JAERI-Conf JP9950125 99-001

1998^113260-270, Ifl#ffl*BK flfcrfr

1999^33

(A) «**«T • Wfflm^* • luw&m am it

Japan Atomic Energy Research Institute A^Wfflfi-ib-tJrli, U^)I7'*W?EP/f5)f?Etff*^5Jf^tf*I* (T319-1195 ^«^^i»J asm?® ft) *-c, t-*LSL

This report is issued irregularly. Inquiries about availability of the reports should be addressed to Research Information Division, Department of Intellectual Resources, Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken, 319-1195, Japan.

©Japan Atomic Energy Research Institute, 1999 JAERI-Conf 99-001

1998^11/3260 -270, Mtt^mftpJi, Mm

(1999*f l£25Bgg)

i99i^(^, im&vxtwto'&mwftsmmA&vT-e mm^&v2>m&mm®&ft*:

fi£a«r±t/5^«t^Hi*fco ^LT, i996^^b twmm^v zw&&ffi&mft\^m-*&

^iLfcfe©T'S.'So

&fc»F£fff : T 319 - 1195 ««!HSP?f F% % ft fi # &K 2 - 4

I JAERI-Conf 99-001

Proceedings of the Cross-Over Symposium "New Approaches for Studies on Environmental Radioactivity" November 26-27, 1998, RIKEN, Wako-shi, Japan

(Eds.) Shiro MATSUMOTO*, Shigeo UCHIDA", Hiromi YAMAZAWA and Hikaru AMANO

Department of Environmental Safety Research Nuclear Safety Research Center Tokai Research Establishment Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken

(Received January 25, 1999)

This conference was organized by the Promotion Committee on Nuclear Cross-Over Research and the Specialist Committee on Assessment & Reduction of Radiation Risks, and co-organized by Micro• bial Toxicology Lab., RIKEN and Environmental Chemistry Lab., JAERI. In 1991, a project on transfer models and parameters of radionuclides in terrestrial environment was started in the Specialist Committee on Assessment & Reduction of Radiation Risks. This project was finished successfully to have active cooperation of different organizations which were Japan Atomic Energy Research Institute (JAERI), Meteorological Research Institute (MRI), National Insti• tute of Radiological Sciences (NIRS), the Institute of Physical and Chemical Research (RIKEN) and Power Reactor and Nuclear Fuel Development Corporation (PNC). Subsequently, we started a new project named "Development of dynamic models of transfer of radionuclides in the terrestrial envi• ronment" with adding a new member, Institute for Environmental Sciences (IES) from 1996. The results we obtained so far were presented in this conference. About 120 specialists attended in this conference. We believe the discussions in this conference were of great help to the crossover research project and also will be expected to reach some agree• ments which could lead to fruitful cooperation among scientists concerned with all aspects of the radiological consequences of radionuclides in the terrestrial environment in the future.

Keywords: Cross-Over Research, Radioactivity, Dynamic Model, Transfer, Terrestrial Environment

* Saitama University " National Institute of Radiological Sciences

ii JAERl­Conf 99­001

&

1. M«£ 1 (■> > $ i? ­> AHftSM^) rtffl^A • &# jfe$ 2. ^±i^4*©240Pu/239PuJ:b©aiJ^i^tl^mi!*­t­­5fc© 4

3. 7KfflfcJ:0;M/F±i^^­t­§l37Cs©'rf^^MB#rBtj 12

4. ^7K*^TS+®'0Srfc«kt/137Cs®«ISij7f­^&ft 49 ffl±S:P • rtffi&A 7. IBV»Hr = /N,7^>^^^||g|Ji&af^®^ai|fe«|cfcft5PuNti[(*c

10. jE^SSffctrVl/ -M7i?78fi^i/©A¥#f 119

12. MttM©*^®, «tr­©ft«, ttmtH&WjKWtZWft 135 i3. atfmjE:7tJi'

14. i^^^h'Jf­^A^T­tf­Vb­ETDOSE­©^^ 161 zmmm? • ^jgtat • AI? # i5. ±ai­fiti^i­fc{t5^a^fi:icisg­#­stfeit no i6. jfcftH4sa®^wspggij*i*siR'Rs®wffi 178 JAERI-Conf 99-001

17. XMfrbWM • ±a^®S**!S^lZfcif£S& 186 £MM?-AI? it • -®m? • -mm is. mimtt&mAxumM&vMg: 196 i9. fo%&mu

20. »£^l;:«k5£5>-y;Uh-"j;A0£#afii 213

21. *ffl±£fcfc#S^®«£

22. ^^^^©^ai^Mliil 225 Hi? % 23. A-!rffW®^*?«MK#S^*Jtf5&l*tt^S^®^Sl 241

24. ^KfcttSCs-lST^frtfOUOilftft 246

25. Millie£MttM©f£?T 258 $7* E

IV JAERI-Conf 99-001

Contents

1. Preface 1 Shigeo Uchida, Shiro Matsumoto (Symposium Organizing Committee) 2. Determination of 240Pu/239Pu ratio and its significance in environmental studies 4 Yasuyuki Muramatsu 3. Residence half-time of 137Cs in the top-soils of Japanese paddy and upland fields 12 Misako Komamura, Akito Tsumura, Kiyoshi Kodaira 4. Observation of the 90Sr and 137Cs deposition and its application to the research on environmental behavior of radionuclides 24 Yasuhito Igarashi, Michio Aoyama, Takashi Miyao, Katsumi Hirose 5. Distribution and migration of long lived radionuclides in the environment around the Chernobyl Nuclear Power Plant 35 Hikaru Amano, Takeshi Matsunaga, Takashi Ueno, Seiya Nagao, Nobuyuki Yanase, Miki Watanabe, Yukiko Hanzawa 6. The concentrations of Chernobyl fallout technetium-99 in soils and plants and the transfer in a soil-to-plant system 49 Keiko Tagami, Shigeo Uchida 7. Distribution of Pu isotopes and 137Cs in and around the former Soviet Union's Semipalatinsk nuclear test site 59 Masayoshi Yamamoto, Masaharu Hoshi, Jun Takada, Tsuneo Tsukatani, Alexander Kh. Sekerbaev, Boris I. Busev 8. The present status and recent applications of the accidental tritium assessment codeUFOTRI 81 W. Raskob 9. Evaluation of long-range transport of acidic substances in East Asia 97 Yoichi Ichikawa, Hiroshi Hayami 10. Long range transport model - Long range transport of sulfate material over East Asia - 109 Masaru Chiba, Junji Sato 11. Analyses of the variation of Rn-222 concentration using the atmospheric dispersion model .. 119 Tetsuya Sakashita, Toshiyuki Murakami, Takao Iida, Yukimasa Ikebe 12. Studies on deposition, adhesion and resuspension of radioactive substances on the ground surface and ground cover 135 Susumu Kurita, Kazuo Kurihara 13. Development of water circulation model and application to tritium diffusion 151 Hiromi Yamazawa, Haruyasu Nagai

V JAERI-Conf 99-001

14. Development of an environmental tritium model; ETDOSE 161 Mariko Andoh, Tomoyuki Takahashi, Hikaru Amano 15. Study on transfer behavior of radionuclides from soil to plant 170 Shigemitsu Morita, Hitoshi Watanabe, Hiromi Katagiri, Kunihiko Shinohara 16. Evaluation of absorption of radionuclides via roots of plants at different growth stages 178 Shizuko Ambe 17. Deposition of heavy water vapor from air to plant and soil 186 Mariko Andoh, Hikaru Amano, Mitsuko Ichimasa, Yusuke Ichimasa 18. Artificial Climate Experiment Facility in Institute for Environmental Sciences 196 Shun'ichi Hisamatsu 19. Plant uptake of radionuclides and rhizosphere factors 202 Tsutomu Arie, Satyanarayana Gouthu, Hiroaki Hirata, Shizuko Ambe, Isamu Yamaguchi 20. Bioaccumulation of uranium and plutonium by microorganisms 213 Takashi Sakaguchi 21. Cycles of Materials and roles of microorganisms in paddy soill 215 Kazuyuki Inubushi 22. Management of water cycle system and biogeochemical cycle 225 Toru Mitsuno 23. Behavior of radioactive and stable elements in the brackish Lake Obuchi in Rokkasho Village 241 Kunio Kondo, Shinji Ueda, Hitoshi Kawabata, Hidenao Hasegawa, Yoichiro Ohmomo 24. Study on transfer model of 137Cs in Lake Hinuma 246 Minora Takeishi 25. Migration of radionuclides through a river system 258 Takeshi Matsunaga

VI JAERI-Conf 99-001

. BUlf

jg^^*««®^ww^ (^Dxt-n-ufTi!) (.mw&m n^viTtt, mas (TO3« -¥/#7^ijo t, ^T^/^^-^^&IL, ^tfin^^sftittt^ffi^iiic^aiiii*®^ _h£0oT#fc„ £S£, Jg 1 $©)& Ji £2g£;i, Jg2$ («8^-TOlO^) Ttt,

•&Ltzmwk^i:\zh^m(D^±mm\z\t, HraiatotiNBT&s. -#, s&§n$i;:«, Mtt

4fcH®St£'\®;&trJi£a«£ft;U £«=>tc^©fcm, £ff££K^5IMfc-t®flfe®?i£&ftsb-5£

fc££iW®££#&£ffim-5;i4:£fcJ6fflT#5. ^2il;^tt59f^ft d®«t"5^«^ \ziLiTWfe-zntz, B^mj-tmum, UMmim. imumm&mm. wcm^m. fc#g?*TS-^, AM-±*-«MK£tt3M&fT£, 7j-fe-/hchLT« -r^^tc^^fco 2jcv>#^^A®awtt, dnsT®w^^**^s*rs

£®'»#^£A«, 5j£j*7^9^4-5 0H*FTMffi$nfc ^DX^-/\'-^y># v^A : ^^#)K©^^#i>iT'SiJfcK^5^ffi^^f¥lffl^x;P^?,^tI^©^iTA^^-^j IC ^>#vf^ATtt®0±tfS^<»:^T#^^ofc r*HT®#»U r|»

-Kt~£tt3$f7c&3!)g£}$^Lfcl>o Mk:. *^>#^^A®^Xh**S^LfcS{t^W^R)Tffl[4«!jlWfflW^^, M^'trtiSb TVifcfc*Vifc02|cffi«fea^^*5«t^S2|5:J|[^^^^t'b*^**L*L±tfS. JAERI-Conf 99-001 v utt-n-wflLi'y&w A^fTSM^gji-^

