracellular matrix or to directly damage host
Recommended publications
  • Diagnosing Platelet Secretion Disorders: Examples Cases
    Diagnosing platelet secretion disorders: examples cases Martina Daly Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Disclosures for Martina Daly In compliance with COI policy, ISTH requires the following disclosures to the session audience: Research Support/P.I. No relevant conflicts of interest to declare Employee No relevant conflicts of interest to declare Consultant No relevant conflicts of interest to declare Major Stockholder No relevant conflicts of interest to declare Speakers Bureau No relevant conflicts of interest to declare Honoraria No relevant conflicts of interest to declare Scientific Advisory No relevant conflicts of interest to declare Board Platelet granule release Agonists (FIIa, Collagen, ADP) Signals Activation Shape change Membrane fusion Release of granule contents Platelet storage organelles lysosomes a granules Enzymes including cathepsins Adhesive proteins acid hydrolases Clotting factors and their inhibitors Fibrinolytic factors and their inhibitors Proteases and antiproteases Growth and mitogenic factors Chemokines, cytokines Anti-microbial proteins Membrane glycoproteins dense (d) granules ADP/ATP Serotonin histamine inorganic polyphosphate Platelet a-granule contents Type Prominent components Membrane glycoproteins GPIb, aIIbb3, GPVI Clotting factors VWF, FV, FXI, FII, Fibrinogen, HMWK, FXIII? Clotting inhibitors TFPI, protein S, protease nexin-2 Fibrinolysis components PAI-1, TAFI, a2-antiplasmin, plasminogen, uPA Other protease inhibitors a1-antitrypsin, a2-macroglobulin
    [Show full text]
  • Phylogenetic Analysis Reveals an Ancient Gene Duplication As The
    1 Phylogenetic analysis reveals an ancient gene duplication as 2 the origin of the MdtABC efflux pump. 3 4 Kamil Górecki1, Megan M. McEvoy1,2,3 5 1Institute for Society & Genetics, 2Department of MicroBiology, Immunology & Molecular 6 Genetics, and 3Molecular Biology Institute, University of California, Los Angeles, CA 90095, 7 United States of America 8 Corresponding author: [email protected] (M.M.M.) 9 1 10 Abstract 11 The efflux pumps from the Resistance-Nodulation-Division family, RND, are main 12 contributors to intrinsic antibiotic resistance in Gram-negative bacteria. Among this family, the 13 MdtABC pump is unusual by having two inner membrane components. The two components, 14 MdtB and MdtC are homologs, therefore it is evident that the two components arose by gene 15 duplication. In this paper, we describe the results obtained from a phylogenetic analysis of the 16 MdtBC pumps in the context of other RNDs. We show that the individual inner membrane 17 components (MdtB and MdtC) are conserved throughout the Proteobacterial species and that their 18 existence is a result of a single gene duplication. We argue that this gene duplication was an ancient 19 event which occurred before the split of Proteobacteria into Alpha-, Beta- and Gamma- classes. 20 Moreover, we find that the MdtABC pumps and the MexMN pump from Pseudomonas aeruginosa 21 share a close common ancestor, suggesting the MexMN pump arose by another gene duplication 22 event of the original Mdt ancestor. Taken together, these results shed light on the evolution of the 23 RND efflux pumps and demonstrate the ancient origin of the Mdt pumps and suggest that the core 24 bacterial efflux pump repertoires have been generally stable throughout the course of evolution.
