Fuzzy Reasoning

Total Page:16

File Type:pdf, Size:1020Kb

Fuzzy Reasoning Fuzzy Reasoning Outline ●Introduction ●Bivalent & Multivalent Logics ●Fundamental fuzzy concepts ●Fuzzification ●Defuzzification ●Fuzzy Expert System ●Neuro-fuzzy System Introduction ●Fuzzy concept first introduced by Lotfi Zadeh in the 1965 ●Form of many-valued logic; it deals with reasoning that is approximate rather than fixed and exact. Compared to traditional binary sets, fuzzy logic variables may have a truth value that ranges in degree between 0 and 1 ●Resembles human reasoning in its use of imprecise information to generate decisions, unlike classical logic which requires a deep understanding of a system, exact equations, and precise numeric values Bivalent Logics ●Classical logic, often described as Aristotelian logic – True or false ●Bayesian Reasoning and probabilistic models – Each fact is either True or false – Often unclear whether a given fact is true or false ●Probability – A particular expression will turn out to be true Multivalent Logics ●Three-valued logic – True , false, and undetermined – 1 represents true, 0 represents false, and real numbers between 0 and 1 represent degree of truth Bivalent Logic vs. Multivalent Logic ●A fact has a probability value of 0.5, means it is as likely to be true as it is to be false, or it will be either true or false – There is Uncertainty , (at the moment we don’t know whether the proposition will be true or false, but it will definitely either be true or false—not both, not neither, and not something in between) ●A proposition has a logical value of 0.5, means it is about the degree to which that statement is true – We are Certain of the truth value of the proposition, it is just vague (it is neither true nor false, or it is both true and false) Linguistic Variables ●Often used to facilitate the expression of rules and facts ●A linguistic variable such as “height” may have a value from a range of fuzzy values including “tall” “short” and “medium.” ●It may be defined over the Universe of discourse from 2 feet up to 8 feet. ●The values “tall”, “short”, and “medium” define subsets of this universe of discourse. Fuzzy Sets vs. Traditional Sets ●Taditional set, Crisp set – Defined by the values that are contained within it. – A value is either within the set, or it is not. e.g a set of natural number ●Fuzzy set – Each value is a member of the set to some degree, or is not a member of the set to some degree. – Example: the tall people. Bill is 7 feet tall, so he is definitely included in the set of tall people, John is 4 feet tall, so most say that he is not included in the set, and Jane is 5 feet tall, some would say she is tall, but others would say she is not Fuzzy Set ●Fuzzy set membership function – Fuzzy set A is defined by membership function MA. – Choose entirely arbitrarily, reflect a subjective view on the part of the author. – A list of pairs for representing fuzzy set in computer like A = {(x1,MA(x1)), . , (xn,MA(xn))} Fuzzy Set operator ●Traditional set theory – Not A the complement of A, Intersection, and Union – Commutative, Associative, Distributive, and DeMorgan's law ●Fuzzy set – Complement of A, M¬A(x) = 1 - MA(x) – Intersection, MA ∩ B (x) = MIN (MA (x),MB (x)) – Union, MA ∪ B (x) = MAX (MA (x),MB (x)) – Containment, B ⊂ A iff ∀x (MB (x) ≤ MA (x)) – Hedges ●Fuzzy set qualifier such as “very”, “quite”, “extremely”, or “somewhat” ●Produce a new set when of them is applied to a fuzzy set ●Raise the set's membership function to an appropriate power. e.g a membership value of “very tall people” is (MA(x))², or a membership value of “quite tall people” is (MA(x))¹·³ Fuzzy Logic ●Form of logic that applies to fuzzy variables ●Each fuzzy variable can take a value from 0 (not at all true) to 1 (entirely true). e.g 0.5 might indicate “somewhat true”, or “about as true as it is false” ●Use Min, Max for calculating the conjunction (˄)and disjunction (˅) of two fuzzy variables ●If