» M i^5A^ UUP 3§ a^t^w^m ftffl i&^ m^mm^m^mnm A0 ft B*MT*m$m jfi& ftfS wm^mm^ffi =f-m fi ^mornm &m m% &tm*M>7)mm ffflC Ji wtmsmm LiJ^ urn B^mi-tim^M

mm^mmm

WEB &* tkMmm^m&mitm JAERI-Conf 99-001

% (a^-fe->>-3>Mi, mm)

A-l) *fn—;VVy*—)V7yh:r—? ma %m B###rfe>*- A- 2) *J&lCct5ifii»a[^g!jft!l«t*3tj-5^a®^^

I t& mf&A^

B) mmwtf^jv B-l) AM&frtx^ fjl|£i JA^A^ B-2) AM-A*-*^^^*^ «*§»# nc^§em&*

C) ±»-ft#j^®^fr Att#-6^ t^WSM^m

oira- ULA^

D) #$£$) • »£^©j iijn mitmtpft mmm n rtBB^A ftltiBE¥«g'&W^^f

E) l&zk^Kfctt**! fit7j< M 0*A^

- 3 JP9950126 JAERI-Conf 99-001

1 239 mbtzo z\(Djjmiz£&mm*®7°jbb-vi*(Dtk\}iTmmttompgmi- ( PU:O.O5 1 240 1 mBq ml" , Pu : 0.17 mBq ml" ) T*ofc0 IAEA©j£|fcigji$[g#|Sf£#trr Lfzt Z\ h, 239+240 240 239 Pu(Dmmi.mmt&^-$L%*uzo it^mmu,m^(D ?u/ ?ufM^-i:tizm

240 239 ^Pu/^PuJtJlMI"5ita*W5 - £^'T£ A0 Pu/ PuJ^^J;b(i^0.04~0.4

2 40pu/239puJ;|:^Ii^s^i(:.i.^m[tiMtf|g^#S::

Determination of 240Pu/239Pu ratio and its significance in environmental studies

Yasuyuki MURAMATSU National institute of Radiological Sciences

Analytical procedures for the determination of Pu concentrations and its isotopic ratios in environmental samples were developed by using ICP-MS. Detection limit of Pu by ICP-MS was about 0.02 pg ml"1 (0.05 mBq ml"1 for 239Pu; 0.17 mBq ml"1 for 240Pu) in the sample solution. Analytical results of 239+240^ ^ j^EA standard reference materials indicated that the accuracy of this method was satisfactory. Data on the Pu/ Pu atom ratios, which are rare in the literature, were also obtained for soil and sediment samples (including IAEA standard reference materials) from different areas such as Irish Sea, Mururoa Atoll, Marshall Islands, Chernobyl, Kyshtym, Nagasaki and some other places in Japan. The range of the 2^Pu/ 3 Pu ratios was about 0.04-0.4, and the ratios are depending on the origin of the materials. Analytical results for the ^uPu/ 39Pu atom ratios provide information about the source of the contamination and the transfer of plutonium in the environment.

Keyword Plutonium, ICP-MS, Analysis, Atomic ratio, Environmental samples, Standard reference materials

- 4 - JAERI-Conf 99-001

y°jib^^^omm^iz-is{ji6mmtmm^m^^z\titmmn^-(^Mzm^6mm ^^fpHAA^fiSi^^bnso m&m^\zft&irZ7°)iY-vi*(D%(ft&%mz-£ 239+240 4 l) Willi £tltz&(DXki), ^®^*li PuiUT10 TBqci:Ji^^nTl^Wo &H iK^TI^ *7 7>f-;l/ K(2) (3). +xA^r A(4), AxT-l/y 7^ U <5>tt£©jfi&J; *)$ a}£ftT:fc£J§2£#3&<^fe£ftT^.5o 7°;l/h^A©|im#(iMifc232~246;£T-ft]b tltl^o *©*Tt>S«^*£%;L<5±Tfig/.i:t>©fcU ^Pu^Mffl: 87.7 4E), 239Pu 24 (¥MS8:24110 4£), 0pu (¥&$: 6580 4E) £ 241^, (¥«$: 14.4 4£) T& 5 (Table-1 ) 0 #d 239PU t 240PU ii#^M*^i^J6#ras^nT^So

Table 1 Plutonium isotopes and their half-lives and energies.

Half-life Energy (MeV) Energy (MeV) Nuclide (year) Alpha Beta 5.768 (69%) Pu-236 2.85 5.721 (31%) 5.499 (72%) Pu-238 87.74 5.459 (28%) 5.157 (73%) Pu-239 24110 5.144 (15%) 5.105 (11%) 5.168 (76%) Pu-240 6580 5.124 (24%)

Pu-241 14.4 4.896 (0.002%) 0.021 (99.9%) 4.589 (81%) Pu-242 7 8.26 x 10 5.443 (14%)

7°;l/h-^A©##f££UTj£

i:$febn^(6)(7)o bfrbi\®ijmmm^mmvkiixfrffi^®m®m/?£ftv±. ^frti^omkim'g-zibZo *w%-?\t^ &^'M7tm(DfrtjT(Dttmxmmtfc£-oxz TI^ICP-MS mm&&7°yz-?MM.frtifm) ^m^^b-'y^om^.w^^^mib tz0 ic?-i&&\tm%£M7tmtix\l^zi)\ &\hmm^'m^^z>z\tfrh, &¥Uffl%m

*ifilom^htiX{^{\ ::m ±mmn%:*>L^pu(DttMmti$&%:miL, ICP-MS^I^PU^PUC^

5 - JAERI-Conf 99-001 w&*m^ 240Pu/239Pujt£>R#)Ao ttz, mmmmcDbmmm^M^ozfjuv-u^

£

2.frffi^m

y"jlb-yi±(D

#j$LAfe©£ffl^A0 ffiUKiSWitfJte*? hyb-hAT^-ei^ratToAo *tl**

H^^*A^©^Uh-^A©^K{iN >T*>£g!«fIi (DowexlxS) £ffll^#)££. i|ll^D7h/7 7-f-jlllg (TEVA) £ffl^&#&©2o£Jt<&LAo Dowex 1x8 (IJ;£ ^JSlT{^«(r^oA^*4^8N©ffi^^Dx.T?§^LAo 3A. TEVAjrj;S^lijr{i2

N©»(rig^LA0 t"%b®®m&m^m&X%^iltWtilf t£ £ ft I \, ZZX\ NaN02, HONH3CI mi\Z H202© 3 WOWM^mI >T{fc^JR^£ Jttii! t&ftLAo ffc^£4fl6i;:iHS&Lfc&. t£l»$£^>£&m (DowexlxS) £AteM?D-7 h/77-f- (TEVA) Illb/Co Pu{ifflfl&JIiS^$tlSo |B}M©gt«UfcoA&(:\

§*«^f«-9Mig|ftStt*ffl^ifliL^o &««£*»>/ h7°b-h_h T-B. K5>T7«y 7°LAo **l£ffiHJ;:igfrU «H&ftKtt4 96fflSltfg«^-K-r*SNBS-947*flO^LB6g LAo ^*ffS©tt^*Fig.-ljrt

IAEASoil-6 (3}--XMJ-©±aP „ IAEA-367 (^--> -Wl/f# &©*£») . IAEA-368( A

;l/P7M©Jf») . 1AEA-134 (7>T U v v'j.jfcOftft) A££jJH^A0 *©tife. §fej&< B©±« (£8U ffcffi. WsBU £«ftt£*) &TO£f©±^ (fx^7V'J^xf^A)

PU ©a* • #*?& ±* (JMMfe) fcU* : 2 ~ 50 g (MCHftRft)

242Pu (spike) , IHK (50~250ml) iiniLim 5*

(1) Dowex 1-X8*ffll*fc«* (2) EIChroM TEVA&fflltfcii-fr

5J« (8MffiBt: NaNOaSfcfcli* (Pu 4ffi) 5% (2M ffl») NaN02!?£})n*.S (Pu 4ffi)

Dowex 1-X8 (100-200 mesh) TEVA resin (100~200 mesh)

ft»:8MJ|l|l|, 10M£& - ft» : 2M #jg$ , 9M tm

Sit : 3l^tr>t = l5A(5%)-*H»a(10M) Bit: t pn*/ V(0.1M)- &&%m (9M)

K5-f7?-7 tfjSSlCigfr-f (3%) 5 ml S^-f (3%) 5 ml

ICP-MS SUE (Yokogawa PMS2000) SH^ftO : &b"-£50-200£J> (x 3 0)

Fig.l Analytical procedures of Pu by ICP-MS

3. %%Ru%m 3.1 ^flf&fcot^T

Pu©Yb^^*4ffiJI||!ei-SiWrfiir«S^©HII (NaN02, HONH3CI jfec>*(I H202) £ JfeffLfciC^MffiSfcA h V 7A^^^A^^^Dowexlx8iT£VAifeCSfc^^m^

*#&tlfc0 H2c>2*-fflt^«^^jR$^S^ Dowex 1x87?feTEVA*.ffit^Ji^-rfefc&Jfefc#©0!i£ Rg.2 d^-To IIU l^lfe#»{i^^©aSJi«toTfe^/j:S©Tlllll©^tifJi*^oT^fil«iii iH^sc:

7 - JAERI-Conf 99-001

133 Dawex 1x8 E3 TEVA

104 -fa i -li-i 100 .Hi Mn Ce Th U

Figure 2 Decontamination factors of selected elements by Dowex 1x8 and TEVA.

239 *^iff*ir=t^ Pu©^mTPjiffi(i. mmm^om^tbx, o.o5mBq/mi &tz\* o.o2PPt*gjgD xh^iz (jiu m&Tmm&%s(DWMmz±*oxbiE££ti2>) „ mm 239 (D±mxit, mi20g%m^tzigj&, Pu-cteo.iBq/kg a&m ns.om^txwm^^x iofc„ 240Pu©#r|rjTMte. mnmm^Om^tbXO.nmBq/ml, 20g(Dm^m^tz Ji£|20.35Bq/kg (&m Xh^fZa 240Pu£239Pu©&|rjTMJ^^££©J;L 240Pu©^ m^mtm^oxw^mm&t bx^tzmm^mm < A O -a ^„ ^^©^^^©U^^^bSOUH+OJKff^o^Tlli^^ctC^^ igtt^ouaaK^i Ppb©i^239Pu©t0-^^©^#i^o.o3pptii>ffi^1-Sffi-r^oAo citihU tfclfjTE

j ppbUTizt&(Dimn

Table 2 Detection limit, RSD and influence of UH+ in the ICP-MS determination.

