The Relation Between Infinite Series and Improper Integrals by Kermlt

Total Page:16

File Type:pdf, Size:1020Kb

The Relation Between Infinite Series and Improper Integrals by Kermlt The relation between infinite series and improper integrals Item Type text; Thesis-Reproduction (electronic) Authors Dale, Kermit, 1909- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 23:17:22 Link to Item http://hdl.handle.net/10150/551183 The Relation Between Infinite Series and Improper Integrals by Kermlt Dale Submitted In partial fulfillment of the requirements for the degree of : . ,;:v: . ' Master of Solenoe In the Graduate College University of:Arizona 1 9 3 6 Approved: ^ w ^ vCr>« Major professor Date j- .1. * i. £ 9 9 9 / 9 93 5' K 6" ACOOWLSDGrMBHD Grateful acknowledgment is made to Dr* H* B. Leonard at itiioee suggestion and under whose guidance this work has been done and to Dr. A. W. Boldyreff whose sug­ gestions and review of rough drafts of the material hove also done much to facilitate the work. _ . 9938* Table of Contente lUTRODUCTIOI P. 1 PART I — IBZIHITB SBRIBS Seotion l • • . • . • . p. 4 Sequence, aggregate, upper and lower bounds, convergent, divergent, and eseillatory sequences, monotonlo sequences. : ^ Section 2 . • • ....................... p. 11 Infinite series, sum of series, con­ vergence, divergence, and oscillation. Section 3 ........ ...................p.: .14 Criterion of convergence. Section 4 .... • , . , . p. 14 Series of positive terms, convergence, series of importance. Section 5 . • . • . p. 16 Convergence tests— comparison, Canohy1 s test, ratio tests, examples. Section 6 . ...... p. 24 Abel's theorem, integral test— proof and geometric interpretation. Section 7 p. 32 Absolute convergence, conditional oonverginoe, convergence of alternating series. - ' : , ' " * PART II — IMPROPER INTEGRALS Section 1 p. 37 Definition of definite integral. p. 38 Integral over an infinite range, convergence. Table of Contents, continued. Section 5 . • ....................... p. 39 Analogy between improper integrals and infinite series. Section 4. ........................... p. 40 Convergenoe tests. Section 5 • . • . • . p. 45 Absolute convergence, tests for absolute convergence, examples. Section 6 .... , • . p. 48 Analogy with infinite series, strik­ ing property of infinite integrals. Section 7 p. JB1 Integrals expressed as the limit of a sum, examples. Section 6 ....... ............... p. 56 Special methods for testing conver­ gence, Diriehlet integrals, Fresnel integrals. Section 9 ......................... .. p. 60 Integrals in which integrand becomes infinite. Section 1@ . ...........•••• p. 68 Determining convergence of second type improper integral. Section 11 • ............... p. 68 Special methods. IHTReDUCHOI A oomprehensive study of the theory of infinite ser­ ies and improper integrals would he an undertaking quite impossible of being consummated in any short tract such as this and would presuppose a degree of accomplishment and scholarship to which this writer lays no claim. However, a brief study of these topics suffices to impress one with the close similarity between them in method of treatment. A central purpose of this thesis will be to exhibit this similarity in detail as a complete analogy and to draw up­ on wherever possible in order to facilitate the discussion of improper integrals which follows a short study of in­ finite series. The existence of the analogy between infinite series and improper integrals has been noted by such well known mathematicians as Hardy* and Bromwich**, but both seem to assert that the analogy is not complete. Thus, Hardy says, "There is one fundamental property of a convergent infinite series in regard to Shioh the analogy between infinite ser­ ies and infinite integrals breaks down." Bromwich makes a * Hardy, G. H., "A Course of Pare Mathematics." Fourth edition, p. 324. **Bromwloh, T. J., "An Introduction to the Theory of In­ finite Series.” Second edition, p. 469. - 8 - more oarefal statement which is perhaps not shhject to direct challenge bmt is a little misleading in the opinion of this writer. "He says, "But one striking feature pre­ sents itself in the theory of Infinite integrals which has no counterpart in the theory of series.” An attempt will be made in this thesis to show that this "striking feature" constitutes only an apparent and not a real abrogation of the complete analogy. It is not asserted that no property of infinite series can be found which does not hare its analogue in the theory of improper integrals or rice versa, but it is claimed that the proper­ ties of improper integrals discussed in this essay are com­ pletely analogous with those of Infinite series, and this includes the property presented by Hardy as being destruc­ tive of the complete analogy. The scope of the discussion of infinite series