How to Spot Ocular Abnormalities in Progressive Supranuclear Palsy? a Practical Review Onanong Phokaewvarangkul and Roongroj Bhidayasiri*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Blepharospasm with Elevated Anti-Acetylcholine Receptor Antibody Titer
https://doi.org/10.1590/0004-282X20180076 ARTICLE Blepharospasm with elevated anti-acetylcholine receptor antibody titer Blefaroespasmo com título elevado de anticorpos antirreceptores de acetilcolina Min Tang1, Wu Li2, Ping Liu1, Fangping He1, Fang Ji1, Fanxia Meng1 ABSTRACT Objective: To determine whether serum levels of anti-acetylcholine receptor antibody (anti-AChR-Abs) are related to clinical parameters of blepharospasm (BSP). Methods: Eighty-three adults with BSP, 60 outpatients with hemifacial spasm (HFS) and 58 controls were recruited. Personal history, demographic factors, response to botulinum toxin type A (BoNT-A) and other neurological conditions were recorded. Anti- AChR-Abs levels were quantified using an enzyme-linked immunosorbent assay. Results: The anti-AChR Abs levels were 0.237 ± 0.022 optical density units in the BSP group, which was significantly different from the HFS group (0.160 ± 0.064) and control group (0.126 ± 0.038). The anti-AChR Abs level was correlated with age and the duration of response to the BoNT-A injection. Conclusion: Patients with BSP had an elevated anti-AChR Abs titer, which suggests that dysimmunity plays a role in the onset of BSP. An increased anti-AChR Abs titer may be a predictor for poor response to BoNT-A in BSP. Keywords: Blepharospasm, hemifacial spasm, botulinum toxin type A. RESUMO Objetivo: Determinar se os níveis séricos do anticorpo antirreceptor de acetilcolina (anti-AChR-Abs) estão relacionados aos parâmetros clínicos do blefaroespasmo (BSP). Métodos: Fora recrutados 83 adultos com BSP, 60 pacientes ambulatoriais com espasmo hemifacial (HFS) e 58 controles. Foi aplicado um questionário para registrar história pessoal, fatores demográficos, resposta à toxina botulínica tipo A (BoNT-A) e outras condições neurológicas. -
Effective Treatment of Neurological Symptoms with Normal Doses of Botulinum Neurotoxin in Wilson's Disease
toxins Communication Effective Treatment of Neurological Symptoms with Normal Doses of Botulinum Neurotoxin in Wilson’s Disease: Six Cases and Literature Review Harald Hefter and Sara Samadzadeh * Department of Neurology, University Hospital of Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-211-811-7025; Fax: 49-211-810-4903 Abstract: Recent cell-based and animal experiments have demonstrated an effective reduction in botulinum neurotoxin A (BoNT/A) by copper. Aim: We aimed to analyze whether the successful symptomatic BoNT/A treatment of patients with Wilson’s disease (WD) corresponds with unusually high doses per session. Among the 156 WD patients regularly seen at the outpatient department of the university hospital in Düsseldorf (Germany), only 6 patients had been treated with BoNT/A during the past 5 years. The laboratory findings, indications for BoNT treatment, preparations, and doses per session were extracted retrospectively from the charts. These parameters were compared with those of 13 other patients described in the literature. BoNT/A injection therapy is a rare (<4%) symptomatic treatment in WD, only necessary in exceptional cases, and is often applied only transiently. In those cases for which dose information was available, the dose per session and indication appear to be within usual limits. Despite the evidence that copper can interfere with the botulinum toxin in preclinical models, patients with WD do not require higher doses of the toxin than other patients with dystonia. Keywords: Citation: Hefter, H.; Samadzadeh, S. Wilson’s disease; neurological symptoms; botulinum neurotoxin type A; dose adjustment; Effective Treatment of Neurological reduced compliance Symptoms with Normal Doses of Botulinum Neurotoxin in Wilson’s Key Contribution: There is no need for high doses of botulinum neurotoxin in the symptomatic Disease: Six Cases and Literature treatment of Wilson’s disease. -
Visual Fixation Development in Children