A and B are fuzzy logic values, ● A ˅ B ≡ MAX (A,B) ● A ˄ B ≡ MIN (A,B) ¬A = 1- A Classical Logic vs. Fuzzy Logic ●Classical logic – A ∨ ¬A = TRUE – A ∧ ¬A = FALSE ●Fuzzy logic – A ∨ ¬A can be to some extend false – A ∧ ¬A can be to some extend true Fuzzy Logic ●Fuzzy truth table for a finite set of input. Set {0, 0.5, 1} A B A˅B 0 0 0 0 0.5 0.5 0 1 1 0.5 0 0.5 0.5 0.5 0.5 0.5 1 1 1 0 1 1 0.5 1 1 1 1 Fuzzy Logic A ̚A 0 1 0.5 0.5 1 0 ●Fuzzy logic implication, or → A B A->B 0 0 1 0 0.5 1 0 1 1 * 0.5 0 0.5 * 0.5 0.5 0.5 0.5 1 1 1 0 0 1 0.5 0.5 1 1 1 ●One of alternative for fuzzy implication is Godel implication A→B ≡ (A ≤ B) ∨ B A B A->B 0 0 1 0 0.5 1 0 1 1 0.5 0 0 0.5 0.5 1 0.5 1 1 1 0 0 1 0.5 0.5 1 1 1 Fuzzy Logic as Applied to Traditional Logic Paradox ●Rusell's paradox : ● “ A barber, who himself has a beard, shaves all men who do not shave themselves. He does not shave man who shave themselves.” ●Paradox: conclusion contradicts one or more of the premises ●“All Cretan are liar,” said the Cretan. ●The Paradox can be resolved by Fuzzy logical values, instead of the two logical values “true” and “false”, the Cretan's statement is true and false, to some extend, at the same time. ● Rules ●Ordinary rule: IF A THEN B ●Fuzzy rule : IF A=x THEN B=y ●IF A op x THEN B=y ●e.g. IF temperature > 50 then fan speed = fast IF study time = short then grades = poor Fuzzy Inference ●Mamdani implication : an alternative to Godel implication ●It allows a system to take in a set of crisp input values and apply a set of fuzzy rules to those values, in order to derive a single, crisp, output value or action recommendation. Fuzzy Logic System How this form of reasoning work? Example: Braking system for a car to cope when the roads are icy and the wheels lock. Step 1 – Define the Rules ●Rule 1: IF pressure on brake pedal is medium THEN apply the brake ●Rule 2: IF pressure on brake pedal is high AND car speed is fast AND wheel speed is fast THEN apply the brake ●Rule 3: IF pressure on brake pedal is high AND car speed is fast AND wheel speed is low THEN release the brake ●Rule 4: IF pressure on brake pedal is low THEN release the brake Step 2 : Fuzzification ●Define fuzzy set for various linguistic variables ●Pressure from 0 to 100, so brake measure can be defined such as having 3 linguistic values, such as High(H),Medium(M), Low(L). ●H={(50,0),(100,1)} ●M={(30,0),(50,1),(70,0)} ●L={(0,1),(50,0)} ●Suppose pressure value is 60, so fuzzy membership for the 3 sets: MH(60)=0.2 , MM(60)=0.5, ML(60)=0 Step 2 : Fuzzification ●Define wheel speed with having 3 linguistic values: Slow, Medium, Fast ●Membership function: S={(0,1),(60,0)} ●M={(20,0),(50,1),(80,0)} ●F={(40,0),(100,1)} ●If wheel speed is 55 then MS(55)=0.083, MM(55)=0.833, MF(55)=0.25 Step 2 : Fuzzification ●Define car speed with having 3 linguistic values: Slow, Medium, Fast ●Membership function: S={(0,1),(60,0)} ●M={(20,0),(50,1),(80,0)} ●F={(40,0),(100,1)} ●If car speed is 80 then MS(80)=0, MM(80)=0, MF(80)=0.667 Step3: Apply Fuzzy Values To The System's Rules ●Rule 1: MM(60)=0.5 , it shows “Apply the brake” ●Rule 2: MH(60)=0.2, MF(80)=0.667, MF(55)=0.25, So fuzzy value of 0.2 for “Apply the brake” ●Rule 3: MH(60)=0.2, MF(80)=0.667, MS(55)=0.083, So fuzzy value of 0.083 for “Release the brake” ●Rule 4: ML(60)=0, So fuzzy value of 0.083 for “Release the brake” ●How to combine the differing values for each of the two fuzzy variables? Sum the values ●So we have 0.7 for “Apply the brake” and 0.083 for “Release the brake” ●Clip the membership function to the values, the member function of A has been clipped to 0.7 and the member function of R has been clipped to 0.083 Step 4: Defuzzification ●Process of obtaining the crisp value from a set of fuzzy variables ●This can be done by the center of gravity ●C=∑(MA(x)*x)/∑MA(x) , ●=((5*0.083)+(10*0.1)+(15*0.15)+......+(100*1))/(0.083+0.1+0.15+.....+ 1) = 68.13 ●C shows the pressure applied by the brake to the wheel in the car Fuzzy expert system ●Expert system contains a set of rules that are developed in collaboration with an expert ●The fuzzy expert system can be built by choosing a set of linguistic variables appropriate to the problem and defining membership functions for those variables. Rules are then generated based on the expert’s knowledge and using the linguistic variables.