\teight basis: 0.02 ppt Detection limit (solution) 239Pu activity: 0.05mBq/kg 240Pu activity: 0.17mBq/kg 239Pu activity: 0.1 Bq/kg Detection limit (soil sample 20g) 240Pu activity: 0.35 Bq/kg RSD (Relative Standard Deviation) 1~3% (3 determinations) UH+/U+ratio:3xl0"5 Influence of UH+ on 239Pu peak Influence of 1 ppb U: 0.03 ppt (pg/ml) 239Pu

3.2 PugjffiKoivr wEAtiiftffcLtzm* 239Pui240Pu©^n-^^n-g: u 239+240 tz0 iAEA(DmmMh&nm ( PU) zm^T^zm&te, ^>^-n>^'A/>jr#

8 - JAERI-Conf 99-001

239 240 muz^t(Dm^mmit7Jiy7-x^^ hoy hu-T«LTk^ Pu£ Pu©t? -^*53-*T#-r^ti-T^UTl^^T*.S„ #ffi^Tl#£ftAA-*£J^Ti;:^1-o (# #©A#)ClAEA©$^iJt£# y ZlfittZB-fo ) IAEA-Soil-6: 1.0 Bq/kg (1.0 Bq/kg) ;IAEA-135: 211 Bq/kg (213 Bq/kg); IAEA-367: 39.5 Bq/kg (38 Bq/kg); IAEA-368: 29.8 Bq/kg (31 Bq/kg)-?^ oAo :nb©g^b^5J;^^ iAEAmSHiiJti^a^^U. ##f&©S»^ f§MT£A0 7'CJyv'*&©*«& (1AEA-135) Tlbtlfcll^lfil^ t77^-ibFSi!l i^bffl^^li^otl^o t-Xh'J-0±l (IAEA-Soil-6) ©iitliS^ffl©^!

±ig©1lt (&£&) i^IStl.o/;0 A x ;IV 7VU 10kmfflft ©±ilTii 1000 Bq/kg £j@

3.3 240Pu/239Pu]:b(lO^T IAEA©Jt|S!g|J|IH^{ro^T»C©a*3Pu©^feftit (240Pu/239Pu®^Jt) CM1--SA

-^1#£ftA0 T^ U yi/^momW&l (IAEA-135) :0.21N 7^ "J y i/*.&&& (IAEA-

134) :0.20N -7-">-^;Hia©itffl#I (IAEA-367) : 0.31N A;bD 7^51©^^^ (IAEA-

368) :0.04N t-Xh'J-©±i (IAEA-Soil-6) :0.19-C&oA (i^Ll^SJI^ftM^ (1T>X&6) o Jt^^^M^44,©240Pu/239Pui:biiM1-'SiAEA©m^iit(itii$nT^A^ :i^^ cn^©1i(i^-^^if^T9±T©-o©##lJliLT^ALOiSt3nao 7°;bh-7AMSA^TA<|sM£ft (#JI240Pu/239Pu.tb) £>«« r £jr£ *). 7° ;Uh-^A©f5*«©l^^*>nTtgi^J:So £A. mmmmmx

Krey (1976)(13) fi1ft|r^-S^« LA 6 0 ^^©±Stf,©240Pu/239PUiBg^Jt*^*53' W^*M^TiteL1S^itkSA^70P-y hUT^So *©&££ai::l£fii&«T©¥£rti££

LT. 0.l76±0.0l4£l^1l£ftLT^£o ffiU ^©flttt^'^&^aM&Jia©*!*^ Afe©-C*.-So SHil«^2r{i. O.lLjJT (Ste-f* : 0.06) ^o^otfc^ /D-'< ;bA7*-^77 h©J£iTc"fiA<. i-te^S^^B-Si^HJTWA^^i#x.t,n^o £A. m*©A¥#flJT-fef^^J^^TO.l2~0.l5i^9^L®i6©1I^Bo^oT^-So Ctlbit A;l/p7^eAimA¥#Tfi1t3nA^^^©^#^S^LTl^^i#x.^nao ^©fib 1S^4,©^<©*^TIi0.l7~0.l9^r©^©^^^$nT*5 0. £^©7 *-;b77 bt LT|^TLA240Pu/239Puit(iitKW^i—?&Zz\ti)frZo ITC^S^ ®MW(D ^S{r^*)240Pu/239PuitliA^<^A^i«^^n'So MfaKJi.TJfci&^faKT** SS(i. A^^A^^^r(i^sSc$nA^a(isSc«HfiA0iA^^iA^aAi6i#x.t,n^o S>«?^iBfl^U^0*©g®±3|ff1©24()Pu/239PuJt(i^o.i7gffi (^^©t^^r^^O T 13 &t)N Krey^|g^( )LTl^^P-/<;b7^-;b7 7 h ©¥£MI

- 9 - JAERI-Conf 99-001

239PufimmtiT^&Aa6240Pu/239PuJt^/Ml\, M>bmtm%.£ti6o AjlaTmmomm^J (IAEA-368) ^b#bnA240Pu/239PuJtfi^0.04T'^oA^\ :iftfePu:li$©#lSr£MBfcLTl^ftfco Z\ ©1£{i7*-;l/7<7 r©1£J:!)k4>LA£i\, *y? 4 -fr Fonfamtm.'VmZtiizQi MSfStR^to^Pu/^puit^sKLT^at^^bnSo ^©flik fx/by7Vj* ftWJfe$nfc±«imkfllJ5£LT^5j&<. ^0.4gjKnT^5o S/c,

77iKonf^ A©±«©^tff*S*(i0.07gJK«»:ffii^T*>o Ao JK±©^tffffi©-SBJr o^TliSfiit(12)t?*»»). £A. Mfe^W^tfTx-^fei^LT^-So #L<(i4-

^tff*S**^fe^^5J:9J^ ^Pu/^mhte^mMfebtzmmiXb, &0.04-

b©^^^tf*P^-S±T-^{It£oLA«£. M^S^^l^^240Pu/239PuJt(i i§Jl\, £tz, Pu©^fe#©iI^{i0^JP©aSJ-J:oTfeM/«i:5o Tabled Jgi^TM -f 6Pu ©^^©M^OTT^-To

Table 3 Isotope composition of Pu from different reactors (from GSF mensch+umweJt, 1989)

Nuclide Weight percent Activity percent3

Pu-236 0 - 6xl0-6 0 - 0.005 Pu-238 0.02 - 3 3 - 84

Pu-239 45 - 98 5 - 90 Pu-240 2 - 30 7 - 11

Pu-241 0.04 -16 (60 - 2700b) Pu-242 0 - 9 0 - 0.04 a: alpha activity, b: beta activity Zftfr *>&&&& &?^ fi*Jt*Ba(DX, 238Pu^'A^i^

-10- JAERI­Conf 99­001

239 241 (IAS (1BL Pu^AA^©^^nA^^liC©PH^T(iA^) 0 £A. Pu(i<­^ 240 239 mz&tti6mizttmwtf%Tifomz

M^W (±£LT±ii^*») ©Pu^1i^©^^^ICP­MS^(iJ:f)^^LAo * ®^m. 239Pu*iig^Ci^^U<;b^T+^^J^T^SCi^^AoAo £A. 240Pu /239Puj:b(Io^T©A­^^^bn. ^^^©^^fA^Cfe^tLOli^^i^^nAo 4­ , SU SMS^^©*^^A^i4^MOX^^©{^^^f:^^N PuKWi|LAM*­^ ;> WfrtfZft 7 tztiXDtt A ASM i)WM i^oT^ThS. ^0^ L AICP­MS&^jffi L A##r&l2. «U^H#WlfeliJP><. 240Pu/239Puj:b^^i6bnSCi^bA^W^i%X.b n^o ttz, mm®frTti

WU±m%^^-9 ■; >^­t?­7A­ KKMirS##t^©Mk$^Til£0 ms©?4 f:a^/f©Pu^tlf©­r­iT;UTIi7;U7r­X^^ hny h U­^L^iE^btlT^A ^A\ £b(ilCP­MS&A£'Unx.. £A. #$r£(i&^$m£ftAl+S^A'£6 9o ^Pu/a^*)S¥^1­5c

##» (1) Pentreath, R.J.: Appl. Radiat. Isot., 46, 1279­85, (1995). (2) Aston, S.R.; Stanners, D.A.: Nature, 289, 581­2, (1981). (3) Chamberlain, A.C.: Sci. Tot. Env., 63, 139­60, (1987). (4) Aarkrog, A., Dahlgaard, H., Nielsen, S.P., Trapeznikov, A.V., Molchanova, I.V., Pozolotina, V.N., Karavaeva, E.N., Yushkov, P.I. and Polikarpov, G.G.: Sci. Total Environ., 201, 137­54, (1997). (5) Lux, D.; Kammerer, L.; Riihm, W; Wirth, E.: Sci. Total Environ., 173/174, 375­84, (1995). (6) McCarthy, W; Nicholls, T.M.: J. Environ. Radioactivity, 12, 1­12, (1990). (7) Buesseler, K.O.; Halverson, J.E.: J. Environ. Radioactivity, 5, 425­44, (1987). (8) Igarashi, Y; Kim, C.K.; Yakaku, Y; Shiraishi, K.; Yamamoto, M.; Ikeda, N. Analytical Sciences, 6, 157­64 (1990). (9) Kim, C.K.; Oura, Y; Takaku, Y; Nitta, H.; Igarashi, Y; Ikeda, N. J.: Radioanal. Nucl. Chem., letters, 136, 353­62, (1989). (10) Qain, J.S.; Smith, L.L.; Yaeger, J.S.; Alvarado, J.A.: J. Radioanal. Nucl. Chem. Articles, 194, 133­9, (1995). (11) Yamamoto, M.; Tsumura, A.; Katayama, Y; Tsukatani, T.: Radiochimica Acta, 72, 209­15, (1996). (12) Muramatsu, Y, Uchida, S., Yoshida, S., Keiko, T., Fujikawa, T.: in preparation (1999). (13) Krey, P.W.; Hardy, E.P.; Pachucki, C; Rourke, R; Coluzza, J.; Benson, WK.: 1AEA­SM­199­ 39, 671­78, (1976).