    [Show full text]
  • Alterations in Platelet Alpha-Granule Secretion and Adhesion on Collagen Under Flow in Mice Lacking the Atypical Rho Gtpase Rhobtb3
    cells Article Alterations in Platelet Alpha-Granule Secretion and Adhesion on Collagen under Flow in Mice Lacking the Atypical Rho GTPase RhoBTB3 Martin Berger 1,2, David R. J. Riley 1, Julia Lutz 1, Jawad S. Khalil 1, Ahmed Aburima 1, Khalid M. Naseem 3 and Francisco Rivero 1,* 1 Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull, HU6 7RX Hull, UK; [email protected] (M.B.); [email protected] (D.R.J.R.); [email protected] (J.L.); [email protected] (J.S.K.); [email protected] (A.A.) 2 Department of Internal Medicine 1, University Hospital, RWTH Aachen, 52074 Aachen, Germany 3 Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, LS2 9NL Leeds, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1482-466433 Received: 8 January 2019; Accepted: 7 February 2019; Published: 11 February 2019 Abstract: Typical Rho GTPases, such as Rac1, Cdc42, and RhoA, act as molecular switches regulating various aspects of platelet cytoskeleton reorganization. The loss of these enzymes results in reduced platelet functionality. Atypical Rho GTPases of the RhoBTB subfamily are characterized by divergent domain architecture. One family member, RhoBTB3, is expressed in platelets, but its function is unclear. In the present study we examined the role of RhoBTB3 in platelet function using a knockout mouse model. We found the platelet count, size, numbers of both alpha and dense granules, and surface receptor profile in these mice were comparable to wild-type mice.
    [Show full text]
  • Primary Antibodies Flyer
    Primary Antibodies Your choice of size and format Format Concentration Size CF® dye conjugates (13 colors) 0.1 mg/mL 100 or 500 uL Biotin, HRP or AP conjugates 0.1 mg/mL 100 or 500 uL R-PE, APC, or Per-CP conjugates 0.1 mg/mL 250 uL Purified, with BSA 0.1 mg/mL 100 or 500 uL Purified, BSA-free (Mix-n-Stain™ Ready) 1 mg/mL 50 uL Advantages Figure 1. IHC staining of human prostate Figure 2. Flow cytometry analysis of U937 • More than 1000 monoclonal antibodies carcinoma with anti-ODC1 clone cells with anti-CD31/PECAM clone C31.7, • Growing selection of monoclonal rabbit ODC1/485. CF647 conjugate (blue) or isotype control (orange). antibodies • Validated in IHC and other applications Your choice of 13 bright and photostable CF® dyes • Choose from 13 bright and stable CF® dyes CF® dye Ex/Em (nm) Features • Also available with R-PE, APC, PerCP, HRP, AP, CF®405S 404/431 • Better fit for the 450/50 flow cytometer channel than Alexa Fluor® 405 or biotin CF®405M 408/452 • More photostable than Pacific Blue®, with less green spill-over • Purified antibodies available BSA-free, 1 mg/mL, • Compatible with super-resolution imaging by SIM ready to use for Mix-n-Stain™ labeling or other CF®488A 490/515 • Less non-specific binding and spill-over than Alexa Fluor® 488 conjugation • Very photostable and pH-insensitive • Compatible with super-resolution imaging by TIRF • Offered in affordable 100 uL size CF®543 541/560 • Brighter than Alexa Fluor® 546 CF®555 555/565 • Brighter than Cy®3 • Validated in multicolor super-resolution imaging by STORM CF®568
    [Show full text]
