Growth and Mortality of Coccolithophores During Spring in a Temperate Shelf T Sea (Celtic Sea, April 2015) ⁎ K.M.J

Total Page:16

File Type:pdf, Size:1020Kb

Growth and Mortality of Coccolithophores During Spring in a Temperate Shelf T Sea (Celtic Sea, April 2015) ⁎ K.M.J Progress in Oceanography 177 (2019) 101928 Contents lists available at ScienceDirect Progress in Oceanography journal homepage: www.elsevier.com/locate/pocean Growth and mortality of coccolithophores during spring in a temperate Shelf T Sea (Celtic Sea, April 2015) ⁎ K.M.J. Mayersa, , A.J. Poultonb,1, C.J. Danielsb, S.R. Wellsc, E.M.S. Woodwardd, G.A. Tarrand, C.E. Widdicombed, D.J. Mayorb, A. Atkinsond, S.L.C. Gieringb a Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK b National Oceanography Centre, Waterfront Campus, European Way, Southampton, UK c Institute of Biological and Environmental Sciences, University of Aberdeen, Oceanlab, Newburgh, Aberdeenshire, UK d Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, UK ARTICLE INFO ABSTRACT Keywords: Coccolithophores are key components of phytoplankton communities, exerting a critical impact on the global Coccolithophores carbon cycle and the Earth’s climate through the production of coccoliths made of calcium carbonate (calcite) Growth rates and bioactive gases. Microzooplankton grazing is an important mortality factor in coccolithophore blooms, Microzooplankton grazing however little is currently known regarding the mortality (or growth) rates within non-bloom populations. Calcite production Measurements of coccolithophore calcite production (CP) and dilution experiments to determine micro- Dissolution zooplankton (≤63 µm) grazing rates were made during a spring cruise (April 2015) at the Central Celtic Sea Spring bloom (CCS), shelf edge (CS2), and within an adjacent April bloom of the coccolithophore Emiliania huxleyi at station J2. CP at CCS ranged from 10.4 to 40.4 µmol C m−3 d−1 and peaked at the height of the spring phytoplankton bloom (peak chlorophyll-a concentrations ∼6 mg m−3). Cell normalised calcification rates declined from ∼1.7 to ∼0.2 pmol C cell−1 d−1, accompanied by a shift from a mixed coccolithophore species community to one dominated by the more lightly calcified species E. huxleyi and Calciopappus caudatus. At the CCS, coccolithophore abundance increased from 6 to 94 cells mL−1, with net growth rates ranging from 0.06 to 0.21 d−1 from the 4th to the 28th April. Estimates of intrinsic growth and grazing rates from dilution experiments, at the CCS ranged from 0.01 to 0.86 d−1 and from 0.01 to 1.32 d−1, respectively, which resulted in variable net growth rates during April. Microzooplankton grazers consumed 59 to >100% of daily calcite production at the CCS. Within the E. huxleyi bloom a maximum density of 1986 cells mL−1 was recorded, along with CP rates of 6000 µmol C m−3 d−1 and an intrinsic growth rate of 0.29 d−1, with ∼80% of daily calcite production being consumed. Our results show that microzooplankton can exert strong top-down control on both bloom and non-bloom coccolithophore populations, grazing over 60% of daily growth (and calcite production). The fate of consumed calcite is unclear, but may be lost either through dissolution in acidic food vacuoles, and subsequent release as CO2, or export to the seabed after incorporation into small faecal pellets. With such high microzooplankton- mediated mortality losses, the fate of grazed calcite is clearly a high priority research direction. 