Graefe’s Arch Clin Exp Ophthalmol (2007) 245:1659–1665 DOI 10.1007/s00417-007-0585-6 CLINICAL INVESTIGATION Visual fixation development in children Eva Aring & Marita Andersson Grönlund & Ann Hellström & Jan Ygge Received: 12 December 2006 /Revised: 2 March 2007 /Accepted: 31 March 2007 / Published online: 24 April 2007 # Springer-Verlag 2007 Abstract there were no significant differences with regard to gender Background The ability to keep steady fixation on a target or laterality in any of the investigated variables. No is one of several aspects of good visual function. However, nystagmus was observed. there are few reports on visual fixation during childhood in Conclusion This study establishes values for visual fixation healthy children. behaviour in a non-clinical population aged 4–15 years, Methods An infrared eye-tracking device (Orbit) was used which can be used for identifying children with fixation to analyse binocular fixation behaviour in 135 non-clinical abnormalities. participants aged 4–15 years. The children wore goggles and their heads were restrained using a chin and forehead Keywords Blinks . Drifts . Intruding saccades . rest, while binocularly fixating a stationary target for 20 s. Centre of gravity Results The density of fixations around the centre of gravity increased with increasing age (p<0.01), and the time of fixation without intruding movements increased Introduction with increasing age (p=0.02), while intruding saccades decreased with increasing age (p<0.01). The number of The ability to visually fixate a target is one of several blinks and drifts did not differ between 4 and 15 years, and aspects of good visual function [1]. -
Trifluperazine Induced Blepharospasm – a Missed Diagnosis
Case Report Annals of Clinical Case Reports Published: 24 Aug, 2016 Trifluperazine Induced Blepharospasm – A Missed Diagnosis Sood T1*, Tomar M2, Sharma A2 and Ravinder G3 1Department of Ophthalmology, Civil Hospital Sarkaghat, India 2Department of Ophthalmology, Indira Gandhi Medical College, India 3Department of Dermatology, Zonal Hospital Bilaspur, India Abstract Tardive dystonia is a class of “tardive” movement disorder caused by antipsychotics and is specified by reflex muscle contraction, which may be tonic, spasmodic, patterned, or repetitive. This neurological disorder most commonly occurs as the repercussion of long-term or high-dose use of antipsychotic drugs. Tardive dyskinesia uncommonly inculpates the muscles of eye closure. Blepharospasm is a kind of focal tardive dystonia distinguished by persistent intermittent or persistent closure of the eyelids. Blepharospasm is an uncommon, persistently disabling medical condition rendering patient functionally blind and occupationally handicapped .We hereby tend to report a case of trifluoperazine induced tardive blepharospasm. Case Presentation A 46-year male patient reported to eye opd with complaint of progressive difficulty in opening his eyes for last two years .On examination he was unable to open his eyes voluntarily, sometimes thrusting his head backwards or rubbing his brow with his fingers during these episodes. Past and family history revealed no psychiatric or neurological illness. No past history of any other psychiatric/medical/surgical illness could be elicited. On specifically asking about medication history, he gave history of trifluoperazine intake. Patient was diagnosed with schizophreniform disorder 3 years back and was on treatment since then. Initially, he was started with 5mg trifluoperazine in twice daily dosage which had to be increased to (15mg/day) within a month. -
Myelopathy—Paresis and Paralysis in Cats
Myelopathy—Paresis and Paralysis in Cats (Disorder of the Spinal Cord Leading to Weakness and Paralysis in Cats) Basics OVERVIEW • “Myelopathy”—any disorder or disease affecting the spinal cord; a myelopathy can cause weakness or partial paralysis (known as “paresis”) or complete loss of voluntary movements (known as “paralysis”) • Paresis or paralysis may affect all four limbs (known as “tetraparesis” or “tetraplegia,” respectively), may affect only the rear legs (known as “paraparesis” or “paraplegia,” respectively), the front and rear leg on the same side (known as “hemiparesis” or “hemiplegia,” respectively) or only one limb (known as “monoparesis” or “monoplegia,” respectively) • Paresis and paralysis also can be caused by disorders of the nerves and/or muscles to the legs (known as “peripheral neuromuscular