will necessarily be limited, being determined largely by what is needed to fit in with the subsequent discussion of im­ proper integrals. Many important topics such as uniform convergence, criteria for term by term differentiation and integration, and the effect of rearranging terms will be omitted completely. Beyond making the discussion of improper integrals coincide as closely as possible with that of Infinite ser­ ies, the aim will be to present the most stiking proper­ ties of these integrals and to investigate by means of - 3. special methods a few important improper integrals which do not yield to general methods. Although borrowing has necessarily been heavy, specific references have been omitted for the most part, since sub­ stantially similar discussions of the borrowed material may be found in a great many sources. A bibliography at the end omtains a list of those to which the writer found it convenient to refer. -4 - 3 ^Part I . IIFIHIIB SMIBS !• The place 0f infinite sequencesand series in the development of modern analysis is a dominant one. These oonoepte and their related studies do not constitute merely an unoonaeoted addition to the store of mathematical know­ ledge; there are haeio, and without them scarcely any of the developments in mathematical analysis of the past two cen­ turies oould have keen carried out. Although the great mathematicians of antiquity accomplished very little in this field, reference to certain special types of series may be found very early in the history of mathematics. .For example, the Greeks studied and summed the geometric series and arithmetic series, hut with analysis scarcely more than incipient it was scarcely to be expected that the great Athenian and Alexandrian geometers would have contributed much toward the clarification of concepts necessary for the understanding of those topics so essential to present day mathematics. A cursory study of mathematical history cannot fail to reveal the prime importance of clearly formed concepts and exactly stated definitions if progress is tc be made in any related branch of mathematics. This is especially true in the study of those topics included under the general olassi- floation of laflnlt# aggregates, since here we are dealing with ideas which are difficult to grasp Intuitively. Sequence. The concept of a sequence Is an abstraction that is formed more or less hazily early in the mind of each individual. He learns to distinguish between a suc­ cession in which events of a set occur or objects of a group pass before his eyes in an indefinite order, and an ordered succession suoh as is met in counting positive integers. Thus, we say that when events of a set occur in some pre­ scribed order we have a sequence. In particular, we speak of a sequence of numbers, ult ug, u3f . , un , . when some rule is given whereby the nth term of the set may be written down. The notation (un) is commonly used to indicate a sequence, i.e., (un) s ult u2, u5, . , • Infinite sequence. If each term of the sequence has a successor the sequence is an infinite sequence. By defini­ tion then, an infinite sequence has no last term, and thus we prepare to erect a superstructure upon a concept which seems to smack of metaphysics. Aggregate. As has been implied, the study of infinite sequences and series may be included under the general head­ ing of infinite aggregates. A sequence of numbers is a particular example of a numerical aggregate• An aggregate may refer to events, objects, points In space or in a plane, complex numbers, real numbers, etc. If we restrict oar- selves to real numbers we say: an aggregate is a system of «*6 «» real numbers or their oorresponding points on a straight line defined in any way vihate#er. Upper and lower bounds. An aggregate may have numbers greater than or less than any number however large or small respectively, in which case the aggregate is unbounded, but if there is a number K such that for every number s of the aggregate s ~ K then the aggregate is said to be bounded above. Similarly^ if there exists a number k such that ■ 6 k for every s, the aggregate is said to be bounded be­ low. Mote that K and k may or may not be upper and lower bounds respectively. Definition. If we indicate an aggregate by the symbol (B), then we say that (B) has an upper bound M if no number of (B) is greater than M and there is a number of (B) great­ er than M - € , no matter how small the arbitrary positive nmaber 6 may be. Similarly, we say that the aggregate (B) has a lower bound m if no number of (B) is less than m and if there is a number of (B) which is less than m -t- € , no matter how small the arbitrary positive number € may be. Returning to our discussion of sequences we notice that each of the following sequences behaves in a different man­ ner as n increases indefinitely: (1) 1, 2, 3, .