  • Enzymatic Encoding Methods for Efficient Synthesis Of
    (19) TZZ__T (11) EP 1 957 644 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/10 (2006.01) C12Q 1/68 (2006.01) 01.12.2010 Bulletin 2010/48 C40B 40/06 (2006.01) C40B 50/06 (2006.01) (21) Application number: 06818144.5 (86) International application number: PCT/DK2006/000685 (22) Date of filing: 01.12.2006 (87) International publication number: WO 2007/062664 (07.06.2007 Gazette 2007/23) (54) ENZYMATIC ENCODING METHODS FOR EFFICIENT SYNTHESIS OF LARGE LIBRARIES ENZYMVERMITTELNDE KODIERUNGSMETHODEN FÜR EINE EFFIZIENTE SYNTHESE VON GROSSEN BIBLIOTHEKEN PROCEDES DE CODAGE ENZYMATIQUE DESTINES A LA SYNTHESE EFFICACE DE BIBLIOTHEQUES IMPORTANTES (84) Designated Contracting States: • GOLDBECH, Anne AT BE BG CH CY CZ DE DK EE ES FI FR GB GR DK-2200 Copenhagen N (DK) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • DE LEON, Daen SK TR DK-2300 Copenhagen S (DK) Designated Extension States: • KALDOR, Ditte Kievsmose AL BA HR MK RS DK-2880 Bagsvaerd (DK) • SLØK, Frank Abilgaard (30) Priority: 01.12.2005 DK 200501704 DK-3450 Allerød (DK) 02.12.2005 US 741490 P • HUSEMOEN, Birgitte Nystrup DK-2500 Valby (DK) (43) Date of publication of application: • DOLBERG, Johannes 20.08.2008 Bulletin 2008/34 DK-1674 Copenhagen V (DK) • JENSEN, Kim Birkebæk (73) Proprietor: Nuevolution A/S DK-2610 Rødovre (DK) 2100 Copenhagen 0 (DK) • PETERSEN, Lene DK-2100 Copenhagen Ø (DK) (72) Inventors: • NØRREGAARD-MADSEN, Mads • FRANCH, Thomas DK-3460 Birkerød (DK) DK-3070 Snekkersten (DK) • GODSKESEN,
    [Show full text]
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • Nihms124287.Pdf (2.042Mb)
    Intragranular Vesiculotubular Compartments are Involved in Piecemeal Degranulation by Activated Human Eosinophils The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Melo, Rossana C.N., Sandra A.C. Perez, Lisa A. Spencer, Ann M. Dvorak, and Peter F. Weller. 2005. “Intragranular Vesiculotubular Compartments Are Involved in Piecemeal Degranulation by Activated Human Eosinophils.” Traffic 6 (10) (July 28): 866–879. doi:10.1111/j.1600-0854.2005.00322.x. Published Version doi:10.1111/j.1600-0854.2005.00322.x Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:28714144 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA NIH Public Access Author Manuscript Traffic. Author manuscript; available in PMC 2009 July 24. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Traffic. 2005 October ; 6(10): 866±879. doi:10.1111/j.1600-0854.2005.00322.x. Intragranular Vesiculotubular Compartments are Involved in Piecemeal Degranulation by Activated Human Eosinophils Rossana C.N. Melo1,2, Sandra A.C. Perez2, Lisa A. Spencer2, Ann M. Dvorak3, and Peter F. Weller2,* 1Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, UFJF, Juiz de Fora, MG, Brazil 2Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA 3Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA Abstract Eosinophils, leukocytes involved in allergic, inflammatory and immunoregulatory responses, have a distinct capacity to rapidly secrete preformed granule-stored proteins through piecemeal degranulation (PMD), a secretion process based on vesicular transport of proteins from within granules for extracellular release.