­ 11 ­ JP9950127

®n m&?. mti HBA\ /j^¥ m**

tefimc,37cs©fe l^«££1ffiJELfc&JK©*£«fc •?«'>« 137Cs©K©^@#^B§^fi4l~42^^^oAo 137 \f±^h^(Dym^(D Cs©&BmtMft±fckl.6M.7%/^&ofc0 £tz. 1996^K felts1 "cswf^ifc^wTlw^^ffli^^Jt^L^fe^i^^-eeufc^o/i,,

Residence half-time of 137Cs in the top-soils of Japanese paddy and upland fields

Misako KOMAMURA, Akito TSUMURA*. Kiyoshi K0DA1RA** National Institute of Agro-Environmental Sciences, *ex-National Institute of Agro-Environmental Sciences, **Prof. Em. Ashikaga Institute of Technology

A series of top-soil samples of 14 paddy fields and 10 upland fields in Japan, were annually collected during more than 30 years, to be examined in the contents of ,37Cs. The data, which were obtained by the use of a gamma spectrometric system, received some statistical treatments to distinguish the annual decline of 137Cs contents from deviations. Then the authors calculated "residence half-time of137Cs" within top-soil, and "eluviation rate of 137Cs" from top to the sub-layer of the soil. The following nationwide results were obtained irrespective of paddy or upland fields: (1) The "apparent residence half-time" was estimated as 16—-17 years. This one consists of both effects of eluviation and nuclear disintegration. (2) The "true residence half-time" was reported as 41~42 years. This one depends on the eluviation speed of 137Cs exclusively, because the influence of nuclear disinte• gration has been compensated. (3) The eluviation rate of 137Cs from top-soil down to the sub-soil was 1.6—-1. 7% per year. (4) The ratio of distribution of 137Cs between top-soil and the sub-soil was estimated to be 6:4 as average at the date of 1996.

Keyword: 137Cs, paddy soil, upland soil, residence half-time, eluviation rate

-12- JAERI-Conf 99-001

1 . litau:

Tkfs^w '^cs^^sr^^cDmM^mm^mm^z^m-t^m^^xmcDmm^^mM mte£\z£j)\ ±tLx^mt-h^m.iiHxm 20cm ^xz\ttfX$Z>o -7^z\tih(DmM^mm^^^nizhtz^xi^±^h^(Drm^tm^^m^6^^x£n < b^(Dmr^zbtz^xft±[Ha%i-%frZMwi-&z\ttemihxnmxfoz>o

b&mz^ztx^mcDm&iL&mimmfrhfegMmmzmv, znhommo^xt^z

&zm-ftfemmmfrh%ffizix\^mtew%-mzfrx!bmtffa\ *$g^-C(i, C\fth(D%mm(D*)%7mft±&&U

mt\mz^MLx, ft±ftffi%¥ffimr$&£M^±frh*(DTm^(DmmzMtz0

2. mv^m 2. 1 ±§l!sm©£PX^&# ±ie@^s:miif^:^w^^M© #£W^ 7KE014**^^1O%* £ Fig. KC^LAo TkffB&ckW M(Dwmmzmm$titz7m • *HI

fttWlXm^mVdMteFZ 2mm©

JAPAN SEA

2. 2 (Kfstt:S©&g • ft^ & J( fixatori Joetsu &!*±«©M • tt^fttM£ >'V)7 2kffl±«li Table 1 \Z m±m\t f i ^ KumagayaKounosufU, J ^Jmt| o , nFutaba-cho* '*t^LuMkaw a Table 2 C^Lfco p

2. 3 &i*:±ig+© 137Cs© ttuii8«s©^s PACIFIC OCEAN f4^»jfr©^£z'Kfto-C ' H«lS!Ge*a»ft«aiS (Canberra atS GR1820, ffltt&$l. 8%, X* ;i/^-^D¥li2.0keV) Zmttr Fig.1 Sampling sites in Japan ux^zbu* bv-mzx-ix

13- JAERI-Conf 99-001

Table 1 Soil properties of top-soils in paddy fields

Sampling sites Soi 1 group Soil Depth pH Sand(2-0.02mm) Clay(<2tfm) Humus CEC** texture' (cm) (HJO) contents(X) contents(X) contents(X) (meq/IOOg)

Japan Sea side Sapporo. Wet Andosols LiC 0-10 6.22 41.3 26.7 3.89 28.9 Akita. AKITA Gley soiIs LiC 0-12 5.03 30.5 30.7 2.35 25.7 Joetsu. NIIGATA Gley soiIs LiC 0 12 5.59 26.0 39.5 4.13 30.8 Nonoichi, ISHIKAWA Gley Lowland soiIs CL 0-14 5.80 39.6 23.3 1.79 16.4 Totton, TOTTORI Gley Lowland soiIs LiC 0 14 5.57 35.4 29.1 2.88 19.2 Tsukushmo, FUKUOKA Gley Lowland soiIs CL 0 10 S.56 61.9 17.0 2.18 16.4 Regional average 0 12 5.80 39.1 27.7 2.87 22.9 Pacific Ocean side Monoka. IWATE Net Andosols LiC 0 12 6.42 40.4 31.6 11.71 55.8 Naton, MIYAGI Gley Lowland soiIs HC 0 12 5.73 21.9 47.6 2.74 43.4 Mito, iBARAK 1 Andosols LiC 0 13 6.45 48.1 28.1 7.29 36.4 Kounosu. SAITAMA Gley Lowland soiIs LiC 0-12 5.70 39.4 27.1 0.82 17.3 Tachikawa. TOKYO Brown Lowland soiIs LiC 0 IS 5.46 35.5 31.9 4.61 33.2 Futaba-cho, YAMANASH Gley Lowland soiIs SCL 0-12 5.66 71.6 15.1 0.95 10.3 Habikino. OSAKA Gley Upland soiIs CL 0 10 6.40 55.0 21.5 2.93 17.9 Sanyo-cho. OKAYAMA Gley soiIs CL 0-15 5.75 53.1 23.4 1.61 13.8 Regional average 0 13 5.95 45.6 28.3 4.08 28.5

Nationwide average 0 12 5.88 42.4 28.0 3.5S 26.1

* LiC:light clay Cl:clay loam HC: heavy clay SCL'-sandy clay loam *» cation exchange capacity

Table 2 Soil properties of top soils in upland fields

Sampling sites Soi1 group Soil Depth pH Sand(2-0.02mm) Clay(<2tfm) Humus CEC** texture* (cm) (H*0) contents(X) contents(X) contents(X) (meq/IOOg)

Japan Sea side Sapporo, HOKKAIDO Net Andosols LiC 0-15 5.52 36.1 32.8 8.53 48.0 Nagaoka. NIIGATA Gley soiIs HC 0 15 5.59 10.5 51.6 4.47 40.0 Anagi, FUKUOKA Gley Lowland soi Is LiC 0 15 6.56 42.9 26.2 6.53 34.9 Regional average 0-15 5.89 29 8 36.9 6.51 41.0 Pacific Ocean side Monoka, IRATE Net Andosols CL 0 15 6.02 47.1 20.2 10.71 45.0 Iwanuma, MIYAGI Gley Lowland soiIs HC 0 15 5.73 21.9 47.6 2.74 43.4 Mo, 1 BARAK 1 Andoso1s LiC 0 15 6.00 46.8 25.7 6.03 39.4 Kumagaya, SAITAMA Gley Lowland soiIs CL 0-15 5.00 48.4 20.6 0.99 16.3 Tachikawa, TOKYO Brown Lowland soiIs LiC 0 15 5.46 41.2 28.2 5.22 29.3 Futaba-cho. YAMANASH1 Gley Lowland soi Is SCL 0-15 5.66 63.4 18.8 1.11 14.6 Sanyo cho, OKAYAMA G1ey soi1s CL 0 15 7.05 53.0 22.6 1.80 13.2 Regional average 0-15 5.85 46.0 26.2 4.09 28.7

Nationwide average 0-15 5.86 41.3 29.4 4.81 32.4

* LiC:light clay CL:day loam HC'.heavy clay SCL:sandy clay loam ** cation exchange capacity

-14- JAERI­Conf 99­001

'csotkMmmfezn-itzo

3.n&&m±m&

3. 1 Tkffl •^if/F±©137Cs^M©ig^J6# *iSIS^Hfec?nA1958^^^1993^^­r*©35^F^^^lt^7Kffl • *B!f¥±©£ 137Cs£fi© m^mmz-D^x, ­£©M©#?ut»c#r;£Fig.2K^LAD 7XH•­jflf^A© ,37cs^M©lio­^^i{ii:^^©i**■r♦l965^rl^­^•isu^nAo rn^©^ saii, i%4*-im*tm\*-\m*(DmmizMm\zftt>fttz±%mft±mm®%mm(Dm

©ITlHil^ tefim\Z&tfZ>j-*-)\,7yb ,37Cs©3IAI$Tfl«^i:rtn964^T*(2(£^­ >7\z]S.-3UX^Z>t\<^%%.tf{3iTf\(Dm.^m3) i:(5(l­iLTl^„ WM^fftK$i$LAo £A1986^KAx;i/y7V >)W^FM%mmz&<0%<(D ,37Cs#«A{r$ffi£ftA/6\ ■^©^iftiFig. 2fr(bm&ttitew

16

14 • Paddy fields ° Upland fields C 12 E a CO ^5 10 >. o 8 *J 'E 8 *oJ oID ^ 6 8 ID ° * .s ;..° . • • • Cd 8

• . ° I S I ° • • • ° * a :8 e ° 8 ■I r ­8°he§!BS88iBs8 =ieIeB!iSSSM

1960 1970 1980 1990 year

Fig.2 '"Cs contents of top-soils collected from 14 paddy fields and 10 upland f ieIds in Japan

3. 2 *ffl'flHfr±(Dl3TCs£;t(D«'>| Fig.2©n7i^^LA;i'A 7jU 1964^r6£fe$i: LT*ftW&tt#'>fcl«)£7SLT^£o ­££T% rotr­^Kffl^^­S 1964^£ T^ip^J (base year) £££>, ZKDtt&At ■fZ r^'AftHj (decline curve) £$#, *ttK«k^TM©/!¥E

15 JAERI­Conf 99­001

D Paddy f ields

s.□ □ Decline curve A A Y=5.0e-OO4,t D r=-0.967*** D a.. ti/2=16.9y 3­

Dr>­rD 2-\ —dB"­.jgD Base year n "'Oaj^j­]

1 i i i i i i i i i i i i i l I I I i i i i i i > i i i i i i i i ■ ■ i i i i I 1960 [1964] 1970 1980 1990 year 3 Decline curve A Comprehensive time course of the cumulative contents of ,37Cs in the top-soils of paddy fields Each mean value of 14 fields is plotted without revision ***:p<0.001

6­ Paddy fields $ A Decline curve C 5­ v„j><> Y=4.9e"0,7t V A X"'­A­A.„. A r=­0.853*** V^. /*"'*—­ ti/2=40.7y 4­ ^t oAAA^­AA.,. A A v­^ a A" ­A— ­AAA A 3 O <►'$-.<> A A Decl ine curve B <> <*._ Y=4.9e-°-040t *'Z'*-S o 2 1 Base year r-0.968'" * *>-^fto I ti/2=17.3y 1 'll I lI lI I I I II I I I I I I I I I I I I I I I l I I I I I I I I l l I I l ll' 1960 [1964] 1970 1980 1990 year 4 Decl ine curve B Time course of the contents of ,37Cs which have been accumulated in the soils up to the base year 1964 Each of the amounts of 137Cs,newly-captured by soils after 1964,is subtracted from the corresponding point in the Curve A ***:p<0.001 Decline curve C Revised curve excluding radioactivity decay from the Curve B ***:p<0.001