1. Introduction (e.g. Holligan et al., 1993; Buitenhuis et al., 1996). Calcite can also act as a ballast for sinking material, enhancing the deep-sea flux of organic Coccolithophores are a diverse and biogeochemically important matter (Bach et al., 2016; Klaas and Archer, 2002; Ziveri et al., 2007). group of marine phytoplankton which contribute towards the marine Coccolithophores are globally distributed, from polar to tropical low- carbon cycle through the production and subsequent export of cellular latitude waters, with the most cosmopolitan and abundant species scales (coccoliths) formed of calcium carbonate (calcite). The cellular being Emiliania huxleyi (e.g. Winter and Siesser, 1994). E. huxleyi often 2 process of calcite production (calcification) fixes and releases CO2 and forms extensive, large-scale (>100,000 km ) blooms in the open ocean hence coccolithophores have an important role in air-sea CO2 fluxes (e.g. Holligan et al., 1993), along continental shelves (e.g. Holligan ⁎ Corresponding author. E-mail address: [email protected] (K.M.J. Mayers). 1 Current address: The Lyell Centre, Heriot-Watt University, Edinburgh, UK. https://doi.org/10.1016/j.pocean.2018.02.024 Available online 10 March 2018 0079-6611/ Crown Copyright © 2018 Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/). K.M.J. Mayers, et al. Progress in Oceanography 177 (2019) 101928 et al., 1983; Poulton et al., 2013) and in coastal shelf seas (e.g. during an E. huxleyi bloom in the Bering Sea found lower grazing rates Buitenhuis et al., 1996; Krueger-Hadfield et al., 2014; Rees et al., 2002). within bloom waters than outside bloom waters, which led to higher Phytoplankton blooms are common in shelf sea environments net growth rates compared with outside of the bloom (Olson and Strom, during late spring, when environmental conditions allow growth to 2002). A similar result was observed in the English Channel (Fileman exceed mortality and biomass to accumulate. The community structure et al., 2002), suggesting depressed grazing rates on coccolithophores within these blooms may change with time as environmental conditions could be a trigger for bloom formation and persistence. such as nutrient and light availability favour one phytoplankton group At the cellular scale, calcification accounts for ∼30% of photo- over another. Coccolithophore blooms are considered to be favoured synthetically fixed energy and hence represents a important fraction of under conditions between high-turbulence high-nutrient and low-tur- the total cellular metabolism available for key cellular processes such as bulence low-nutrient environments (Balch, 2004). However, satellite- nutrient uptake and cell division (Monteiro et al., 2016). The ecological derived particulate inorganic calcite and chlorophyll-a data from open or physiological role of calcification is not fully known, though several ocean regions suggest that blooms of coccolithophores can also co- hypotheses exist, such as protection from light stress, enhancement of occur with blooms of other phytoplankton (e.g. diatoms), and sequen- photosynthesis, buoyancy regulation and as a protection from grazing tial succession between groups may not always occur (Hopkins et al., (Young, 1994; Monteiro et al., 2016). A recent modelling study pro- 2015). In situ observations made during several phytoplankton blooms posed that calcification has different ecological roles across different support the co-occurrence of coccolithophores with other groups, in- oceanic provinces (Monteiro et al., 2016). However, experimental re- cluding diatoms and dinoflagellates in both open ocean and coastal sults have so far demonstrated less clarity on the role of calcification. environments (see Daniels et al., 2015; Poulton et al., 2013, 2014; For example, culture experiments with the heterotrophic dinoflagellate Schiebel et al., 2011), however we currently lack in situ data from shelf Oxyrrhis marina showed grazing to be higher on calcified E. huxleyi cells sea environments during spring. than naked ones (Hansen et al., 1996). More recently, another culture Blooms of E. huxleyi have been shown to be important sources of experiment has shown that grazing rates on E. huxleyi