    [Show full text]
  • The Endogenous Antimicrobial Cathelicidin LL37 Induces Platelet Activation and Augments Thrombus Formation
    The endogenous antimicrobial cathelicidin LL37 induces platelet activation and augments thrombus formation Article Published Version Salamah, M. F., Ravishankar, D., Kodji, X., Moraes, L. A., Williams, H. F., Vallance, T. M., Albadawi, D. A., Vaiyapuri, R., Watson, K., Gibbins, J. M., Brain, S. D., Perretti, M. and Vaiyapuri, S. (2018) The endogenous antimicrobial cathelicidin LL37 induces platelet activation and augments thrombus formation. Blood Advances, 2 (21). pp. 2973-2985. ISSN 2473-9529 doi: https://doi.org/10.1182/bloodadvances.2018021758 Available at http://centaur.reading.ac.uk/79972/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1182/bloodadvances.2018021758 Publisher: American Society of Hematology All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online REGULAR ARTICLE The endogenous antimicrobial cathelicidin LL37 induces platelet activation and augments thrombus formation Maryam F. Salamah,1 Divyashree Ravishankar,1,* Xenia Kodji,2,* Leonardo A. Moraes,3,* Harry F. Williams,1 Thomas M. Vallance,1 Dina A. Albadawi,1 Rajendran Vaiyapuri,4 Kim Watson,5 Jonathan M. Gibbins,5 Susan D. Brain,2 Mauro Perretti,6
    [Show full text]
  • PROTEOMIC ANALYSIS of HUMAN URINARY EXOSOMES. Patricia
    ABSTRACT Title of Document: PROTEOMIC ANALYSIS OF HUMAN URINARY EXOSOMES. Patricia Amalia Gonzales Mancilla, Ph.D., 2009 Directed By: Associate Professor Nam Sun Wang, Department of Chemical and Biomolecular Engineering Exosomes originate as the internal vesicles of multivesicular bodies (MVBs) in cells. These small vesicles (40-100 nm) have been shown to be secreted by most cell types throughout the body. In the kidney, urinary exosomes are released to the urine by fusion of the outer membrane of the MVBs with the apical plasma membrane of renal tubular epithelia. Exosomes contain apical membrane and cytosolic proteins and can be isolated using differential centrifugation. The analysis of urinary exosomes provides a non- invasive means of acquiring information about the physiological or pathophysiological state of renal cells. The overall objective of this research was to develop methods and knowledge infrastructure for urinary proteomics. We proposed to conduct a proteomic analysis of human urinary exosomes. The first objective was to profile the proteome of human urinary exosomes using liquid chromatography-tandem spectrometry (LC- MS/MS) and specialized software for identification of peptide sequences from fragmentation spectra. We unambiguously identified 1132 proteins. In addition, the phosphoproteome of human urinary exosomes was profiled using the neutral loss scanning acquisition mode of LC-MS/MS. The phosphoproteomic profiling identified 19 phosphorylation sites corresponding to 14 phosphoproteins. The second objective was to analyze urinary exosomes samples isolated from patients with genetic mutations. Polyclonal antibodies were generated to recognize epitopes on the gene products of these genetic mutations, NKCC2 and MRP4. The potential usefulness of urinary exosome analysis was demonstrated using the well-defined renal tubulopathy, Bartter syndrome type I and using the single nucleotide polymorphism in the ABCC4 gene.
    [Show full text]
  • Calprotectin and Calgranulin C Serum Levels in Bacterial Sepsis
    Diagnostic Microbiology and Infectious Disease 93 (2019) 219–226 Contents lists available at ScienceDirect Diagnostic Microbiology and Infectious Disease journal homepage: www.elsevier.com/locate/diagmicrobio ☆ Calprotectin and calgranulin C serum levels in bacterial sepsis Eva Bartáková a,MarekŠtefan a,Alžběta Stráníková a, Lenka Pospíšilová b, Simona Arientová a,Ondřej Beran a, Marie Blahutová b, Jan Máca a,c,MichalHoluba,⁎ a Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, U Vojenské nemocnice 1200, 169 02 Praha 6, Czech Republic b Department of Clinical Biochemistry, Military University Hospital Prague, U Vojenské nemocnice 1200, 169 02 Praha 6, Czech Republic c Department of Anesthesiology and Intensive Care Medicine, University Hospital of Ostrava, 17. listopadu 1790/5, 708 52 Ostrava-Poruba, Czech Republic article info abstract Article history: The aim of this study was to evaluate the serum levels of calprotectin and calgranulin C and routine biomarkers in Received 26 March 2018 patients with bacterial sepsis (BS). The initial serum concentrations of calprotectin and calgranulin C were signif- Received in revised form 2 October 2018 icantly higher in patients with BS (n = 66) than in those with viral infections (n = 24) and the healthy controls Accepted 10 October 2018 (n = 26); the level of calprotectin was found to be the best predictor of BS, followed by the neutrophil- Available online 17 October 2018 lymphocyte count ratio (NLCR) and the level of procalcitonin (PCT). The white blood cell (WBC) count and the NLCR rapidly returned to normal levels, whereas PCT levels normalized later and the increased levels of Keywords: Sepsis calprotectin, calgranulin C, and C-reactive protein persisted until the end of follow-up.