16- JAERI­Conf 99­001

Upland fields

C° A □D Decl ine curve A JX 4­ 04,t CO \ n Y=4.5e" r=­0.964*** CO °X t,/2=17.0y a ° 0

C

w 0­ a­­ Base year °a""U^.p

1 1 1 1 1 1 1 I I I I I I I I I rTTTTTTTTT'Pr III I I I I1 I lent* 100198a0 I960 [1964] 1970 1990 year Fig 5 Decline curve A Comprehensive time course of the cumulative contents of ,37Cs in the top-soils of upland fields Each mean value of 14 fields is plotted without revision ***:p<0.001

Upland fields Decline curve C $>,

Decline curve B o ',<>­$. Y=4.4e"°­039t $'^­­­ ° Base year r=­0.956*** 00^ ti/z=17.6y 1 1 III 1 1I I 1 1 I I 1 1 I I I I I I I I I 1 1 I I 1 | | 1 1 1 1 1 i 1 1 | 1960 [1964] 1970 1980 1990 year

Fig.6 Decline curve B Time course of the contents of 137Cs which have been accumulated in the soils up to the base year 1964 Each of the amounts of 137Cs,newly-captured by soils after 1964,is subtracted from the corresponding point in the Curve A ***:p< 0.001 Decline curve C Revised curve excluding radioactivity decay from the Curve B ***:p<0.001

- 17 - JAERI­Conf 99­001

£?m4j?mi&*mMm*b®fai3m&\zmg&ibz>t:ib. orw­fcEJEafctiiA LA: Y = Xe kl (»£ 1) AALYti 137Cs­^ft Xlig^UfcltS 137Cs­^M

x&^r$\zM-fz>ffi>js&$i

^mmm\fmy.Lx\tntmmzx^x lnY = lnX­A t (ftj£2) (omtix, ^t(nmm£.**ihxx&&vx(nm*mtzo ■torn Y(D%mtixl37cs(ommzmfe}E(D£±imtz&^xm^tz(Di)\ &mft±\i Fig. 3, *Hft±liFig. 5ffl«|A­CS)So «Bl^SftfcLt, ifflHSA(i^^grt­e

©­^■ciSii^iRi^ro^T • m%&xuik%&mmz£&mw££(nm&fe%:*^tsh(nxh ho z\(D&fr\zbmm7k\z£z> ,37cs(7)#A^feo, igKflLL­cro^rai^TMB • «©&

««RiRH«kS±»*^­'\|piltfc ,37Cs(7)^ai^^(7)g^0^#A^ia^o LfrL*ftf>li£fr

i­fc;h^«'>flii!§A^^^»:*­CWflaKIJcfefcS7Kffl • flBfH:+0> i37cst>t>'to tz\^^l37cs\t-^x\t±^^^m^^n, m^x\t Tm±\zfatfxm%$h, ttzMtt&mmzx-oxmm-t&o *c\x&^&c:t(D l37cs(D&Tmz%%wft?Ji(ni®%m3)frt>M&t\Z^m*E&(0 ,37Cs(7)|5|T*(7)§|#m^ffoAo *ft£ffl *8£B fc£f#^7Kfflft±liFig. 4(CflBft±(iFig. 6KStf fc„ LA^AT^ArffiUBfi, 137Cs<7)±^^<7)^;i6£fim&^£::£A<, M£$tff4 wxtv^2S^mmczmtzfi\ *n\ift±* 137cs ffliliB^f,»^Lfc*^ltW»@^«I^H (RHT­B) Ji^S^^­CTKfflftili 17. 3^. *fflfF± Ji 17.6^fcftofc„ ££>iA «'>ffl«IC^f)*^Lfcll©«ff@^«I^P^ (RHT­C) (2£|!¥#J TvKfflfPAl^O. 7^­Cflllft±tt42. 4*£fc ft o fc„ ftA^^WTJf^­^P^A 0 <7)M* £*£Lfc*££, £gTOT*7Kfflf^±tel.7%WP±m.6%^froAo i»@¥«l$Rg (RHT­B) • (RHT­C) ls£U®®Lmt, ^AP^II^IS^ftAo ­^WSriW­ ­ 18 ­ Table 3 Residence half-tine in top-soil and eluviation rate froi top-soil to the subsoil of ,37Cs in the paddy field

Residence half-tiae (B) Residence half-tiae (C) and eluviation rate (RHT-B) (RHT-C) (ER) Sasp1ing sites n Regression Correlation RHT-B Regression Correlation RHT-C ER equation coefficient(r) (year) equation coefficient (r) (year) (X/year)

Japan Sea side Sapporo, HOKKAIDO 27 Y= 2.9e" oes' -0.879*** 10.6 Y= 2.9e ° 042t -0.767*** 16.3 4.24 Akita, AKITA 29 Y= 6.5e ° 0311 -0.958*** 22.2 Y= 6.5e "■ 008t -0.659*** 85.0 0.82 Joetsu, NIIGATA 26 Y=14.2e" 059t -0.936*** 11.8 Y=14.2e"° 036t -0.849*** 19.4 3.57 Nonoichi, ISHIKAWA 21 Y=10.2e~° 02S' 0.853*** 26.6 Y=10.2e °- 003t -0.182 Tottori, TOTTORI 20 Y= 6.6e" 0311 0.952*** 22.4 Y= 6.6e ° 0081 -0.618** 88.9 0.78 Tsukushino, FUKUOKA 15 Y= 4.2e ° 050t -0.859*** 13.7 Y= 4.2e° 027t -0.673" 25.3 2.73 Averages of Individual data 138 Y= 6.9e° °48' -0.496*** 14.6 Y= 6.9e ° °25' -0.283** 28.3 2.45 Year 1 y data 29 Y= 7.0e ° °43' -0.972*** 16.0 Y= 7.0e° 02°' -0.889*** 34.3 2.02

Pacific Ocean side Morioka. IWATE 28 Y= 4.0e" 03" -0.865*** 22.1 Y= 4.0e ° 008t -0.415* 83.4 0.83 Natori, MIYAGI 20 Y= 4.8e-°' °32' -0.917*** 21.8 Y= 4.8e"° 009< -0.533* 79.6 0.87 Mito, IBARAKI 22 Y= 3.0e° 053t -0.837*** 13.1 Y= 3.0e ° 030< -0.648** 23.2 2.99 Kounosu, SAITAMA 17 Y= 3.7e" °40' -0.791*** 17.3 Y= 3.7e" 0,7t -0.480* 40.8 1.70 Tachikawa, TOKYO 19 Y= 4.2e °- 027t -0.875*** 25.3 Y= 4.2e"° 004t -0.275 67 Futaba-cho.YAMANASHI 22 Y= 3.3e ° ° ' -0.945*** 10.3 Y= 3.3e"° 044t -0.885*** 15.6 4.44 3 Habikino, OSAKA 28 Y= 1.5e" ° *' -0.825*** 20.2 Y= 1.5e ° 0,,t -0.431* 61.7 1.12 25 Sanyo-cho, OKAYAMA 18 Y= 2.9e ° ° ' -0.737*** 27.4 Y= 2.9e° °02' -0.094 Averages of Individual data 174 Y= 2.9e° 033t -0.498*** 21.3 Y= 2.9e ° 009t -0.165* 73.2 0.95 Yearly data 29 Y= 3.1e"' °34' -0.937*** 20.3 Y= 3.1e" °'1' -0.658*** 62.4 1.11

Nation wide averages of Al 1 of the data 312 Y= 4.4e-°' °42' -0.466*** 16.5 Y= 4.4e"° 0,,t -0.231*** 36.7 1.89 Yearly data 29 Y= 4.9e"°- °40' -0.968*** 17.3 Y= 4.9e"0' 0,7t -0.853*** 40.7 1.70

***: p< 0.001 **: p< 0.01 *: p<0.05 n: Nuaber of saaples analyzed Y: 137Cs contents in paddy top-soil at the t year after 1964(kBq/i2) Table 4 Residence half-time in top-soil and eluviation rate froa top-soil to the sub-soil of 137Cs in the upland field

Residence half-time (B) Residence half-time (C) and eluviation rate (RHT-B) (RHT-C) (ER) Sampling si tes n Regression Correlation RHT-B Regression Correlation RHT-C ER equation coeff icient (r) (year) equation coefficient (r) (year) (X/year)

Japan Sea side Sapporo, HOKKAIDO 27 Y= 3.7e ° 042t -0.924*** 16.5 Y= 3.7e ° °"" 0.736'** 3B.B 1.89 Nagaoka, NIIGATA 28 Y= 8.9e ° 037t -0.956*** 18.6 Y= 8.9e" 0,4t -0.780*** 48.7 1.42 Amagi, FUKUOKA 15 Y= 3.1e ° 029t -0.886** 24.0 Y= 3.1e" ooet -0.363 Averages of Individual data 70 Y= 4.Be" 032t -0.475*** 22.0 Y= 4.6e" 009t 0.145 80.9 0.86 Yearly data 29 Y= 5.1e ° 031t -0.831*** 22.7 Y= 5.1e" 008t -0.347 91.9 0.75

Pacific Ocean side Morioka. IWATE 27 Y= 3.8e ° 0304 -0.887*** 23.1 Y= 3.8e ° 007t -0.411* 98.4 0.70 Iwanuma, MIYAGI 11 Y= 5.2e ° 063t -0.878*** 11.1 Y= 5.2e" 040t 0.758** 17.5 3.95 Mito. IBARAKI 21 Y= 3.4e ° 066t -0.887*** 10.5 Y= 3.4e" 043t -0.782*** 1B.1 4.32 Kumagaya, SAITAMA 27 Y= 5.7e" 075t -0.953*** 9.2 Y= 5.7e" 054' -0.914*** 12.9 5.37 Tachikawa. TOKYO 21 Y= 4.1e" °351 -0.801*'* 19.9 Y= 4.1e" °12' -0.41B 58.2 1.19 Futaba-cho.YAMANASHI 15 Y= 3.0e" 037t -0.908*** 18.9 Y= 3.0e" 014t -0.628* 50.8 1.37 Sanyo-cho. OKAYAMA 24 Y= 2.8e ° 024t -0.821*** 28.5 Y= 2.8e ° 00" -0.074 Averages of Individual data 146 Y= 3.7e" 043t -0.741*** 1B.3 Y= 3.7e ° 0204 -0.454*** 35.3 1.96 Yearly data 29 Y= 3.8e ° 041t -0.952*** 16.9 Y= 3.8e" 018t -0.808*** 38.5 1.86