appeared to be calcite production (CP) (e.g. Balch et al., 2005; Poulton et al., 2007, dependent on the strain studied rather than cell calcite content, al- 2013), primary production (PP) (up to 30–40% (Poulton et al., 2013)), though the growth rates of the heterotrophic dinoflagellates and their CO2 fluxes (e.g. Buitenhuis et al., 1996), and the production of the overall grazing impact were depressed due to the cellular degree of bioactive gas dimethyl sulphide (e.g. Malin et al., 1993). Within some calcification (Harvey et al., 2015). shelf sea regions, E. huxleyi blooms are an annual feature (e.g. English The aim of our study was to examine the variability in the rates at Channel, Patagonian Shelf) whereas in others they appear sporadically which coccolithophore communities grow and are being grazed on by though, recently at an increased frequency (e.g. Barent’s Sea, Black Sea) microzooplankton, and how these relate to environmental conditions (Iglesias-Rodriguez et al., 2002; Smyth et al., 2004). How these blooms and the microzooplankton community. We carried out our study during fit into global budgets of CP is currently unclear, though they arelo- April, as this is the key period in temperate shelf seas for the spring calised sites of high CP and export (Holligan et al., 1993; Poulton et al., phytoplankton bloom and not generally associated with coccolitho- 2013). phore blooms which typically occur in late summer. We measured The formation of E. huxleyi blooms, which often occur in late coccolithophore growth and mortality rates, alongside observations of summer, is thought to be linked to several environmental factors in- coccolithophore species composition and CP, during April at three sites cluding; warm, stratified waters, with low silicic acid concentrations in the Celtic Sea in order to examine: (1) the role of coccolithophores in (limiting diatoms), high irradiance, low nitrate to phosphate ratios, and carbon cycling during spring, (2) coccolithophore
Recommended publications
  • Spring Bloom Dynamics and Zooplankton Biomass Response on the US Northeast Continental Shelf
    Continental Shelf Research 102 (2015) 47–61 Contents lists available at ScienceDirect Continental Shelf Research journal homepage: www.elsevier.com/locate/csr Spring bloom dynamics and zooplankton biomass response on the US Northeast Continental Shelf Kevin D. Friedland a,n, Robert T. Leaf b, Joe Kane a, Desiree Tommasi c, Rebecca G. Asch d, Nathan Rebuck a, Rubao Ji e, Scott I. Large f, Charles Stock c, Vincent S. Saba g a National Marine Fisheries Service, Northeast Fisheries Science Center, 28 Tarzwell Dr., Narragansett, RI 02882, USA b Gulf Coast Research Laboratory, University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, USA c NOAA Geophysical Fluid Dynamics Laboratory, Princeton University Forrestal Campus, 201 Forrestal Road, Princeton, NJ 08540, USA d Princeton University, Program in Atmospheric and Oceanic Sciences, 300 Forrestal Road, Princeton, NJ 08540, USA e Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA f National Marine Fisheries Service, Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA 02543, USA g National Marine Fisheries Service, Northeast Fisheries Science Center, c/o NOAA Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton University Forrestal Campus, Princeton, NJ 08540, USA article info abstract Article history: The spring phytoplankton bloom on the US Northeast Continental Shelf is a feature of the ecosystem Received 31 October 2014 production cycle that varies annually in timing, spatial extent, and magnitude. To quantify this variability, Received in revised form we analyzed remotely-sensed ocean color data at two spatial scales, one based on ecologically defined 20 February 2015 sub-units of the ecosystem (production units) and the other on a regular grid (0.5°).
