<<

Nucleosynthesis of heavy elements in supernovae and - mergers

Almudena Arcones Solar system abundances

Solar photosphere and meteorites: chemical signature of gas cloud where the formed

Contribution of all processes

Big Bang: H, He Lodders 2003

peak

in stellar interiors r-process s-process burning s-process: slow r-process: neutron capture rapid neutron capture

abundance = mass fraction / r-process path

Sneden & Cowan 2003 masses measured at the ESR

82

r-process path

126 stable nuclei 50 will be measured 82 with CR at FAIR silver 28 with 20 50 known masses Z 1st peak: A≈80 → N=50 2nd peak: A≈130 → N=82 8 28 20 3rd peak: A≈195 → N=126 iron 8 N rare earth peak A≈165 → ? r-process path uranium

masses measured neutron capture faster than beta decayat the ESR → high neutron density 82 seed nuclei + Yn/Yseed > 100 r-process path

126 gold stable nuclei 50 r-processwill be measured 82 with CR at FAIR silver 28 nuclides with 50 Z 20 known masses

8 28 20 8 N iron Galactic chemical

First : H, He Heavy elements New generation of stars

Interstellar medium (ISM)

The very -deficient star HE 0107-5240 (Hamburg-ESO survey) The very metal-deficient star Oldest observed stars HE 0107-5240 Silver Eu Gold

Elemental abundances in: - ultra metal-poor stars and - solar system

‣Robust r-process for 56

How many “r-processes” contribute to solar system and UMP stars abundances?

Sneden, Cowan, Gallino 2008 Where does the r-process occur?

Core-collapse supernovae mergers

Neutron stars

Cas A (Chandra X-Ray observatory) Neutron-star merger simulation (S. Rosswog)

•neutrino-driven winds (Woosley et al. 1994,…) •dynamic ejecta •jets (Winteler et al. 2012) •neutrino-driven winds •evaporation disk •shocked surface layers (Ning, Qian, Meyer 2007) •neutrino-induced in He shell (Banerjee, Haxton, Qian 2011) (Lattimer & Schramm 1974, Freiburghaus et al. 1999, ....) Core-collapse supernovae

the death of massive stars and the birth of new elements

EoS Core-collapse simulations

Hot bubble Shock

Proto-neutron star

Long-time hydrodynamical simulations:

- ejecta evolution from ~5ms after bounce to ~3s in 2D (Arcones & Janka 2011) and ~10s in 1D (Arcones et al. 2007) - explosion triggered by neutrinos - detailed study of nucleosynthesis-relevant conditions Core-collapse supernova simulations

slow ejecta

reverse shock shock

neutrino-driven wind

Long-time hydrodynamical simulations:

- ejecta evolution from ~5ms after bounce to ~3s in 2D (Arcones & Janka 2011) and ~10s in 1D (Arcones et al. 2007) - explosion triggered by neutrinos - detailed study of nucleosynthesis-relevant conditions

R [km] Initial Phase of Collapse R [km] Neutrino Trapping (t ~ 0) δ (t ~ 0.1s, c ~10¹² g/cm³) R Fe ~ 3000 RFe

νe

νe

νe ~ 100 Si Si ν e Fe, Ni Fe, Ni νe

νe

M(r) [M ] M(r) [M ] 0.5 1.0 ~ MCh 0.5 Mhc 1.0 heavy nuclei Si−burning shell Si−burning shell

R [km] R [km] Shock Propagation and ν e Burst δ Bounce and Shock Formationδ (t ~ 0.11s, c ∼< 2 o) R (t ~ 0.12s) RFe Fe Rs ~ 100 km νe radius of νe shock Rν formation νe

position of νe shock ~ 10 Si ν Si e formation ν Fe e Fe, Ni free n, νe p Ni νe

M(r) [M ] 0.5 1.0 M(r) [M ] 0.5 1.0

δ nuclearδ matter nuclei nuclei ( ∼> ο) Si−burning shell Neutrino-driven windsSi−burning shell

Shock Stagnation and ν Heating, R [km] R [km] Neutrino Cooling and Neutrino− Explosion (t ~ 0.2s) 5 10 Driven Wind (t ~ 10s) neutrons and form α-particles Rs ~ 200 α-particles recombine into seed nuclei

4 ν ,ν νe,µ,τ ,νe,µ,τ 10 e,µ,τ e,µ,τ

Ni R ~ 100 3 g free n, p Si 10 Si p R ν ~ 50 2 α He νe 10 n νe,µ,τ ,νe,µ,τ r−process? νe,µ,τ ,νe,µ,τ νe O R ns ~ 10