Nation wide averages of Al1 of the data 216 Y= 4.1e ° 04M -0.631*** 1B.8 Y= 4.1e ° 018t 0.340*** 37.7 1.84 Yearly data 29 Y= 4.4e" 039t -0.956*** 17.6 Y= 4.4e" oiet -0.805*** 42.4 1.63

***: p< 0.001 **: p< 0.01 *: p<0.05 n: Number of samples analyzed Y: 137Cs contents in uplund top-soil at the t year after 1964(kBq/m2) JAERI­Conf 99­001 o£±»<0l4K0)iiv^#£f,ft6j&*, *W%X-m^tz±mtlt£fr'Dt:o AlW

K l37csz±m\zmni&m£{*T-x*(D®Mm*miitzmmx\t, &±f:m

137cs(Dffi@^^B#p^^^j3^^(7)M^(3:^^w^i^s­e$)^,o ttz. mmm\zB^mmt *¥#ffil"CJtl8 (Table 3, 4) Lfcch­5, 7kBaft±"CJiir*©^^*«J: 0 fcJSv^|o]j&*3g

5) *w3zxmt>htzffi

P*l (Jgffi5­10cmT*#jl5^) fcttR­tfttf, lu^W^^^^ct 0 k^ ^ JB^fa^£ftfc0 * fc, *S@¥«I$P*I (RHT­B) Ko^T\ *W^i:|s|i:7KBaft± (&ffl) ^ffl^/iOJ*^6) ©3 >^°­ M> h^r';i/^*>?#*>ftfc 137Cs(Dm (*^lt©»ei^ra^?>«l3E) chi±&Lfc£>r 5*^©^^^^^^^?^, ~ft^(DMmvfftk^n­^;i/7*­;i/7*} ht* W^T\ L^tP*T«fiv^ffc«­aaLfc^f©iii^feSo^x;i/yr>f u^«(Di37cs^^^ K, nyWikt-hm^mzwy^m\z^\i^m^^^(Di^m^^tzm^7)\zx^t, ®tm m*. o.2­o.3c*/ht&m§&n&&myu-JVIV *->i7y- bxmhntzmo.4­1.ocm/yct0

±^^f>is*T­ts ia7cs\zjtyiki±m\z*&M£hz>mtfmni, $h\z.m$m&*mts z\t££*)ztibo-ttimfcztix^wti, mwA&'p%<%zt%z.t>tiz>o bu—v- mWiX±M\zma£ntz,37cs,\mmoo%n$h, *^iM­#a*7>^­^A^ttfflc*ft&

M-ttuz, ±mm%.mizmti, ^mcii^u^nu ) 137 \,^fef£Mi&cmttzm&tf&o bu-v&m cs, f­x )i;-?Ji)i£tiifeUl37Cs&£ZP>fU-JViyt-)l7y- bfeffil37CsfflX\t±m\Z&ffi£ntz m(Dit^mmtmt£^>t^^hfihtz^^W)m^^mmirhm^\z\t, l37cs(D±m*x(Di?

Fig.4,6©«'>ffl«lCK:fe^T, l37Cs(Dffi'pm£Z. 1964^t>1979^£Tfc 1980^£ lm^tx-t^im-fta*. w%mtot>ti2>o 1­ft *>■*>, Z\ffi*Hi, I964*pj&*t>l979^£f0) I37Cst7)^*|i*T«!H*JltSP*T««)fta^fP4l«)JSV^ (3!Sto^n­g>7K(Dg^^^^^§^(3^ii­t­g,137Cs|ii^^a980^UI7#(7) ,37Cs(D#*P$T$ ^f)fi«!P4l«)fta«­*L#»iL*lv^llK^tLfc 137Csg#(DroM3?;6^1f$£ft/ijg ­f^fflH^^^OAZi^­C^^g^n^c LfrU i^'>ffl^(DSip^^l964^­C$)0,,37Cs(D#S mm\tirxAzm:®mzmtLx\^Mi>frt£V)hz>t mt>hz>tz*b, ?§$<7) *t^»­t6 137 Cs(D^(D^^^rffitt^o^T(D^^(i$^(C^W­t­g,^^^^0

­ 21 ­ JAERI-Conf 99-001

3. 4 i37cs<7)7jcffl -mft±k*^ it±t*±t>?±\z£mfafim tbhntzo L^U ^@¥^J (*Bai4««Biojfe^) x\t, rnxmizzmttzibbti-fn^kb 6 (fg±) :4 (TJB±) fcft»3, ft±JBK£<#£*S£fcri**c*tt;/^

100 r top-soil

sub-soil 100 -

Fig.7 Estimated distrbution rate of 137Cs in top-soil and the sub-soil of 10 fields at 1996 +: Paddy field *: Upland field 4. £

137 7kM'>\^t±klXft± (top-soil) 4><£> Cs£M-t60 7km •flBfti+W'^CsWg

(D®Mm*#tbtza i37 wmoiTkm • mit±* cS(o^^^mmwt, mMkntt&m£ Cs^L < #lft£;6\ ¥ WJS-£tf M±*£ fc 6 : 4 «h ft -3 fco

- 22- JAERI-Conf 99-001

(i) mmm&wftm^m&mwmm, mim-mzm (1959-1995), n^&mjr (2) Y)iv~<7A¥mfcfcn!,miz£z)tfy-?i&x^>7buj MJ-, ^mm^y^-x, n ¥&ffifr (1990) (3) wajit*, jKmmu., s+jgaJtA, -gm #: ?a*i9F£0f&«F»£, &36-f\ %^m^m (1996) (4) ^WSA, isj+t^feT-. >m%m:±m&£v±m-m®*\z&iiz>mM&xbuy*Wft, IifiW5£0liS, B36.57-H3 (1984) (5) Bunzel.K., Kofuji,H., Schimmack, M. : Residence time of global weapons testing fallout 237Np in a grassland soil compared to 239,240Pu, Z41Am and 137Cs, Health physics, 68,89-93 (6) Yamamoto, M. ,Sha, L., Kofuji, H., Tsumura, A., Komamura, M., Yuita, K. and Yamasaki, S. : Distribution and behavior of transuranium elements in paddy surface soil, Improvement of Environmental Transfer Models and Parameters, Proceedings of Nuclear Cross-Over Research, 198-206, Promotion Committee on Nuclear Cross-Over Reseach, Japan (1996) (7) Schimmack, W., Bunzl.K. and Zelles, L. :Initial rates of migration of radionuclides from the Chernobyl fallout in undisturbed soils, Geoderma, 44, 211-218 (1989)

-23- JAERI-Conf 99-001 JP9950128

4. &* • Wrm^(D ^Sr *5 J; tf 137Cs (Dffiffl\ir~ * t

&fla^^tc5^^s^^©Mttti^wiiaifl3r^i-J: "9 w fj^t fto tztmmm vm&t£b, xmmmmmftznm&£$kmLti0 ate, sari^n tzmtfe "SrW&TSwWt-oVvt, jgtaNFffl, r/s It, 137Cs /"ST lt^o£^L, &'#<£>

Observation of the wSr and 137Cs Deposition and its Application to the Research on Environmental Behavior of Radionuclides

Yasuhito IGARASHI, Michio AOYAMA, Takashi MIYAO and Katsumi HIROSE Geochemical Research Department, Meteorological Research Institute

Depositions of '"Sr and 137Cs have been observed at Meteorological Research Institute (MRI) since 1957 After the Chernobyl accident neither atmosphenc nuclear test was conducted nor the severe accident occurred, the present atmosphenc '"Sr and 137Cs concentration level became extremely low The argument has been focused on the significance of the resuspension in the radioactivity deposition We analyzed the radioactivity deposition data from the viewpoint of decay time, '"Cs/^Sr activity ratio and radioactivity to stable elements (r/s) ratio It was concluded that most of ^Sr and n7Cs deposited in the 1990s are from the resuspension Also, the comapnson of '^Cs/^Sr activity ratio in the deposition and Japanese soil suggests a hypo• thesis that a large portion of '"Sr and n7Cs may be transported by the aeohan dust from the Asian continent We have observed an anomalous ^Sr deposition at, Tsukuba, Japan during the fall of 1995 This anomalous deposition was confirmed by the re-analysis of the sample, the associated lowest '"Cs/^Sr activity ratio and high r/s ratio, etc

Keywords : '"Sr and "7Cs deposition, Half residence time, Resusupension, '"Cs/^Sr activity ratio, r/s ratio, Anomalous wSr deposition

-24- JAERI­Conf 99­001

i. tun z&wftffix-it, 40 itmzfrtz *) xnmxtDj&mmm^mit'MmtDizMbZfD'Mmmm Mi &wtt>Mz-rs<<, mwfmmiz^^xm^mmLx^z >0 z.z\xtemt;&&vm, fttfb, 1990 Wz^

s„ ^sr *5«tu« i37cs i±±izA^mmmm^ttmm&z£V)m&inzmft£ntzh

%dzmbiSfrtzWmc\

2. W^/£ 2. 1 W*o«fcW>#f*fe OTMm ^^f&wftEB&SrKE^S W2K nn, %MtWMW\mmizWcWLtz-Xy*?■-y? mA^iKm. (4m2) \zffi$kistitz&?®*&Mu mtwn\,xwMu m&mz-fy^ i37 vtmk\zjtBtir?>0 Ge *w?mm^vmi~wmmLu cs ^^*­rs0 mz, m^nfiWM&ffi&tebX'j'fflU ^gfkb­ew­SBSr^­teU ICP­AES, ICP­MS Srffll/^ m, mmmmfete b e wkntmyMzu^tttzm^timz x. n mm u &mm izix sr £m%xbuy-fyj±bLxmy., mfeu i&%mmfeRi

­ 25 ­ JAERI-Conf 99-001

3. /m Jft 3. i mrmmmhrnm n7 m i \zi%$ifflfflmmxftbtiit, mi^oommo)^sr, cs&¥&**-$-, mo^ izmm^mx MMimm\Km\H^x^), mm^<\m\z®uLtz0 m^mm^m.