disorders”) • The spine is composed of multiple bones with disks (intervertebral disks) located in between adjacent bones (vertebrae); the disks act as shock absorbers and allow movement of the spine; the vertebrae are named according to their location—cervical vertebrae are located in the neck and are numbered as cervical vertebrae one through seven or C1–C7; thoracic vertebrae are located from the area of the shoulders to the end of the ribs and are numbered as thoracic vertebrae one through thirteen or T1–T13; lumbar vertebrae start at the end of the ribs and continue to the pelvis and are numbered as lumbar vertebrae one through seven or L1–L7; the remaining vertebrae are the sacral and coccygeal (tail) vertebrae • The brain -
Abnormal Eye Movements in Three Types of Chorea
DOI: 10.1590/0004-282X20160109 VIEW AND REVIEW Abnormal eye movements in three types of chorea Anormalidades dos movimentos oculares em três tipos de coreia Tiago Attoni1, Rogério Beato2, Serge Pinto3, Francisco Cardoso2 ABSTRACT Chorea is an abnormal movement characterized by a continuous flow of random muscle contractions. This phenomenon has several causes, such as infectious and degenerative processes. Chorea results from basal ganglia dysfunction. As the control of the eye movements is related to the basal ganglia, it is expected, therefore, that is altered in diseases related to chorea. Sydenham’s chorea, Huntington’s disease and neuroacanthocytosis are described in this review as basal ganglia illnesses that can present with abnormal eye movements. Ocular changes resulting from dysfunction of the basal ganglia are apparent in saccade tasks, slow pursuit, setting a target and anti-saccade tasks. The purpose of this article is to review the main characteristics of eye motion in these three forms of chorea. Keywords: chorea; eye movements; Huntington disease; neuroacanthocytosis. RESUMO Coreia é um movimento anormal caracterizado pelo fluxo contínuo de contrações musculares ao acaso. Este fenômeno possui variadas causas, como processos infecciosos e degenerativos. A coreia resulta de disfunção dos núcleos da base, os quais estão envolvidos no controle da motricidade ocular. É esperado, então, que esta esteja alterada em doenças com coreia. A coreia de Sydenham, a doença de Huntington e a neuroacantocitose são apresentadas como modelos que têm por característica este distúrbio do movimento, por ocorrência de processos que acometem os núcleos da base. As alterações oculares decorrentes de disfunção dos núcleos da base se manifestam em tarefas de sacadas, perseguição lenta, fixação de um alvo e em tarefas de antissacadas. -
Clinical Decision Making in Neurology
CLINICAL DECISION MAKING IN NEUROLOGY The Neurological Examination The goals of the neurological examination are to detect the presence of a neurologic disease and to determine the location of the lesion within the nervous system. The neurologic examination should be performed in a systematic manner in order to assure that the animal's neurologic status is completely evaluated. The parts of a customary neurologic examination include evaluation of the head (mentation and cranial nerves), gait, limbs (postural reactions and spinal reflexes) and pain/nociception (normal and abnormal pain responses). Gait Evaluation I find gait evaluation the most useful and important part of the neurologic exam. Clinical evaluation of gait usually involves observation of the animal's movements while walking. This is best accomplished by having a handler walk the animal over a flat, non-slippery area. I typically evaluate gait by having a handler walk the animal approximately 100 feet, away and back, as well as circling clockwise and counterclockwise. I have the animal short on the leash and under good control and have the dog typically walk slowly. I may have them walk on and off the curb. Overall, evaluation is made by watching for paresis, ataxia, stride length, lameness, stiffness, spasticity, dysmetria and shuffling or scuffing of limbs or digits. I also note position of head and tail during gait evaluation. Gait analysis is broken down between the axial and appendicular skeleton. The axial vertebral column is made up of many joints and is divided into anatomical segments. The axial portion includes the head, neck, thoracic, lumbar, lumbar/pelvic and tail. -