    [Show full text]
  • Proteomic Analysis of Two Non-Bronchoscopic Methods of Sampling the Lungs of Patients with the Acute Respiratory Distress Syndrome (ARDS)
    Clin Proteom (2007) 3:30–41 DOI 10.1007/s12014-007-9002-8 Proteomic Analysis of Two Non-Bronchoscopic Methods of Sampling the Lungs of Patients with the Acute Respiratory Distress Syndrome (ARDS) Dong W. Chang & Giuseppe Colucci & Tomas Vaisar & Trevor King & Shinichi Hayashi & Gustavo Matute-Bello & Roger Bumgarner & Jay Heinecke & Thomas R. Martin & Guido M. Domenighetti Published online: 5 January 2008 # Humana Press Inc. 2007 Abstract BAL samples, 13.2% were increased in s-Cath compared to Objective The collection of lung fluid using a suction catheter mini-BAL, and 18.4% were decreased in s-Cath compared (s-Cath) and non-bronchoscopic bronchoalveolar lavage to mini-BAL. For each of the seven subjects, overabun- (mini-BAL) are two minimally invasive methods of sampling dance analysis showed that the actual number of differen- the distal airspaces in patients with the acute respiratory tially expressed spots in the mini-BAL and s-Cath sample distress syndrome (ARDS). The objective of this study was to was more than the expected number if the samples were determine the similarity of the lung fluid samples recovered identical. There were nine proteins that were consistently by these methods using proteomic analysis. differentially expressed between the mini-BAL and s-Cath Methods Distal lung fluid samples were collected from samples. Of these nine proteins, five are abundantly found seven mechanically ventilated patients with ARDS using in neutrophils or airway epithelial cells, suggesting that the both s-Cath and mini-BAL in each patient and compared s-Cath may sample the bronchial airways to a greater extent using two-dimensional difference gel electrophoresis.
    [Show full text]
  • The Protein Import Machinery of Mitochondria-A Regulatory Hub In
    Cell Metabolism Perspective The Protein Import Machinery of Mitochondria—A Regulatory Hub in Metabolism, Stress, and Disease Angelika B. Harbauer,1,2,3,4 Rene´ P. Zahedi,5 Albert Sickmann,5,6 Nikolaus Pfanner,1,4,* and Chris Meisinger1,4,* 1Institut fu¨ r Biochemie und Molekularbiologie, ZBMZ 2Trinationales Graduiertenkolleg 1478 3Faculty of Biology 4BIOSS Centre for Biological Signalling Studies Universita¨ t Freiburg, 79104 Freiburg, Germany 5Leibniz-Institute for Analytical Sciences–ISAS–e.V., 44139 Dortmund, Germany 6Medizinisches Proteom-Center, Ruhr-Universita¨ t Bochum, 44801 Bochum, Germany *Correspondence: [email protected] (N.P.), [email protected] (C.M.) http://dx.doi.org/10.1016/j.cmet.2014.01.010 Mitochondria fulfill central functions in bioenergetics, metabolism, and apoptosis. They import more than 1,000 different proteins from the cytosol. It had been assumed that the protein import machinery is constitu- tively active and not subject to detailed regulation. However, recent studies indicate that mitochondrial protein import is regulated at multiple levels connected to cellular metabolism, signaling, stress, and patho- genesis of diseases. Here, we discuss the molecular mechanisms of import regulation and their implications for mitochondrial homeostasis. The protein import activity can function as a sensor of mitochondrial fitness and provides a direct means of regulating biogenesis, composition, and turnover of the organelle. Introduction machinery is essential for the viability
    [Show full text]