Recommended publications
  • The State of the Art in Developing Fuzzy Ontologies: a Survey
    The State of the Art in Developing Fuzzy Ontologies: A Survey Zahra Riahi Samani1, Mehrnoush Shamsfard2, 1Faculty of Computer Science and Engineering, Shahid Beheshti University Email:[email protected] 1Faculty of Computer Science and Engineering, Shahid Beheshti University Email:[email protected] Abstract Conceptual formalism supported by typical ontologies may not be sufficient to represent uncertainty information which is caused due to the lack of clear cut boundaries between concepts of a domain. Fuzzy ontologies are proposed to offer a way to deal with this uncertainty. This paper describes the state of the art in developing fuzzy ontologies. The survey is produced by studying about 35 works on developing fuzzy ontologies from a batch of 100 articles in the field of fuzzy ontologies. 1. Introduction Ontology is an explicit, formal specification of a shared conceptualization in a human understandable, machine- readable format. Ontologies are the knowledge backbone for many intelligent and knowledge based systems [1, 2]. However, in some domains, real world knowledge is imprecise or vague. For example in a search engine one may be interested in ”an extremely speedy, small size, not expensive car”. Classical ontologies based on crisp logic are not capable of handling this kind of knowledge. Fuzzy ontologies were proposed as a combination of fuzzy theory and ontologies to tackle such problems. On the topic of fuzzy ontology, we studied about 100 research articles which can be categorized into four main categories. The first category includes the research works on applying fuzzy ontologies in a specific domain- application to improve the performance of the application such as group decision making systems [3] or visual video content analysis and indexing [4].The ontology development parts of the works in this category were done manually or were not of much concentration.
    [Show full text]
  • A Fuzzy Description Logic
    From: AAAI-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. A Fuzzy Description Logic Umberto Straccia I.E.I - C.N.R. Via S. Maria, 46 I-56126 Pisa (PI) ITALY [email protected] Abstract is such a concept: we may say that an individual tom is an instance of the concept Tall only to a certain degree Description Logics (DLs, for short) allow reasoning n ∈ [0, 1] depending on tom’s height. about individuals and concepts, i.e. set of individuals with common properties. Typically, DLs are limited to Fuzzy logic directly deals with the notion of vague- dealing with crisp, well dened concepts. That is, con- ness and imprecision using fuzzy predicates. Therefore, cepts for which the problem whether an individual is it oers an appealing foundation for a generalisation of an instance of it is a yes/no question. More often than DLs in order to dealing with such vague concepts. not, the concepts encountered in the real world do not The aim of this work is to present a general fuzzy DL, have a precisely dened criteria of membership: we which combines fuzzy logic with DLs. In particular we may say that an individual is an instance of a concept will extend DLs by allowing expressions of the form only to a certain degree, depending on the individual’s hC(a) ni (n ∈ [0, 1]), e.g. hTall(tom) .7i, with intended properties. Concepts of this kind are rather vague than precise. As fuzzy logic directly deals with the notion of meaning “the membership degree of individual a being vagueness and imprecision, it oers an appealing foun- an instance of concept C is at least n”.