    [Show full text]
  • ICES Marine Science Symposia, 215: 221-21)6
    ICES Marine Science Symposia, 215: 221-21)6. 2002 Understanding the role of turbulence on fisheries production during the first century of ICES Brian R. MacKenzie MacKenzie, B. R. 2002. Understanding the role of turbulence on fisheries production during the first century of ICES. - ICES Marine Science Symposia, 215: 227-236. Since its inception, ICES has been concerned with the effect of hydrography on the abundance and distribution of fish and fish catches. One of the earliest and most sig­ nificant oceanographic findings made by the ICES community was the influence of vertical mixing and turbulence on seasonal plankton production processes. This dis­ covery, acquired over several decades of investigation, led to three major theories of fish population regulation and demonstrates the underlying impact that turbulence has on seasonal plankton and fish production. More recently, moderate levels of turbu­ lence and upwelling have been shown to produce the highest recruitment among clu- peid populations inhabiting major upwelling areas. The mechanism responsible for this pattern is a balance between the positive and negative effects of both turbulence and upwelling on plankton production, larval feeding, and advective processes. In one ICES upwelling zone (Bay of Biscay), recruitment of a local clupeid is related to some of these processes. This knowledge is contributing to the ICES assessment process for this stock. Frontal zones on continental shelves within the ICES Area are also moder­ ately turbulent environments, may also have an impact on fish recruitment, and have received particular attention by colleagues within the ICES community. In future, an understanding of how turbulence affects fish and plankton production at upwelling and frontal zones and during storms could help justify including additional environ­ mental and ecosystem information in recruitment and catch prediction models.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Spring Bloom in the Central Strait of Georgia: Interactions of River Discharge, Winds and Grazing
    MARINE ECOLOGY PROGRESS SERIES Vol. 138: 255-263, 1996 Published July 25 Mar Ecol Prog Ser I l Spring bloom in the central Strait of Georgia: interactions of river discharge, winds and grazing Kedong yinl,*,Paul J. Harrisonl, Robert H. Goldblattl, Richard J. Beamish2 'Department of Oceanography, University of British Columbia, Vancouver, British Columbia, Canada V6T 124 'pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, British Columbia, Canada V9R 5K6 ABSTRACT: A 3 wk cruise was conducted to investigate how the dynamics of nutrients and plankton biomass and production are coupled with the Fraser River discharge and a wind event in the Strait of Georgia estuary (B.C.,Canada). The spring bloom was underway in late March and early Apnl, 1991. in the Strait of Georgia estuary. The magnitude of the bloom was greater near the river mouth, indicat- ing an earher onset of the spring bloom there. A week-long wind event (wind speed >4 m S-') occurred during April 3-10 The spring bloom was interrupted, with phytoplankton biomass and production being reduced and No3 in the surface mixing layer increasing at the end of the wind event. Five days after the lvind event (on April 15),NO3 concentrations were lower than they had been at the end of the wind event, Indicating a utilization of NO3 during April 10-14. However, the utilized NO3 did not show up in phytoplankton blomass and production, which were lower than they had been at the end (April 9) of the wind event. During the next 4 d, April 15-18, phytoplankton biomass and production gradu- ally increased, and No3 concentrations in the water column decreased slowly, indicating a slow re- covery of the spring bloom Zooplankton data indicated that grazing pressure had prevented rapid accumulation of phytoplankton biomass and rapid utilization of NO3 after the wind event and during these 4 d.
    [Show full text]
  • Blooms Unit (3 Pts) Section
    T. James Noyes, El Camino College Blooms Unit (Topic 10A-2) – page 1 Name: Blooms Unit (3 pts) Section: Blooms A bloom is the rapid increase in the population of an organism (a “population explosion”). Blooms occur when something needed for growth and reproduction, something that was holding back or “limiting” the size of the population, becomes more abundant. Phytoplankton blooms typically occur when the amount of sunlight or nutrients increases. (Sunlight and nutrients are the two things that phytoplankton need for photosynthesis that there may not be enough of in ocean water.) A bloom will stop and the population will shrink when the resource runs out or goes away. Zooplankton bloom when phytoplankton bloom, because more phytoplankton means more food for them. However, most animals cannot reproduce as fast as phytoplankton, so their population grows more slowly and is not large enough to prevent the growth of the phytoplankton population (until the phytoplankton bloom begins to slow down on its own). Humans can cause blooms of phytoplankton by adding lots of additional nutrients to ocean water. (We cannot affect the amount of sunlight, can we?) Typically, humans add nutrients by dumping untreated sewage or when rain washes fertilizers and animal wastes off farmland and into rivers. (Animal wastes are the feces or manure from cows, pigs, and so on.) In developed countries like the United States, sewage is treated to a very high standard and accidental spills of untreated or partially treated sewage are rare, so in the United States farming is the primary human activity that causes or contributes to blooms of algae (phytoplankton) in lakes and the ocean.