Recommended publications
  • Calculus and Differential Equations II
    Calculus and Differential Equations II MATH 250 B Sequences and series Sequences and series Calculus and Differential Equations II Sequences A sequence is an infinite list of numbers, s1; s2;:::; sn;::: , indexed by integers. 1n Example 1: Find the first five terms of s = (−1)n , n 3 n ≥ 1. Example 2: Find a formula for sn, n ≥ 1, given that its first five terms are 0; 2; 6; 14; 30. Some sequences are defined recursively. For instance, sn = 2 sn−1 + 3, n > 1, with s1 = 1. If lim sn = L, where L is a number, we say that the sequence n!1 (sn) converges to L. If such a limit does not exist or if L = ±∞, one says that the sequence diverges. Sequences and series Calculus and Differential Equations II Sequences (continued) 2n Example 3: Does the sequence converge? 5n 1 Yes 2 No n 5 Example 4: Does the sequence + converge? 2 n 1 Yes 2 No sin(2n) Example 5: Does the sequence converge? n Remarks: 1 A convergent sequence is bounded, i.e. one can find two numbers M and N such that M < sn < N, for all n's. 2 If a sequence is bounded and monotone, then it converges. Sequences and series Calculus and Differential Equations II Series A series is a pair of sequences, (Sn) and (un) such that n X Sn = uk : k=1 A geometric series is of the form 2 3 n−1 k−1 Sn = a + ax + ax + ax + ··· + ax ; uk = ax 1 − xn One can show that if x 6= 1, S = a .
    [Show full text]
  • Topic 7 Notes 7 Taylor and Laurent Series
    Topic 7 Notes Jeremy Orloff 7 Taylor and Laurent series 7.1 Introduction We originally defined an analytic function as one where the derivative, defined as a limit of ratios, existed. We went on to prove Cauchy's theorem and Cauchy's integral formula. These revealed some deep properties of analytic functions, e.g. the existence of derivatives of all orders. Our goal in this topic is to express analytic functions as infinite power series. This will lead us to Taylor series. When a complex function has an isolated singularity at a point we will replace Taylor series by Laurent series. Not surprisingly we will derive these series from Cauchy's integral formula. Although we come to power series representations after exploring other properties of analytic functions, they will be one of our main tools in understanding and computing with analytic functions. 7.2 Geometric series Having a detailed understanding of geometric series will enable us to use Cauchy's integral formula to understand power series representations of analytic functions. We start with the definition: Definition. A finite geometric series has one of the following (all equivalent) forms. 2 3 n Sn = a(1 + r + r + r + ::: + r ) = a + ar + ar2 + ar3 + ::: + arn n X = arj j=0 n X = a rj j=0 The number r is called the ratio of the geometric series because it is the ratio of consecutive terms of the series. Theorem. The sum of a finite geometric series is given by a(1 − rn+1) S = a(1 + r + r2 + r3 + ::: + rn) = : (1) n 1 − r Proof.
    [Show full text]
  • 3.3 Convergence Tests for Infinite Series
    3.3 Convergence Tests for Infinite Series 3.3.1 The integral test We may plot the sequence an in the Cartesian plane, with independent variable n and dependent variable a: n X The sum an can then be represented geometrically as the area of a collection of rectangles with n=1 height an and width 1. This geometric viewpoint suggests that we compare this sum to an integral. If an can be represented as a continuous function of n, for real numbers n, not just integers, and if the m X sequence an is decreasing, then an looks a bit like area under the curve a = a(n). n=1 In particular, m m+2 X Z m+1 X an > an dn > an n=1 n=1 n=2 For example, let us examine the first 10 terms of the harmonic series 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + : n 2 3 4 5 6 7 8 9 10 1 1 1 If we draw the curve y = x (or a = n ) we see that 10 11 10 X 1 Z 11 dx X 1 X 1 1 > > = − 1 + : n x n n 11 1 1 2 1 (See Figure 1, copied from Wikipedia) Z 11 dx Now = ln(11) − ln(1) = ln(11) so 1 x 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + > ln(11) n 2 3 4 5 6 7 8 9 10 1 and 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + < ln(11) + (1 − ): 2 3 4 5 6 7 8 9 10 11 Z dx So we may bound our series, above and below, with some version of the integral : x If we allow the sum to turn into an infinite series, we turn the integral into an improper integral.