    [Show full text]
  • A Unifying Field in Logics: Neutrosophic Logic
    University of New Mexico UNM Digital Repository Faculty and Staff Publications Mathematics 2007 A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS - 6th ed. Florentin Smarandache University of New Mexico, [email protected] Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Logic and Foundations Commons, Other Applied Mathematics Commons, and the Set Theory Commons Recommended Citation Florentin Smarandache. A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS - 6th ed. USA: InfoLearnQuest, 2007 This Book is brought to you for free and open access by the Mathematics at UNM Digital Repository. It has been accepted for inclusion in Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. FLORENTIN SMARANDACHE A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS (sixth edition) InfoLearnQuest 2007 FLORENTIN SMARANDACHE A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS (sixth edition) This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N. Zeeb Road P.O. Box 1346, Ann Arbor MI 48106-1346, USA Tel.: 1-800-521-0600 (Customer Service) http://wwwlib.umi.com/bod/basic Copyright 2007 by InfoLearnQuest. Plenty of books can be downloaded from the following E-Library of Science: http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm Peer Reviewers: Prof. M. Bencze, College of Brasov, Romania.
    [Show full text]
  • A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics
    FLORENTIN SMARANDACHE A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS (fourth edition) NL(A1 A2) = ( T1 ({1}T2) T2 ({1}T1) T1T2 ({1}T1) ({1}T2), I1 ({1}I2) I2 ({1}I1) I1 I2 ({1}I1) ({1} I2), F1 ({1}F2) F2 ({1} F1) F1 F2 ({1}F1) ({1}F2) ). NL(A1 A2) = ( {1}T1T1T2, {1}I1I1I2, {1}F1F1F2 ). NL(A1 A2) = ( ({1}T1T1T2) ({1}T2T1T2), ({1} I1 I1 I2) ({1}I2 I1 I2), ({1}F1F1 F2) ({1}F2F1 F2) ). ISBN 978-1-59973-080-6 American Research Press Rehoboth 1998, 2000, 2003, 2005 FLORENTIN SMARANDACHE A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS (fourth edition) NL(A1 A2) = ( T1 ({1}T2) T2 ({1}T1) T1T2 ({1}T1) ({1}T2), I1 ({1}I2) I2 ({1}I1) I1 I2 ({1}I1) ({1} I2), F1 ({1}F2) F2 ({1} F1) F1 F2 ({1}F1) ({1}F2) ). NL(A1 A2) = ( {1}T1T1T2, {1}I1I1I2, {1}F1F1F2 ). NL(A1 A2) = ( ({1}T1T1T2) ({1}T2T1T2), ({1} I1 I1 I2) ({1}I2 I1 I2), ({1}F1F1 F2) ({1}F2F1 F2) ). ISBN 978-1-59973-080-6 American Research Press Rehoboth 1998, 2000, 2003, 2005 1 Contents: Preface by C. Le: 3 0. Introduction: 9 1. Neutrosophy - a new branch of philosophy: 15 2. Neutrosophic Logic - a unifying field in logics: 90 3. Neutrosophic Set - a unifying field in sets: 125 4. Neutrosophic Probability - a generalization of classical and imprecise probabilities - and Neutrosophic Statistics: 129 5. Addenda: Definitions derived from Neutrosophics: 133 2 Preface to Neutrosophy and Neutrosophic Logic by C.