    [Show full text]
  • Sample Chapter Algal Blooms
    ALGAL BLOOMS 7 Observations and Remote Sensing. http://dx.doi.org/10.1109/ energy and material transport through the food web, and JSTARS.2013.2265255. they also play an important role in the vertical flux of Pack, R. T., Brooks, V., Young, J., Vilaca, N., Vatslid, S., Rindle, P., material out of the surface waters. These blooms are Kurz, S., Parrish, C. E., Craig, R., and Smith, P. W., 2012. An “ ” overview of ALS technology. In Renslow, M. S. (ed.), Manual distinguished from those that are deemed harmful. of Airborne Topographic Lidar. Bethesda: ASPRS Press. Algae form harmful algal blooms, or HABs, when either Sithole, G., and Vosselman, G., 2004. Experimental comparison of they accumulate in massive amounts that alone cause filter algorithms for bare-Earth extraction from airborne laser harm to the ecosystem or the composition of the algal scanning point clouds. ISPRS Journal of Photogrammetry and community shifts to species that make compounds Remote Sensing, 59,85–101. (including toxins) that disrupt the normal food web or to Shan, J., and Toth, C., 2009. Topographic Laser Ranging and Scanning: Principles and Processes. Boca Raton: CRC Press. species that can harm human consumers (Glibert and Slatton, K. C., Carter, W. E., Shrestha, R. L., and Dietrich, W., 2007. Pitcher, 2001). HABs are a broad and pervasive problem, Airborne laser swath mapping: achieving the resolution and affecting estuaries, coasts, and freshwaters throughout the accuracy required for geosurficial research. Geophysical world, with effects on ecosystems and human health, and Research Letters, 34,1–5. on economies, when these events occur. This entry Wehr, A., and Lohr, U., 1999.
    [Show full text]
  • Detection of Coccolithophore Blooms with Biogeochemical-Argo Floats L
    Detection of Coccolithophore Blooms With BioGeoChemical-Argo Floats L. Terrats, H. Claustre, M. Cornec, Alain Mangin, G. Neukermans To cite this version: L. Terrats, H. Claustre, M. Cornec, Alain Mangin, G. Neukermans. Detection of Coccolithophore Blooms With BioGeoChemical-Argo Floats. Geophysical Research Letters, American Geophysical Union, 2020, 47 (23), 10.1029/2020GL090559. hal-03099761 HAL Id: hal-03099761 https://hal.archives-ouvertes.fr/hal-03099761 Submitted on 6 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License RESEARCH LETTER Detection of Coccolithophore Blooms With 10.1029/2020GL090559 BioGeoChemical‐Argo Floats Key Points: L. Terrats1,2 , H. Claustre1 , M. Cornec1 , A. Mangin2, and G. Neukermans3,4 • We matched profiling float trajectories with ocean‐color 1Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche‐sur‐Mer, France, satellite observations of 2 ‐ 3 coccolithophore blooms ACRI ST, Sophia Antipolis, France, Biology Department, MarSens Research Group, Ghent University, Ghent, Belgium, • Two simple bio‐optical indices 4Flanders Marine Institute (VLIZ), InnovOcean site, Ostend, Belgium permitted successful identification of coccolithophore blooms from floats in the Southern Ocean Coccolithophores (calcifying phytoplankton) form extensive blooms in temperate and subpolar • Abstract A method for identifying ‐ coccolithophore blooms at the global oceans as evidenced from ocean color satellites.