Localization of Borrelia Burgdorferi in the Nervous System And
0023-6837/00/8007-1043$03.00/0 LABORATORY INVESTIGATION Vol. 80, No. 7, p. 1043, 2000 Copyright © 2000 by The United States and Canadian Academy of Pathology, Inc. Printed in U.S.A. Localization of Borrelia Burgdorferi in the Nervous System and Other Organs in a Nonhuman Primate Model of Lyme Disease Diego Cadavid, Tim O’Neill, Henry Schaefer, and Andrew R. Pachner Department of Neuroscience (DC, ARP), University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey; and the Registry of Comparative Pathology (TO) and the Department of Neuropa- thology (DC), Armed Forces Institute of Pathology, and the Department of Neurology (DC, HS, ARP), Georgetown University Medical Center, Washington, DC SUMMARY: Lyme borreliosis is caused by infection with the spirochete Borrelia burgdorferi. Nonhuman primates inoculated with the N40 strain of B. burgdorferi develop infection of multiple tissues, including the central (CNS) and peripheral nervous system. In immunocompetent nonhuman primates, spirochetes are present in low numbers in tissues. For this reason, it has been difficult to study their localization and changes in expression of surface proteins. To further investigate this, we inoculated four immunosuppressed adult Macaca mulatta with 1 million spirochetes of the N40 strain of B. burgdorferi, and compared them with three infected immunocompetent animals and two uninfected controls. The brain, spinal cord, peripheral nerves, skeletal muscle, heart, and bladder were obtained at necropsy 4 months later. The spirochetal tissue load was first studied by polymerase chain reaction (PCR)-ELISA of the outer surface protein A (ospA) gene. Immunohistochemistry was used to study the localization and numbers of spirochetes in tissues and the expression of spirochetal proteins and to characterize the inflammatory response. -
An Adaptive Algorithm for Fixation, Saccade, and Glissade Detection in Eyetracking Data
Behavior Research Methods 2010, 42 (1), 188-204 doi:10.3758/BRM.42.1.188 An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data MARCUS NYSTRÖM AND KENNETH HOLMQVIST Lund University, Lund, Sweden Event detection is used to classify recorded gaze points into periods of fixation, saccade, smooth pursuit, blink, and noise. Although there is an overall consensus that current algorithms for event detection have serious flaws and that a de facto standard for event detection does not exist, surprisingly little work has been done to remedy this problem. We suggest a new velocity-based algorithm that takes several of the previously known limitations into account. Most important, the new algorithm identifies so-called glissades, a wobbling move- ment at the end of many saccades, as a separate class of eye movements. Part of the solution involves designing an adaptive velocity threshold that makes the event detection less sensitive to variations in noise level and the algorithm settings-free for the user. We demonstrate the performance of the new algorithm on eye movements recorded during reading and scene perception and compare it with two of the most commonly used algorithms today. Results show that, unlike the currently used algorithms, fixations, saccades, and glissades are robustly identified by the new algorithm. Using this algorithm, we found that glissades occur in about half of the sac- cades, during both reading and scene perception, and that they have an average duration close to 24 msec. Due to the high prevalence and long durations of glissades, we argue that researchers must actively choose whether to assign the glissades to saccades or fixations; the choice affects dependent variables such as fixation and sac- cade duration significantly. -
Blinks, Saccades, and Fixation Pauses During Vigilance Task Office of Aviation Medicine Washington, D.C