    [Show full text]
  • Zerohack Zer0pwn Youranonnews Yevgeniy Anikin Yes Men
    Zerohack Zer0Pwn YourAnonNews Yevgeniy Anikin Yes Men YamaTough Xtreme x-Leader xenu xen0nymous www.oem.com.mx www.nytimes.com/pages/world/asia/index.html www.informador.com.mx www.futuregov.asia www.cronica.com.mx www.asiapacificsecuritymagazine.com Worm Wolfy Withdrawal* WillyFoReal Wikileaks IRC 88.80.16.13/9999 IRC Channel WikiLeaks WiiSpellWhy whitekidney Wells Fargo weed WallRoad w0rmware Vulnerability Vladislav Khorokhorin Visa Inc. Virus Virgin Islands "Viewpointe Archive Services, LLC" Versability Verizon Venezuela Vegas Vatican City USB US Trust US Bankcorp Uruguay Uran0n unusedcrayon United Kingdom UnicormCr3w unfittoprint unelected.org UndisclosedAnon Ukraine UGNazi ua_musti_1905 U.S. Bankcorp TYLER Turkey trosec113 Trojan Horse Trojan Trivette TriCk Tribalzer0 Transnistria transaction Traitor traffic court Tradecraft Trade Secrets "Total System Services, Inc." Topiary Top Secret Tom Stracener TibitXimer Thumb Drive Thomson Reuters TheWikiBoat thepeoplescause the_infecti0n The Unknowns The UnderTaker The Syrian electronic army The Jokerhack Thailand ThaCosmo th3j35t3r testeux1 TEST Telecomix TehWongZ Teddy Bigglesworth TeaMp0isoN TeamHav0k Team Ghost Shell Team Digi7al tdl4 taxes TARP tango down Tampa Tammy Shapiro Taiwan Tabu T0x1c t0wN T.A.R.P. Syrian Electronic Army syndiv Symantec Corporation Switzerland Swingers Club SWIFT Sweden Swan SwaggSec Swagg Security "SunGard Data Systems, Inc." Stuxnet Stringer Streamroller Stole* Sterlok SteelAnne st0rm SQLi Spyware Spying Spydevilz Spy Camera Sposed Spook Spoofing Splendide
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMl films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Infonnation Company 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 AN ANTHROPOLOGICAL INVESTIGATION OF THREE INFORMATION TECHNOLOGY FIRMS USING JAMES C. SCOTT'S THEORIES RELATED TO EVERYDAY FORMS OF RESISTANCE TO POWER DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Cynthia Joseph Smith, B.A., M.A.
    [Show full text]
  • Integrating Fuzzy Logic in Ontologies
    INTEGRATING FUZZY LOGIC IN ONTOLOGIES Silvia Calegari and Davide Ciucci Dipartimento di Informatica, Sistemistica e Comunicazione, Universita` degli Studi di Milano Bicocca, via Bicocca degli Arcimboldi 8, 20126 Milano, Italy Keywords: Concept modifiers, fuzzy logics, fuzzy ontologies, membership modifiers, KAON, ontology editor. Abstract: Ontologies have proved to be very useful in sharing concepts across applications in an unambiguous way. Nowadays, in ontology-based applications information is often vague and imprecise. This is a well-known problem especially for semantics-based applications, such as e-commerce, knowledge management, web por- tals, etc. In computer-aided reasoning, the predominant paradigm to manage vague knowledge is fuzzy set theory. This paper presents an enrichment of classical computational ontologies with fuzzy logic to create fuzzy ontologies. So, it is a step towards facing the nuances of natural languages with ontologies. Our pro- posal is developed in the KAON ontology editor, that allows to handle ontology concepts in an high-level environment. 1 INTRODUCTION A possible solution to handle uncertain data and, hence, to tackle these problems, is to incorporate fuzzy logic into ontologies. The aim of fuzzy set An ontology is a formal conceptualization of a partic- theory (Klir and Yuan, 1995) introduced by L. A. ular domain of interest shared among heterogeneous Zadeh (Zadeh, 1965) is to describe vague concepts applications. It consists of entities, attributes, rela- through a generalized notion of set, according to tionships and axioms to provide a common under- which an object may belong to a certain degree (typ- standing of the real world (Lammari and Mtais, 2004; ically a real number from the interval [0,1]) to a set.