: mi-j&&MLitbttftz>0 Atmftm+mte mo i£ti X&b-f, Al.mmmT!J*r5fe iz^v-mmiz&TmmALtz^^mMMKi&bLx, 1990 mm., Yx&mzw&x, fci/^«K^if#fLTt^„ £/c, PtfJ^ISdo^T 1990 mm, PlTI»I'>liM

fcW, fcS-^TMP^ffi^LTV^

10 r 9 Lfcff^i, Be w«t 5 ^¥f^J^'^ffl^^^wft^MfflMttt^ai-fc^e>tL50 13) -#, 1995 ¥ 9 £ id ^Sr (D^f §L(F>WA*m#>1z D

3. 2 mi'm.ymzi>tzb-tym tmma, mmzttMm&f&&i-z>mu, j$mm*m&irz>MMbt5iafc^i\ 3#N»iilS-lStrlT L^^#tt^a^s±jg^^^ i uzwmfrt-zuMwmmbteZo %&, mw&m\z\mN wmm\.x^z>tf, Na ^^>0 £X, ^tzb£n5BL0 *z\X% ftf&ft<7)W m&mWm, mmmb^-f%'P:fefcb

3. 3 wm&o^mt^ wrm%gk t^wMflfcffl^-^T^ bit, ^"9 , ¥ra^fS^o#^0LT«|trr-X?#So Cs (Di$. wmr^.mz^\^xz.> mo^ 10nb, 1982 mmm*f$mm&%bi-tii% ^0 tzft, fttitm&TtmmxZZmi^xv) n*£&LXb, 1990W

-26- 10° 1— Tsukuba

10s Koenji, Tokyo Cheriobyl accident I 1°4 e o

© 103

> Nuclear tests by Ffl 2 CO former USSR, USA, etc. o o V3O

O Chinese nuclear tests o 101 o 6

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 Year

0 1 Temporal variation in the monthly 90Sr and 137Cs depositions observed at MRI since 1957 JAERI-Conf 99-001

l37 f

Dg^ = S^+t + R = D^Xexp {(-ln2/Sr)Xt} + R

m^it¥£hbfru a-tmM*m&, Siitf$mmx0) bttv, immnrnwifflbLXmo&9tztmbtitc m3)0 mmiz 1982-85 ^omrmz^^x M«»,#J OM m^t^, J-^VJy^ ymLo IAEOT, ftffigfflmzZZfcTM. ^(Dtr^-lt, &t£b Lxim Mt&^blgz.bti&o 3. 4 r/sJtd-fcS^fg

m£££i5Hfctt»jt (r/s it) \zt:^m&Lit0 m^xm&Litimmmia% m-t s^^iHifeWifieb/i/^^fiiL^v^s^^So ate, A%miH)mm ±.ifbtiz&, ^tvM&iMt'jrte^b&frtiZo -A, w^mxit, mmmix ±m&

^\zU%LXtd<9'P:fctejcmzJ:V)%®L£riX\;^0 ftoT, ^ttf^idii, T/S Mt&Mmy ir~7VTy bXAX, Wm±X\±^Xh%0 tl, #^c7)|5$T»c7)i|A^ij)cJirl7^—/UT? htdfJ35fe-T5cO-efctL(i, r/s ttW%7CfZb%Z.btiZ0 Lri»U 1990 W<£>P$T#J(-o^ XjKfrbtltz r/s Jt(i ^Sr X\% 20 #>ib 110 mBq/mg, 137Cs fcoV vtfi 2 ri»£> 20 mBq/jU g ga»*Bffl"C$IH-5^, WO^T«feMd*r]£Lfc r/s jtcotgAii£o/c< jt^tl&^o fco tot, ^a&r^TL-C^^5^ttf^(^;^^^(ifi5c^gfJ3^-c(i/cr:<, ±mt: V n^X& y&UxhZ>z\btf-&mx%*1z0 tit, r/s itbfcTmnmMtWWiftMM<&ftbtite

3. 5 wgi&n&Mit? \mmzt:Z)^m n 4 td 1990-95 mon mnrmxtD "wsr jt 0 i%o-7owcD^wT^^^itii^ 1.6 x hv, mmt

/c^sttP$7Kid j; v) &* \zm Y-Afaizmm. ffift%o miMmtmna

- 28 - JAERI­Conf 99­001

100

80

60 ­

40

20

1990 1991

12 Temporal variation in the monthly radioactivity deposition at MRI, Tsukuba during 1990 to 1997

137 Cs; not R subtracted

137 Cs; R subtracted

87­89 not R subtracted T„2=1.8y

90­92 mean =Resus pension

82­85 R subtracted ■BllHB^BHBiB] T,„=0.84y s* « 102 87­89 R subtracted T„2=0 89y I I I J I L_ 1979 1981 1984 1986 1988 1991 1993

\ear 2 3 Deconvolution of 137Cs deposition into stratospheric and resuspension components by decay time analysis

29 JAERI­Conf 99­001

Lfc^oX, U^W­|?Ji±­rj­^137Cs^SrJ:blil6 J; 0 tA#<&0, El 4 id fcj^ftS J; 9 (d io &®x.£^£Wzhte, ffi%i&Sr ltltffilZ 1.6 J; OAT*, ri»o, B^WAigTWjttd^ii­f Tfc s^, ^K^^^\ fobtztbxm±#LT-b, m^m^mLtz 137 $W{zt&MzteZ>b!&t>tiZ)0 Lri>U ™ST, Cs »p£rft^ FrJ3^/KI:£lt^LT^#P^ (dfii^HCUK, ^±^$£JttTt^­f Lk&TI:#A£{i&k&

^~T, ^M^^m^/J^^r3^tiT^5AI^M#^AXMt^WS^i|!i LTfrL^fi 7 8) ^Tfcs, iri/^feift^ii^X'ts ' 0 n# («t"Q­jK^^i±ja^­Jii:i¥­s*0) itmmzmm [d, £fcfA^[d

3. 6 l995^9/]W90SrWMf'*:^Ji:^W#^ *<7)^ W^.T*li 40 mBq/maT, 1990 *$frb 1994 ^(di^^tl/il vf tl^jjt <, ¥ffl®Tl;Wifa4#<7> l fdffl^ L, Cs P$TM£t ht3oTi/\fc 0 itfJidt^/cJ; 5 id, 137Cs^°Sr P$Tfitbl± 1960^f^W^P­/^U7^­/UT^ hift»(d 1.6T&0, ~<7)Jt &LM\:bteZ)z\bi±iiirhV)W£i<\ b^hTt-fiytif^AmzMfcyx, ^mytzum^ Ge ¥^MSTO£ J; 0 $J£ LT^W^ff £i^

ofc0 7A(^, ^^ffgggj?fc{^J: Sit^^BllfS^^^fbl^^BiSr^jKtTU^^*ff3Mf*:Srtli*ft U^^s,

g^w^rHiSt2(nJgw^rrffii(iiSI^£Wr^T­|!cLyt0 £fc, 2 0 0^^1i, »Y i&fclt t^^^^^^/i^, ft^jjfi­iH­Sf^^ii^ti/do d 3 idTj^T­J; 5 (d, ;:<7^w,37Cs

/>°Sr ®Kfi:Jtl±lJWh'T^o7c:0 £fc, r/s it (MrtE/ffi^­f S^^fls*) (3$) 180 b 1991

¥ri»f> 1993 ¥^|E^^tL^*EiaJ;0^^0A^^o7c: (EI5)0 IWji||g^ia»), 1995 W 137 ^ 9 ft OJ ST ^rmtm^t: o A#i^ «t &$«>*:„ ^;J» cs sy^Tii^ti/c:7m^?

bMz^^xhfc&miLtzft, yfaikmmn\z^^x\tm\\zWf?i*m#>t£fr'iit0 z.n

bb&ff-

^f'j­5>££L3l!ttt\U\ :*mhB*W 16 £&

­30­ JAERI-Conf 99-001

20 I T September, 1995 □ Deposition at MRI during 1990-94 15 October, 1995 B Japanese paddy soil* II Kanto surface soil** u 3 Deposition at MRI in 1995 e o> s 10 a* a>

5 -

10 15 20 "''Cs/^Sr activity ratio

04 Frequency plot of "'Cs/^Sr activity ratio in the 1990-95 depositions, Japanese paddy soils and Kanto surface soils "Komamura, 1995, "Radioactivity survey data 92, 93

10

90 8 - □ Sr / stable Sr ratio during 1991-93

August, 1995 2 6 a> September, 1995 s a* 4> A u 4

2 -

100 200 r/s ratio

Bl 5 Frequency plot of "Sr / stable Sr ratio (r/s ratio) in the 1991-93 deposition samples and August, September and October 1995 smaples

-31 JAERI-Conf 99-001

w £LTttHLfc0 csp°sr mrmit&i byximytzM&iziz, 10 n\z.hz\

bti, z.titz0 mitt: 1.6 bUJ£Ltd&&, 11 ft th®fflvm:tfh^itz\b&?Fm£ti, m^tDffimy&ffll-t* *)&<&£*: l Wlb& t>tltz0 y\ Sr^prrrL7c'iid&So s fWd^S^&cDfi, ^W«t5*|g±aiA fcl9#5^-Cfc50 r/s mt, m 180 £rivfe!9 A^V^T, nnmtfWMxfo^z\bitwbfrxhz0 ^m&b yxit, fx;M^^i bX-

T£50 ta»U mtttiffllfrbo ^Sr w^wStRW**Wfi%^Hnw\(omm%^mwL ytzAmwi bnm#:o^ o *fc, 7^ U*-Ct ^Sr (7)A^^jiS»lia'J(imS$tLTV^^V^HT, mms^w^tf 5:W^^>ot„ ^(d^ttTcT^lrffd.tsi, a 19% ¥<7)#(d(i ^Sr w|^T4»if

AiifSfc'btL&^o/c (E12)0 tirioT, AT.®mzt:Z>ttLli>iXltfo^b%7LbtiZ), z.tib ™Sx WM^

&mLx^izb(Dz\bx*h*), m^mb^?a ^mt±zt£ fi^tzfr, 1987 ¥fv^ y

%mz£z>M$T&^mtM7LX^^"

Rx^&mm$m^yW^mzt:^^^^-x\t^^^yb^x^f^^z.b\tmb^x, ^m Win£tiit£5t£$L&i*Zz\bfrb, mt&&m

4. /fnop

&m\,^X*T;i>Wftb^&Ttitot£&b, ffl^£iifc30 ftBJKfrfcsm

-32- JAERI-Conf 99-001

tyf^i5t»i#it^50 £tzWmzz.Z.X'7FLtt£~)lzmi£oM7$oMAfrbh j£3cT'