    [Show full text]
  • Ocean Iron Fertilization Experiments – Past, Present, and Future Looking to a Future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) Project
    Biogeosciences, 15, 5847–5889, 2018 https://doi.org/10.5194/bg-15-5847-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 3.0 License. Reviews and syntheses: Ocean iron fertilization experiments – past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project Joo-Eun Yoon1, Kyu-Cheul Yoo2, Alison M. Macdonald3, Ho-Il Yoon2, Ki-Tae Park2, Eun Jin Yang2, Hyun-Cheol Kim2, Jae Il Lee2, Min Kyung Lee2, Jinyoung Jung2, Jisoo Park2, Jiyoung Lee1, Soyeon Kim1, Seong-Su Kim1, Kitae Kim2, and Il-Nam Kim1 1Department of Marine Science, Incheon National University, Incheon 22012, Republic of Korea 2Korea Polar Research Institute, Incheon 21990, Republic of Korea 3Woods Hole Oceanographic Institution, MS 21, 266 Woods Hold Rd., Woods Hole, MA 02543, USA Correspondence: Il-Nam Kim ([email protected]) Received: 2 November 2016 – Discussion started: 15 November 2016 Revised: 16 August 2018 – Accepted: 18 August 2018 – Published: 5 October 2018 Abstract. Since the start of the industrial revolution, hu- providing insight into mechanisms operating in real time and man activities have caused a rapid increase in atmospheric under in situ conditions. To maximize the effectiveness of carbon dioxide (CO2) concentrations, which have, in turn, aOIF experiments under international aOIF regulations in the had an impact on climate leading to global warming and future, we therefore suggest a design that incorporates sev- ocean acidification. Various approaches have been proposed eral components. (1) Experiments conducted in the center of to reduce atmospheric CO2. The Martin (or iron) hypothesis an eddy structure when grazing pressure is low and silicate suggests that ocean iron fertilization (OIF) could be an ef- levels are high (e.g., in the SO south of the polar front during fective method for stimulating oceanic carbon sequestration early summer).
    [Show full text]
  • Townsend-Et-Al-1994-DSR.Pdf
    Deep-SeaResearch I, Vol. 41, No. 5/6, pp. 747-765, 1994 Pergamon Copyright © 1994 Elsevier Science Ltd Printed in Great Britain. All rights reserved 09674)637/94 $7.00 + 0.00 Causes and consequences of variability in the timing of spring phytoplankton blooms DAVID W. TOWNSEND,* LEON M. CAMMEN,t PATRICK M. HOLLIGAN,~ DANIEL E. CAMPBELL§ and NEAL R. PETTIGREW* (Received 12 April 1993; in revised form 30 August 1993; accepted 28 September 1993) Abstract--Established conceptual models of the initiation and progression of spring phyto- plankton blooms are reconsidered in light of recent observations. We use biological simulation modelling as a tool for the analysis of spring plankton blooms in shallow, coastal waters in temperate latitudes of the North Atlantic. The model shows that interannual variability in the timing of bloom initiation arises from year-to-year differences in incident irradiation, as deter- mined by weather (cloudiness). This variability in timing results in some years when the spring bloom occurs in cold water temperatures near 0°C. Model results suggest that due to low temperature inhibition of heterotrophic consumption, more fresh organic material is delivered to the benthos in these cold-water blooms than when the bloom occurs in waters only 3°C warmer. Thus we suggest that variable bloom timing can be important to the trophodynamic fate of bloom products. We suggest that variability in timing of spring phytoplankton blooms in offshore and open ocean waters is also related to weather, through controls on the light field and wind mixing. Our analyses of wind-driven vertical mixing demonstrate such blooms can begin following the winter period of deep convection, and prior to the vernal development of stratification, provided that wind speed is below a certain, predictable threshold, which we estimate.
    [Show full text]
  • Phytoplankton Dynamics in Contrasting Early Stage North Atlantic Spring Blooms: Composition, Succession, and Potential Drivers
    Biogeosciences, 12, 2395–2409, 2015 www.biogeosciences.net/12/2395/2015/ doi:10.5194/bg-12-2395-2015 © Author(s) 2015. CC Attribution 3.0 License. Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition, succession, and potential drivers C. J. Daniels1, A. J. Poulton2, M. Esposito2, M. L. Paulsen3, R. Bellerby4,5,6, M. St John7, and A. P. Martin2 1Ocean and Earth Sciences, National Oceanography Centre Southampton, University of Southampton, Southampton, UK 2Ocean Biogeochemistry and Ecosystems, National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK 3Department of Biology, Marine Microbiology Department, University of Bergen, Bergen, Norway 4Norwegian Institute for Water Research (NIVA), Bergen, Norway 5Uni Bjerknes Centre, Bergen, Norway 6State Key Laboratory for Estuarine and Coastal Research, East China Normal University, Shanghai, China 7National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund, Denmark Correspondence to: C. J. Daniels ([email protected]) Received: 1 December 2014 – Published in Biogeosciences Discuss.: 6 January 2015 Revised: 23 March 2015 – Accepted: 4 April 2015 – Published: 24 April 2015 Abstract. The spring bloom is a key annual event in the phe- was potentially limited by physicochemical and/or biological nology of pelagic ecosystems, making a major contribution factors such as grazing. to the oceanic biological carbon pump through the produc- Diatoms dominated the ICB, with the genus Chaetoceros tion and export of organic carbon. However, there is little (1–166 cells mL−1) being succeeded by Pseudo-nitzschia consensus as to the main drivers of spring bloom formation, (0.2–210 cells mL−1). However, large diatoms (> 10 µm) exacerbated by a lack of in situ observations of the phyto- were virtually absent (< 0.5 cells mL−1) from the NWB, plankton community composition and its evolution during with only small nano-sized (< 5 µm) diatoms (i.e.