    [Show full text]
  • Fuzzy Types: a Framework for Handling Uncertainty About Types of Objects Tru H
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector International Journal of Approximate Reasoning 25 (2000) 217±253 www.elsevier.com/locate/ijar Fuzzy types: a framework for handling uncertainty about types of objects Tru H. Cao a,*, Peter N. Creasy b a Department of Engineering Mathematics, Arti®cial Intelligence Group, University of Bristol, Bristol BS8 1TR, UK b Department of Computer Science and Electrical Engineering, University of Queensland, Qld 4072, Australia Received 1 November 1999; received in revised form 1 June 2000; accepted 1 July 2000 Abstract Like other kinds of information, types of objects in the real world are often found to be ®lled with uncertainty and/or partial truth. It may be due to either the vague nature of a type itself or to incomplete information in the process determining it even if the type is crisp, i.e., clearly de®ned. This paper proposes a framework to deal with uncertainty and/or partial truth in automated reasoning systems with taxonomic information, and in particular type hierarchies. A fuzzy type is formulated as a pair combining a basic type and a fuzzy truth-value, where a basic type can be crisp or vague (in the intuitive sense). A structure for a class of fuzzy truth-value lattices is proposed for this con- struction. The fuzzy subtype relation satisfying intuition is de®ned as a partial order between two fuzzy types. As an object may belong to more than one (fuzzy) type, conjunctive fuzzy types are introduced and their lattice properties are studied.
    [Show full text]
  • PREPRINT Intelligence, Science and the Ignorance Hypothesis David R
    PREPRINT Intelligence, Science and the Ignorance Hypothesis David R. Mandel Defence Research and Development Canada Intelligence organizations perform many functions. For example, they conduct covert operations that would be too politically sensitive for militaries to undertake as explicit missions. They also collect vast amounts of data that are inaccessible to others, except perhaps other intelligence organizations. However, the principal purpose of information collection is to produce substantive intelligence that can inform policymakers, commanders and other decision-makers who guard their nation’s interests and security. The fundamental premise of intelligence is that it serves to improve the planning and decision-making of these elite decision-makers by elevating the debate about policy options (Kent, 1955). If this were not so, the multi-billion dollar annual budgets would not be justified. If the premise is justified, then clearly the intellectual rigor and accuracy with which intelligence assessments are produce is of paramount importance. How do intelligence organizations ensure that the intelligence assessments they have produced are as accurate and sound as they can be? In this chapter, I will propose that the short answer is “not very well at all.” Methods and policies for ensuring analytic rigor have surely been implemented over the past several decades, but what has been endemic to these efforts is a rather pre-scientific, if not a fully anti-scientific, attitude towards their development and testing. After reviewing some examples of intelligence practices intended to ensure analytic rigor, I advance what I call the ignorance hypothesis to explain the absence of scientific attempts to discern what practices work from those that do not work so that intelligence organizations can effectively learn and adapt to the challenges of the modern world.