    [Show full text]
  • Sequences and Series
    From patterns to generalizations: sequences and series Concepts ■ Patterns You do not have to look far and wide to fi nd 1 ■ Generalization visual patterns—they are everywhere! Microconcepts ■ Arithmetic and geometric sequences ■ Arithmetic and geometric series ■ Common diff erence ■ Sigma notation ■ Common ratio ■ Sum of sequences ■ Binomial theorem ■ Proof ■ Sum to infi nity Can these patterns be explained mathematically? Can patterns be useful in real-life situations? What information would you require in order to choose the best loan off er? What other Draftscenarios could this be applied to? If you take out a loan to buy a car how can you determine the actual amount it will cost? 2 The diagrams shown here are the first four iterations of a fractal called the Koch snowflake. What do you notice about: • how each pattern is created from the previous one? • the perimeter as you move from the first iteration through the fourth iteration? How is it changing? • the area enclosed as you move from the first iteration to the fourth iteration? How is it changing? What changes would you expect in the fifth iteration? How would you measure the perimeter at the fifth iteration if the original triangle had sides of 1 m in length? If this process continues forever, how can an infinite perimeter enclose a finite area? Developing inquiry skills Does mathematics always reflect reality? Are fractals such as the Koch snowflake invented or discovered? Think about the questions in this opening problem and answer any you can. As you work through the chapter, you will gain mathematical knowledge and skills that will help you to answer them all.
    [Show full text]
  • Six Ways to Sum a Series Dan Kalman
    Six Ways to Sum a Series Dan Kalman The College Mathematics Journal, November 1993, Volume 24, Number 5, pp. 402–421. Dan Kalman This fall I have joined the mathematics faculty at American University, Washington D. C. Prior to that I spent 8 years at the Aerospace Corporation in Los Angeles, where I worked on simulations of space systems and kept in touch with mathematics through the programs and publications of the MAA. At a national meeting I heard the presentation by Zagier referred to in the article. Convinced that this ingenious proof should be more widely known, I presented it at a meeting of the Southern California MAA section. Some enthusiastic members of the audience then shared their favorite proofs and references with me. These led to more articles and proofs, and brought me into contact with a realm of mathematics I never guessed existed. This paper is the result. he concept of an infinite sum is mysterious and intriguing. How can you add up an infinite number of terms? Yet, in some contexts, we are led to the Tcontemplation of an infinite sum quite naturally. For example, consider the calculation of a decimal expansion for 1y3. The long division algorithm generates an endlessly repeating sequence of steps, each of which adds one more 3 to the decimal expansion. We imagine the answer therefore to be an endless string of 3’s, which we write 0.333. .. In essence we are defining the decimal expansion of 1y3 as an infinite sum 1y3 5 0.3 1 0.03 1 0.003 1 0.0003 1 .
    [Show full text]
  • Almost Periodic Sequences and Functions with Given Values
    ARCHIVUM MATHEMATICUM (BRNO) Tomus 47 (2011), 1–16 ALMOST PERIODIC SEQUENCES AND FUNCTIONS WITH GIVEN VALUES Michal Veselý Abstract. We present a method for constructing almost periodic sequences and functions with values in a metric space. Applying this method, we find almost periodic sequences and functions with prescribed values. Especially, for any totally bounded countable set X in a metric space, it is proved the existence of an almost periodic sequence {ψk}k∈Z such that {ψk; k ∈ Z} = X and ψk = ψk+lq(k), l ∈ Z for all k and some q(k) ∈ N which depends on k. 1. Introduction The aim of this paper is to construct almost periodic sequences and functions which attain values in a metric space. More precisely, our aim is to find almost periodic sequences and functions whose ranges contain or consist of arbitrarily given subsets of the metric space satisfying certain conditions. We are motivated by the paper [3] where a similar problem is investigated for real-valued sequences. In that paper, using an explicit construction, it is shown that, for any bounded countable set of real numbers, there exists an almost periodic sequence whose range is this set and which attains each value in this set periodically. We will extend this result to sequences attaining values in any metric space. Concerning almost periodic sequences with indices k ∈ N (or asymptotically almost periodic sequences), we refer to [4] where it is proved that, for any precompact sequence {xk}k∈N in a metric space X , there exists a permutation P of the set of positive integers such that the sequence {xP (k)}k∈N is almost periodic.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • 3.2 Introduction to Infinite Series
    3.2 Introduction to Infinite Series Many of our infinite sequences, for the remainder of the course, will be defined by sums. For example, the sequence m X 1 S := : (1) m 2n n=1 is defined by a sum. Its terms (partial sums) are 1 ; 2 1 1 3 + = ; 2 4 4 1 1 1 7 + + = ; 2 4 8 8 1 1 1 1 15 + + + = ; 2 4 8 16 16 ::: These infinite sequences defined by sums are called infinite series. Review of sigma notation The Greek letter Σ used in this notation indicates that we are adding (\summing") elements of a certain pattern. (We used this notation back in Calculus 1, when we first looked at integrals.) Here our sums may be “infinite”; when this occurs, we are really looking at a limit. Resources An introduction to sequences a standard part of single variable calculus. It is covered in every calculus textbook. For example, one might look at * section 11.3 (Integral test), 11.4, (Comparison tests) , 11.5 (Ratio & Root tests), 11.6 (Alternating, abs. conv & cond. conv) in Calculus, Early Transcendentals (11th ed., 2006) by Thomas, Weir, Hass, Giordano (Pearson) * section 11.3 (Integral test), 11.4, (comparison tests), 11.5 (alternating series), 11.6, (Absolute conv, ratio and root), 11.7 (summary) in Calculus, Early Transcendentals (6th ed., 2008) by Stewart (Cengage) * sections 8.3 (Integral), 8.4 (Comparison), 8.5 (alternating), 8.6, Absolute conv, ratio and root, in Calculus, Early Transcendentals (1st ed., 2011) by Tan (Cengage) Integral tests, comparison tests, ratio & root tests.