Rν M(r) [M ] n M(r) [M ] PNS 1.3 gain layer 1.5 PNS 1.4 α,n 9 3 n, p α,n, Be, cooling layer 12 C, seed NSE → charged particle reactions / α-process → r-process Figure 2. Schematic representation of the processes that occur in a c o l l a p s i n g s t e l l a r i r o n c o r e o n t h e w a y t o th e weak r-process supernova explosion. The diagrams (from top left to bottom rightT) v i s=u a l10ize -th 8e pGKhys i c a l c o n d i t i o n s a t t h e o n s e t8o -f 2 GK νp-process core collapse, neutrino trapping, shock formation, propagation of the prompt shock, shock stagnation and revival by neutrino heating, and r-process nucleosynthesis in the neutrino-driven wind of the newly formed neutron star, T < 3 GK respectively, as suggested by current computer simulations. In theforup ap reviewer par seets o Arconesf the fi &g uThielemannres the d y(2013)namical state is shown, with arrows indicating the flow of the stellar fluid. The lower parts of the figures contain information about the nuclear composition of the stellar plasma and the role of neutrinos during the different phases.

41 Which elements are produced in neutrino winds?

Arcones et al 2007 Silver

no r-process ❒ mass element Radius [cm] Shock Reverse shock Neutron star

time [s] Lighter heavy elements in neutrino-driven winds

νp-process weak r-process

rich neutron rich

observations Honda et al. 2006

Observation pattern reproduced! Overproduction at A=90, magic neutron number N=50 (Hoffman et al. 1996) suggests: Production of p-nuclei only a fraction of neutron-rich ejecta (Wanajo et al. 2011) Arcones & Montes (2011) C.J. Hansen, Montes, Arcones (2014) Lighter heavy elements in neutrino-driven winds

νp-process weak r-process

proton rich neutron rich

observations

Sr Sr 5 Overproduction at A=90, magic neutron1 0Observation.66 pattern reproduced! − 0.49 − 0.65 6 − 0number.48 N=50 (Hoffman et al. 1996) suggests:2 0.64 7 − 0Production.63 of p-nuclei − 0only.47 a fraction of neutron-rich ejecta 0.62 8 3 − (Wanajo et al. 2011) − 0.61 9 0.46 0.60 − 4 10 0.45 − Ye 0.59 Ye 0.58 (Arcones &− Montes, 2011) 11 0.44 5 0.57 − − 0.56 12 0.43 6 0.55 − − 0.54 13 0.42 − 7 0.53 14 0.41 − 0.52 − 0.51 15 0.40 8 40 50 60 70 80 90 100 110 − 40 50 60 70 80 90 100 110 − Entropy [kB/nuc] Entropy [kB/nuc] Arcones & Bliss (2014) Key reactions: weak r-process

2 10− (α,n) baseline Ye =0.45 3 10− λ 10 for Z =10 30 (α,n) · − 4 λ(α,n) 0.1forZ =10 30 10− · −

5 10−

6 10− abundance 7 10−

8 10−

9 10− baseline Ye =0.45 3 10− λ 10 for Z =30 40 (α,n) · − 4 λ(α,n) 0.1forZ =30 40 10− · −

5 10−

6 10− abundance 7 10−

8 10−

9 10− 10 15 20 25 30 35 40 45 50 55 Bliss, Arcones, Montes, Pereira (in prep.) Z Origin of elements from Sr to Ag

Astrophysical site Observations

ν wind

Chemical evolution [Sr/Fe] Nucleosynthesis: Hansen et al. 2013 identify key reactions [Fe/H] Neutron star mergers Neutron star mergers

Ejecta from three regions:

• dynamical ejecta • neutrino-driven wind • disk evaporation

disk evaporation

Rosswog 2013 Neutron star mergers: robust r-process

1.2M 1.4M 1.4M 1.4M 2M 1.4M

Right conditions for a successful r-process (Lattimer & Schramm 1974, Freiburghaus et al. 1999) nucleosynthesis of dynamical ejecta robust r-process: - extreme neutron-rich conditions (Ye =0.04) - several fission cycles

Korobkin, Rosswog, Arcones, Winteler (2012) see also Bauswein, Goriely, and Janka Hotokezaka, Kiuchi, Kyutoku, Sekiguchi, Shibata, Tanaka, Wanajo Ramirez-Ruiz, Roberts, ... T (GK)