    [Show full text]
  • A Fuzzy-Rule Based Ontology for Urban Object Recognition
    A Fuzzy-rule Based Ontology for Urban Object Recognition Stella Marc-Zwecker, Khalid Asnoune and Cedric´ Wemmert ICube Laboratory, BFO team, University of Strasbourg, CNRS, Illkirch Cedex, Strasbourg, France Keywords: Ontologies, OWL, SWRL, Fuzzy Logic, Urban Object Recognition, Satellite Images. Abstract: In this paper we outline the principles of a methodology for semi-automatic recognition of urban objects from satellite images. The methodology aims to provide a framework for bridging the semantic gap problem. Its principle consists in linking abstract geographical domain concepts with image segments, by the means of ontologies use. The imprecision of image data and of qualitative rules formulated by experts geographers are handled by fuzzy logic mechanisms. We have defined fuzzy rules, implemented in SWRL (Semantic Web Rule Language), which allow classification of image segments in the ontology. We propose some fuzzy classification strategies, which are compared and evaluated through an experimentation performed on a VHR image of Strasbourg region. 1 INTRODUCTION of cognitive vision. Their approach relies on an on- tology of visual concepts, such as colour and texture, In the domain of knowledge representation for image which can be seen as an intermediate layer between recognition, we outline the principles of a method- domain knowledge and image processing procedures. ology for semi-automatic extraction of urban objects However, this kind of learning system requires that from Very High Resolution (VHR) satellite images. the expert produces examples for each of the concepts This methodology relies on the design and implemen- he is looking for.(Athanasiadis et al., 2007) present a tation of ontologies, which are an effective tool for framework for both image segmentation and object domain’s knowledge formalization and exploitation labeling using an ontology in the domain of multime- (Gruber, 1993) and for the implementation of reason- dia analysis.
    [Show full text]
  • What Is a Fuzzy Concept Lattice? *
    ? WhatWhat is is a a fuzzy fuzzy concept concept lattice? lattice? ? Radim Bˇelohl´avek and Vil´em Vychodil Radim Bˇelohl´avek and Vil´em Vychodil Department of Computer Science, Palacky University, Olomouc DepartmentTomkova of Computer 40, CZ-779 Science, 00 Olomouc, Palack´yUniversity, Czech Republic Olomouc Tomkova{radim.belohlavek, 40, CZ-779 00 vilem.vychodil Olomouc, Czech}@upol.cz Republic {radim.belohlavek, vilem.vychodil}@upol.cz Abstract. The paper is an overview of several approaches to the notion of a concept lattice from the point of view of fuzzy logic. The main aim is to clarify relationships between the various approaches. Keywords: formal concept analysis, fuzzy logic, fuzzy attribute 1 Introduction Formal concept analysis (FCA) deals with a particular kind of analysis of data which, in the basic setting, has the form of a table with rows corresponding to objects, columns corresponding to attributes, and table entries containing 1’s and 0’s depending on whether an object has or does not have an attribute (we assume basic familiarity with FCA and refer to [24] for information). The basic setting is well-suited for attributes which are crisp, i.e. each object of the domain of applicability of the attribute either has (1) or does not have (0) the attribute. Many attributes are fuzzy rather than crisp. That is to say, it is a matter of degree to which an object has a (fuzzy) attribute. For instance, when asking whether a man with a height of 182 cm is tall, one probably gets an answer like “not completely tall but almost tall” or “to a high degree tall”, etc.
    [Show full text]
  • Fuzzy Sets, Fuzzy Logic and Their Applications • Michael Gr
    Fuzzy Sets, Fuzzy Logic and Their Applications • Michael Gr. Voskoglou • Michael Gr. Fuzzy Sets, Fuzzy Logic and Their Applications Edited by Michael Gr. Voskoglou Printed Edition of the Special Issue Published in Mathematics www.mdpi.com/journal/mathematics Fuzzy Sets, Fuzzy Logic and Their Applications Fuzzy Sets, Fuzzy Logic and Their Applications Special Issue Editor Michael Gr. Voskoglou MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Special Issue Editor Michael Gr. Voskoglou Graduate Technological Educational Institute of Western Greece Greece Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Mathematics (ISSN 2227-7390) (available at: https://www.mdpi.com/journal/mathematics/special issues/Fuzzy Sets). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03928-520-4 (Pbk) ISBN 978-3-03928-521-1 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Preface to ”Fuzzy Sets, Fuzzy Logic and Their Applications” ...................
    [Show full text]