    [Show full text]
  • Calculus Online Textbook Chapter 10
    Contents CHAPTER 9 Polar Coordinates and Complex Numbers 9.1 Polar Coordinates 348 9.2 Polar Equations and Graphs 351 9.3 Slope, Length, and Area for Polar Curves 356 9.4 Complex Numbers 360 CHAPTER 10 Infinite Series 10.1 The Geometric Series 10.2 Convergence Tests: Positive Series 10.3 Convergence Tests: All Series 10.4 The Taylor Series for ex, sin x, and cos x 10.5 Power Series CHAPTER 11 Vectors and Matrices 11.1 Vectors and Dot Products 11.2 Planes and Projections 11.3 Cross Products and Determinants 11.4 Matrices and Linear Equations 11.5 Linear Algebra in Three Dimensions CHAPTER 12 Motion along a Curve 12.1 The Position Vector 446 12.2 Plane Motion: Projectiles and Cycloids 453 12.3 Tangent Vector and Normal Vector 459 12.4 Polar Coordinates and Planetary Motion 464 CHAPTER 13 Partial Derivatives 13.1 Surfaces and Level Curves 472 13.2 Partial Derivatives 475 13.3 Tangent Planes and Linear Approximations 480 13.4 Directional Derivatives and Gradients 490 13.5 The Chain Rule 497 13.6 Maxima, Minima, and Saddle Points 504 13.7 Constraints and Lagrange Multipliers 514 CHAPTER Infinite Series Infinite series can be a pleasure (sometimes). They throw a beautiful light on sin x and cos x. They give famous numbers like n and e. Usually they produce totally unknown functions-which might be good. But on the painful side is the fact that an infinite series has infinitely many terms. It is not easy to know the sum of those terms.
    [Show full text]
  • Summation and Table of Finite Sums
    SUMMATION A!D TABLE OF FI1ITE SUMS by ROBERT DELMER STALLE! A THESIS subnitted to OREGON STATE COLlEGE in partial fulfillment of the requirementh for the degree of MASTER OF ARTS June l94 APPROVED: Professor of Mathematics In Charge of Major Head of Deparent of Mathematics Chairman of School Graduate Committee Dean of the Graduate School ACKOEDGE!'T The writer dshes to eicpreßs his thanks to Dr. W. E. Mime, Head of the Department of Mathenatics, who has been a constant guide and inspiration in the writing of this thesis. TABLE OF CONTENTS I. i Finite calculus analogous to infinitesimal calculus. .. .. a .. .. e s 2 Suniming as the inverse of perfornungA............ 2 Theconstantofsuirrnation......................... 3 31nite calculus as a brancn of niathematics........ 4 Application of finite 5lflITh1tiOfl................... 5 II. LVELOPMENT OF SULTION FORiRLAS.................... 6 ttethods...........................a..........,.... 6 Three genera]. sum formulas........................ 6 III S1ThATION FORMULAS DERIVED B TIlE INVERSION OF A Z FELkTION....,..................,........... 7 s urnmation by parts..................15...... 7 Ratlona]. functions................................ Gamma and related functions........,........... 9 Ecponential and logarithrnic functions...... ... Thigonoretric arÎ hyperbolic functons..........,. J-3 Combinations of elementary functions......,..... 14 IV. SUMUATION BY IfTHODS OF APPDXIMATION..............,. 15 . a a Tewton s formula a a a S a C . a e a a s e a a a a . a a 15 Extensionofpartialsunmation................a... 15 Formulas relating a sum to an ifltegral..a.aaaaaaa. 16 Sumfromeverym'thterm........aa..a..aaa........ 17 V. TABLE OFST.Thß,..,,..,,...,.,,.....,....,,,........... 18 VI. SLThMTION OF A SPECIAL TYPE OF POER SERIES.......... 26 VI BIBLIOGRAPHY. a a a a a a a a a a . a . a a a I a s .