ρ (g cm-3)

robust r-process

Korobkin et al. 2012 in neutron star mergers

Transient with kilo-nova luminosity (Metzger et al. 2010, Roberts et al. 2011, Goriely et al. 2011): direct observation of r-process, EM counter part to GW (see also Kulkarni 2005: macronova)

Multi messenger (e.g. Metzger & Berger 2012, Rosswog 2012, 2013, Bauswein et al. 2013)

Berger, Fong & Chornock, 2013 Tanaka & Hotokezaka, 2013, Hotokezaka et al. 2013 Grossman, Korobkin, Rosswog, Piran, 2014 Neutron star mergers: neutrino-driven wind

3D simulations after merger Perego et al. (2014) disk and neutrino-wind evolution neutrino emission and absorption Nucleosynthesis: 17 000 tracers

4 3 2 1

Martin et al. (2015) see also Fernandez & Metzger 2013, Metzger & Fernandez 2014, Just et al. 2014, Sekiguchi et al. Neutron star mergers: neutrino-driven wind

Martin et al. (2015) Time and angle dependency

Black hole formation determines time for wind nucleosynthesis (Fernandez & Metzger 2013, Kasen et al. 2015)

Early times: low Ye: heavy elements Late times: Ye ~0.35: lighter heavy elements angle dependency

Martin et al. (2015) Wind and dynamic ejecta

Wind ejecta complement dynamic ejecta

Complete mixing: solar system abundances and UMP stars

Partial mixing: Honda-like star?

dynamical ejecta

disk ejecta

Martin et al. (2015) Neutron star mergers and GCE

Argast, Samland, Matteucci, Romano, Thielemann, Qian (2004) Arcones, Korobkin, Rosswog (2014)

-6 M(Eu) = 9x10 M⊙ -6 3x10 M⊙ -6 1x10 M⊙

time delay = 1 10 100 Myr

+209.1 -1 merger contribution always [Fe/H]>-2 merger rate = 83 -66.1 Myr (Kalogera et al. 2004) inefficient mixing stars with M>30 M⊙: ns merger: Mennekens & Vanbeveren (2014), van de Voort et al. (2015), Ishimaru et al. (2015), ... ns merger + ccsn (jets): Cescutti & Chiappini (2015), Wehmeyer et al. (2015) Ye Supernova-jet-like explosion

3D magneto-hydrodynamical simulations: rapid rotation and strong magnetic fields

matter collimates: neutron-rich jets

right r-process conditions

Ye simulation: only ν emission Ye corrected for ν absorption

Winteler, Käppeli, Perego et al. 2012 input nuclear masses, , reaction rates (neutron capture), fission

Erler et al. (2012) Nuclear masses

Abundances based on density functional theory - six sets of different parametrisation (Erler et al. 2012) - two realistic astrophysical scenarios: jet-like sn and neutron star mergers

Martin, Arcones, Nazarewicz, Olsen (2016)

First systematic uncertainty band for r-process abundances

Uncertainty band depends on A, in contrast to homogeneous band for all A e.g., Mumpower et al. 2015

Can we link masses to r-process abundances? Two neutron separation

Nucleosynthesis path at constant Sn: (n,γ)-(γ,n) equilibrium

Neutron capture

Beta decay

S2n/2 = 1.5 MeV

Martin, Arcones, Nazarewicz, Olsen (2016) Two neutron : abundances

freeze-out abundances before decay → final abundances neutron capture during decay (Surmann & Engel 2001, Arcones & Martinez-Pinedo 2011)

Martin, Arcones, Nazarewicz, Olsen (2016) Nuclear correlations and r-process without correlations with correlations

Delaroche et al. 2010: microscopic nuclear mass calculations including quadrupole correlations

Nuclear correlations: strong impact on trough before third peak

Arcones & Bertsch (2012) Fission: barriers and yield distributions

Korobkin, Rosswog, Arcones, Winteler (2012)

Neutron star mergers: r-process with two simple fission descriptions

2nd peak (A~130): fission yield distribution 3rd peak (A~195): mass model, neutron captures

Eichler et al. 2015, Goriely et al. 2013 Conclusions

How many r-processes? How many astrophysical sites? lighter heavy elements (Sr-Y-Zr-...-Ag): neutrino-driven winds heavy r-process: mergers: dynamical, wind, disk evaporation jet-like supernovae

Needs Neutron-rich nuclei: experiments with radioactive beams, theory

Improved supernova and merger simulations: EoS, neutrino rates

Observations: oldest stars, kilo/macronovae, neutrinos, gravitational waves, ...

Chemical evolution models