    [Show full text]
  • The Spring Bloom Matters
    UNDERSTANDING ECOSYSTEM PROCESSES IN THE BERING SEA 2007–2013 The Spring Bloom Matters THE IMPORTANCE OF THE SPRING BLOOM TO THE OVERALL PRODUCTIVITY OF THE BERING SEA The success of the highly produc- the spring bloom to the Bering Sea What We Found tive Bering Sea fishery depends on ecosystem and to predict how these We found the spring ice-associ- massive blooms of tiny, single-celled blooms might be altered for better ated bloom (Figure 1) to be of vital plants that occur each spring when or worse in a warmer Bering Sea. importance to the productivity of increasing light and abundant nutri- the Bering Sea. It begins the plank- ents enable these plants to flourish What We Did ton growing-season and supplies a both in the ice (ice algae) and in the We collected samples over a large large and dependable food source water column (phytoplankton) as region of the shelf, using ice cores, to which the life cycles of many of the sea ice retreats. These blooms water samplers and nets to identify the important zooplankton, and support a zooplankton commu- and quantify the biomass of the continued on page 2 nity that has just awoken from a planktonic ecosystem components. Fig. 1 period of rest during the long, dark, Shipboard experiments measured cold winter. This community is important biological rates, such as made up of the small, unicellular zooplankton feeding, growth and microzooplankton and the larger, reproductive rates. Datasets then multicellular, mostly crustacean were integrated and synthesized to mesozooplankton dominated by determine regional patterns and year- copepods and krill.
    [Show full text]
  • "Plastid Originand Evolution". In: Encyclopedia of Life
    CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Queensland eSpace Plastid Origin and Advanced article Evolution Article Contents . Introduction Cheong Xin Chan, Rutgers University, New Brunswick, New Jersey, USA . Primary Plastids and Endosymbiosis . Secondary (and Tertiary) Plastids Debashish Bhattacharya, Rutgers University, New Brunswick, New Jersey, USA . Nonphotosynthetic Plastids . Plastid Theft . Plastid Origin and Eukaryote Evolution . Concluding Remarks Online posting date: 15th November 2011 Plastids (or chloroplasts in plants) are organelles within organisms that emerged ca. 2.8 billion years ago (Olson, which photosynthesis takes place in eukaryotes. The ori- 2006), followed by the evolution of eukaryotic algae ca. 1.5 gin of the widespread plastid traces back to a cyano- billion years ago (Yoon et al., 2004) and finally by the rise of bacterium that was engulfed and retained by a plants ca. 500 million years ago (Taylor, 1988). Photosynthetic reactions occur within the cytosol in heterotrophic protist through a process termed primary prokaryotes. In eukaryotes, however, the reaction takes endosymbiosis. Subsequent (serial) events of endo- place in the organelle, plastid (e.g. chloroplast in plants). symbiosis, involving red and green algae and potentially The plastid also houses many other reactions that are other eukaryotes, yielded the so-called ‘complex’ plastids essential for growth and development in algae and plants; found in photosynthetic taxa such as diatoms, dino- for example, the
    [Show full text]