DOT/FAAIAM-94/26 Blinks, Saccades, and Fixation Pauses During Vigilance Task Office of Aviation Medicine Washington, D.C. 20591 Performance: I. Time on Task Accesion For John A. Stern NTIS CRA&I Donna Boyer DTIC TAB Department of Psychology Unannounced W ashington U niversity Justification .................................. St. Louis, MO 63130-4899 By ...-. -...-.-................................... David Schroeder Distribution I Mark Touchstone Availability Codes FAA Civil Aeromedical Institute Avail and/or P.O. Box 25082 Dist Special Oklahoma City, OK 73125 Nikolai Stoliarov R4 State Scientific Research Institute for Civil Aviation Volocolamskoe Hwy, 26 Moscow 123182 Russia D • ELECTE December 1994 1 Am 9 1995 Final Report This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161. U.S. Department of Transportation Federal Aviation Administration 19950104 027 NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AM-94/261 4. Title and Subtitle 5. Report Date Blinks, Saccades, and Fixation Pauses During Vigilance Task December 1994 Performance: I. Time on Task 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. J.A. Stern, D. Boyer, D.J. Schroeder, R.M. Touchstone, N. Stoliarov 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Department of Psychology Human Resources Research Division Washington University FAA Civil Aeromedical Institute St. Louis, MO 63130-4899 Oklahoma City, OK 73125 11. -
Part Ii – Neurological Disorders
Part ii – Neurological Disorders CHAPTER 14 MOVEMENT DISORDERS AND MOTOR NEURONE DISEASE Dr William P. Howlett 2012 Kilimanjaro Christian Medical Centre, Moshi, Kilimanjaro, Tanzania BRIC 2012 University of Bergen PO Box 7800 NO-5020 Bergen Norway NEUROLOGY IN AFRICA William Howlett Illustrations: Ellinor Moldeklev Hoff, Department of Photos and Drawings, UiB Cover: Tor Vegard Tobiassen Layout: Christian Bakke, Division of Communication, University of Bergen E JØM RKE IL T M 2 Printed by Bodoni, Bergen, Norway 4 9 1 9 6 Trykksak Copyright © 2012 William Howlett NEUROLOGY IN AFRICA is freely available to download at Bergen Open Research Archive (https://bora.uib.no) www.uib.no/cih/en/resources/neurology-in-africa ISBN 978-82-7453-085-0 Notice/Disclaimer This publication is intended to give accurate information with regard to the subject matter covered. However medical knowledge is constantly changing and information may alter. It is the responsibility of the practitioner to determine the best treatment for the patient and readers are therefore obliged to check and verify information contained within the book. This recommendation is most important with regard to drugs used, their dose, route and duration of administration, indications and contraindications and side effects. The author and the publisher waive any and all liability for damages, injury or death to persons or property incurred, directly or indirectly by this publication. CONTENTS MOVEMENT DISORDERS AND MOTOR NEURONE DISEASE 329 PARKINSON’S DISEASE (PD) � � � � � � � � � � � -
Neurological Principles and Rehabilitation of Action Disorders
Neurorehabilitation and Neural Repair Neurological Principles and Rehabilitation Supplement to 25(5) 21 S-32S ©TheAuthor(s) 2011 Reprints and permission: http://www. of Action Disorders: Common sagepub.com/journalsPermissions.nav 001: 10.1177/1545968311410941 Clinical Deficits http://nnr.sagepub.com ~SAGE I 3 K. Sathian, MO, PhO , Laurel J. Buxbaum, Psy02, Leonardo G. Cohen, M0 , 4 6 John W. Krakauer, M0 , Catherine E. Lang, PhO\ Maurizio Corbetta, M0 , 6 and Susan M. Fitzpatrick, Ph0 ,7 In this chapter, the authors use the computation, anatomy, and physiology (CAP) principles to consider the impact of common clinical problems on action They focus on 3 major syndromes: paresis, apraxia, and ataxiaThey also review mechanisms that could account for spontaneous recovery, using what is known about the best-studied clinical dysfunction-paresis-and also ataxia. Together, this and the previous chapter lay the groundwork for the third chapter in this series, which reviews the relevant rehabilitative interventions. Paresis may tilt as it is raised or a key may fall from the fingers. Once Phenomenology the object is in hand, a person with paresis has difficulty mov ing it to some locations. Lifting the cup to the mouth, where The most common motor disorder experienced by individuals the ann movement is close to and directly in front of the body, after central nervous system damage is paresis. In the strictest is usually much easier than lifting the cup to a shoulder-height sense, paresis is the reduced ability to voluntarily activate the shelf on the opposite side of the body. Reaching movements spinal motor neurons.