    [Show full text]
  • Discrete Signals and Their Frequency Analysis
    Discrete signals and their frequency analysis. Valentina Hubeika, Jan Cernock´yˇ DCGM FIT BUT Brno, {ihubeika,cernocky}@fit.vutbr.cz • recapitulation – fundamentals on discrete signals. • periodic and harmonic sequences • discrete signal processing • convolution • Fourier transform with discrete time • Discrete Fourier Transform 1 Sampled signal ⇒ discrete signal During sampling we consider only values of the signal at sampling period multiplies T : x(nT ), nT = ... − 2T, −T, 0,T, 2T, 3T,... For a discrete signal, we forget about real time and simply count the samples. Discrete time becomes : x[n], n = ... − 2, −1, 0, 1, 2, 3,... Thus we often call discrete signals just sequences. 2 Important discrete signals Unit step and unit impulse: 1 for n ≥ 0 1 for n =0 σ[n]= δ[n]= 0 elsewhere 0 elsewhere 3 Periodic discrete signals their behaviour repeats after N samples, the smallest possible N is denoted as N1 and is called fundamental period. Harmonic discrete signals (harmonic sequences) x[n]= C1 cos(ω1n + φ1) (1) • C1 is a positive constant – magnitude. • ω1 is a spositive constant – normalized angular frequency. As n is just a number, the unit of ω1 is [rad]. Note, that in the previous lecture we denoted with the same simbol an angular frequency of continuous signals. Although in the last lecture we used ′ symbol ω1 for discrete time, we will not do it any longer. You will recognize continuous time frequency if there is real time associated with it (for instance cos(ω1t)). If you see discrete time n (for instance cos(ω1n)) you should know we are talking about normalized angular frequency.
    [Show full text]
  • Math 104 – Calculus 10.2 Infinite Series
    Math 104 – Calculus 10.2 Infinite Series Math 104 - Yu InfiniteInfinite series series •• Given a sequence we try to make sense of the infinite Given a sequence we try to make sense of the infinite sum of its terms. sum of its terms. 1 • Example: a = n 2n 1 s = a = 1 1 2 1 1 s = a + a = + =0.75 2 1 2 2 4 1 1 1 s = a + a + a = + + =0.875 3 1 2 3 2 4 8 1 1 s = a + + a = + + =0.996 8 1 ··· 8 2 ··· 256 s20 =0.99999905 Nicolas Fraiman MathMath 104 - Yu 104 InfiniteInfinite series series Math 104 - YuNicolas Fraiman Math 104 Geometric series GeometricGeometric series series • A geometric series is one in which each term is obtained • A geometric series is one in which each term is obtained from the preceding one by multiplying it by the common ratiofrom rthe. preceding one by multiplying it by the common ratio r. 1 n 1 2 3 1 arn−1 = a + ar + ar2 + ar3 + ar − = a + ar + ar + ar + ··· kX=1 ··· kX=1 2 n 1 • DoesWe have not converges for= somea + ar values+ ar of+ r + ar − n ··· 1 2 3 n rsn =n ar1 + ar + ar + + ar r =1then ar − = a + a + a + a···+ n ···!1 sn rsn = a ar −kX=1 − 1 na(11 rn) r = 1 then s ar= − =− a + a a + a a − n 1 −r − − ··· kX=1 − Nicolas Fraiman MathNicolas 104 Fraiman Math 104 - YuMath 104 GeometricGeometric series series Nicolas Fraiman Math 104 - YuMath 104 Geometric series Geometric series 1 1 1 = 4n 3 n=1 X Math 104 - Yu Nicolas Fraiman Math 104 RepeatingRepeatingRepeang decimals decimals decimals • We cancan useuse geometricgeometric series series to to convert convert repeating repeating decimals toto fractions.fractions.
    [Show full text]