5 #%» 1) Aoyama, M, Hirose, K and Sugimura, Y (1987) Deposition of gamma-emitting nuclides in Japan after the reactor-IV accident at Chernobyl J Radioanal Nucl Chem, 116, 291-306 2) Aoyama, M (1988) Evidence of stratospheric fallout of caesium isotopes from the Cherno• byl accident Geophys Res Lett, 15, 327-330 3) Aoyama, M, Hirose, K and Sugimura, Y (1991) The temporal variation of stratospheric fallout derived from the Chernobyl accident J Environ Radioactivity, 13, 103-115 4) Hirose, K and Sugimura, Y (1984) Plutomum in the surface air in Japan Health Phys, 46, 1281- 1285 5) Hirose, K, Aoyama, M, Katsuragi, Y and Sugimura, Y (1987) Annual deposition of Sr-90, Cs-137 and Pu-239, 240 from the 1961-1980 nuclear explosions A simple model J Meteoro See Jpn, 65, 259-277 6) Hirose, K, Aoyama, M and Sugimura, Y (1990) Short and long term effects of Chernobyl radioactivity on deposition and air concentrations in Japan IAEA-SM-306/129 Vol 1, 141-149, International Atomic Energy Agency, Vienna, Austria 7) Igarashi, Y, Otsuji-Haton, M and Hirose, K (1996) Recent Deposition of 9°Sr and l37Cs Observed in Tsukuba, J Environ Radioactivity, 31, 157-169 8) Igarashi, Y, Miyao, T, Aoyama, M and Hirose, K (1996) Consideration on the source of ^Sr and 137Cs observed in Tsukuba, Proceedings of 1996 SERNIA Symposium on Environmental Radioactive Nuclides Impact in Asia, Sep 1996, Taipei, ROC-Taiwan 9) Katsuragi, Y (1983) A study of ^Sr fallout in Japan Pap Met Geophys, 33, 277-291 10) Katsuragi, Y and Aoyama, M (1986) Seasonal variation of Sr-90 fallout in Japan through the end of 1983 Pap Met Geophys, 37, 15-36 11) Katsuragi, Y, Hirose, K and Sugimura, Y (1982) A Study of plutonium fallout in Japan Pap Met Geophys, 33, 85-93 12) Otsuji-Haton, M, Igarashi, Y and Hirose, K (19%) Preparation of a Reference Fallout Material for Activity Measurements, J Environ Radioactivity, 31, 143-155 13) Igarashi, Y, Aoyama, M, Miyao, T, Hirose, K and Tomita, M, Anomalous ^Sr deposition during fall, 1995 at MRI, Tsukuba, Japan, J Radioanal Nucl Chem Art in press 14) Rangarajan, C (1992) A study of the mean residence time of the natural radioactive aerosols in the planetary boundary layer, J Environ Radioactivity, 15, 193-206

-33- JAERI-Conf 99-001

15) Krey, P. W. and Krajewsky, B. (1970) J. Geophys Res., 75,2901- 2908. i6) mm&=f-. (1995) m% mmmmmmtm. 17) NIRS (1992). Radioactivity Survey Data in Japan No.%, NIRS-RSD-96, National Institute of Radiological Sciences, Chiba. 18) NIRS (1993). Radioactivity Survey Data in Japan No.lOO, NIRS-RSD-100, National Institute of Radiological Sciences, Chiba. 19) %*mzk^mft¥fflSB\ (1991): A^7kS^#-». *^*& 20) Aarkrog, A. (1995) Global radioecological impact of nuclear activities in the former Soviet Union, IAEA-SM-339/174, pp. 13 - 32. 21) Johnson N. L. (1997) Private communication, Lyndon B. Johnson Space Center, National Aeronautics and Space Administration, U.S.A.

60 I I I Fall, 1995

137 expoSr] = rSr]depo-[ Cs]depo/1.6 ^^ Half residence time: CO E, ^^ -^j about 0.81 month = 24 days u 10 ^\ T^\ i - exposr] = posr]depo-[«7Cs]depo Wl : 5 Half residence time: - about 0.6 month = 20 days -

I i 10 11 Month

6 Estimation of the excess ^Sr deposition in 1995 and its atmospheric half residence time assuming the ^Cs/^Sr ratio of 1.6 and unity

34 II III II JAERI­Conf 99­001

Ai? %. &v* at ±.m BL SUM, mmm±, mmmu. *m^ft?

Cs­137. Sr­90, mOy>Kmm<0&¥UM&to&&m£0 #«£■?«, Z.tl*>. 30km

Distribution and Migration of Long Lived Radionuclides in the Environment around the Chernobyl Nuclear Power Plant

Hikaru AMANO, Takeshi MATSUNAGA, Takashi UENO, SeiyaNAGAO, Yanase NOBUYUKI, Miki WATANABE and Yukiko HANZAWA Department of Environmental Safety Research, Japan Atomic Energy Research Institute

Characteristics of the distribution and migration of long lived radionuclides in the environment around the Chernobyl Nuclear Power Plant (30km exclusion zone) has been investigated Research items are, (i)Distribution of long lived radionuclides in the surface environment, (ii) Speciation of long lived radionuclides in the surface environment, (iii) Characteristics of the migration in the surface environment, (iv) Characteristics of the uptake into the vegitables, (v) Prediction of future radioecological situation in the environment, respectively.

Keyword : Chernobyl, 30km zone, Long lived radionuclides, Distribution, Migration, Plant uptake

1. «»

)vmnm^Ly^-/m^xmmm^^^^^{CHEc\R/mAP, m y>?yn- m ^^)i yf^f )vmmmnn^mm-ty^-/30km mmm^-zvytf-ty

£MTSM • MVTRxfmmi'ZT'&ntiimzwTzmni t LT 1992 ^sn iDi^Cfflfco 1995 t£ 4 /!©1fc5£efcIE& 3 y>(Dy— TfcrH^Tffl&SfT

­35­ JAERI-Conf 99-001

v>5#, *m&w**

2. fflizm^ $L%immmmzMi

ttj^. ?yy^Am\z&rt&^jL)iyy^)imxtpmm3okmm\H (&&$m M) fimmmxh-%, m^mmt 0 MM^^MS, 10 &n©& JIffK {L^W^ffiM, iii) f£a<7)$ff^ft<7)#MS, iv) MM^KI?^ 30km Htt, MW©*§fgl;:«fcD, 8i®*7bA-r^^ (M&jggljj&jjffl feT) tLTO#a#l^il<, jg7^>7r;SH>Cs-137, Sr-90^7&^»JSfc# ffibTv^s. cinsT, ^^)iyy*i)immxmmmm'M^w^mKmm^ mT. ft\Z.30k m IS^£>tt3i^m±

tt, » (i?^) \z&zmme>%L&fre>ft®Lmz'D\,'>Tn&-rzo 3. ^&^& 3.1 gs±«©3 7M^©srxi^w ^^)vyy-()vmtk^mm30kmm (&Rmvmm \z&^x, &m±mzmmyrzo 7°u \i°r^)\\(D^fcxh-&V7\y)mw(Dmwm±m(SL) (mxtpftb®Afo 6km)

^b 1995^9JiH3 7Hffi^Srxbfe0 37tM2AoL, AoF, AoH, ©g)B^it)3 )§J&tfgJI±SI!£ 0-1, 1-2, 2-3, 3-4, 4-5, 5-10, 10-15, 15-20cm (D&m \Zft nytz. timm 3 m\m$m(D%^)i\zxmwu&yrzo &rz&m±mm&m\*mM® £

mme>®>mm&&Mmz* nmffl

- 36 - JAERI-Conf 99-001

3.3 mmm%mm ±mR&\i-hm±mx\ ^n?n\zzD^xmm<7)guz>±mxm$kZft-ofz, m^rz mm*. Mm. A#, -+BA«, SI^TSS. «^-m, 'wmtAmz-o^ xzm^xn-itz* Am<7)y^y*-?-\z, m.t&'vi%%LLrz±m&mm&®.K)Mii*. &<«#u 30cmm\zmzmsbfz'&, >wm. A#, =+BA*§, immomzz^rzo

4. ^gfciMf* 4.1 ftK^^K^Sc (30km S) H*3^SiffiS±«*fi¥««B^*ftt!Ka©^®

Tabiei iz^jf±(Dmm^tyxMm±m^m^mmmmimmmm(DAmm^^7f^o

i ^©JKHte, ^^r?aafliKti (HP) &&&$> Z.

t&M±m*&m

Fig.5 tti±«^&0>&, ^i»f:&0>£A£

±*^fi¥M^MMtt^aAOHmxmA:MJMz^yx^z>fiy z.n\z^t&mftz\Am-241>Pul^&#>Cs-137 T&£#, ffijt-r^^fi±8©^t«t oxti, z2>o &mz~. \i~Y±mx teCs-137 (DWmtmymzAZ < , jgiil4teCs-137>Sr-90>Am-24L Pu |W|ft#T

- 37 - JAERI­Conf 99­001

mm±m*&¥mmmrtmm(Dftt£rmzmyx. Tabie2 \zFig.i (Ditmwm^ &&m^Tir^izftmte%:&*? l2\ Mfemm^x.)\/yy*<)mi?-tpo Fig.7 tcm^^ios^ 6km M*)\\}BL&. £5 b ©H^tC^^Tfe, Sr­90 ^­3^TtS#^^±*^iljttBJc^ibTi?ffibT^0, Sr­90 »&Ujl^­f££^LW3o ^®S*T^fc^fi»3t» Sr­90 JW^Mte^^U *^j§tSfi!c^T*o, ^tccs­137 \z&^xmMxhz>o pum^Li¥R^Am-24inmm ®mx$>z>y$ymRz$y)v#mj&tttft?t±y. Pumitmz-D^xity^ym^^y £fcAm­241 IZ-D^Xltyjl/Xmj&tttffttEmStf^y ^HdttfiJt^ttSr­90 &WO& atI­3V^Tfe|Sc%(y^^3;^ftNV±^)^b^:­r­%(^/N>SL±^»Am­241) £ TibT^o, ^nb»fi!c^^Fig.6 t^bn^>^wtt^s»±«^^^^^»®o) ±m (D^r>m^WA\zm^yx^^h(Dt^xbn^>0 ££, Tabie3 tcFig.2 (Dftmmz* fflV>T+rA>jl|;fi^<7)ft#±tg(SL, AoH B&^O­lcm JDtl^Tff ofc^S^m^^ To ^»^®^b^­5>&aT?§ttfi!c^^­3V^T^btII¥b/^&;i£te^T»iIDT&&„ Pu ItHiflsfc^HTte, #HK»$<^ », ^&y)i#mRx$^ytfymm&ft\z%<&&■$%. cs-iv? \z-D^x\m&

^T»Am­241 »^te, ^­&tt»7;U«, &^±§k^»^^i^5. £&0­lcm 1© Sr­90 K^HTIS, l£Kj£^fcAM£i&tt0)fi£##£SBWTfc£.

4.2 ±«^b»^fii7]<&^MIIl7K»Pil^5ii&^^I^^tt Fig.8fCFig.4©^^*fflViTfTofc^A>il|^«±«l©Sffl*©^^»^®*ffo 7c^m^7KTM)o z\omfrbtDfrz>z\t\zvyFomK)x&z>o

(i) DOC(fg?¥#ttl^^)fi£

(ii) ^^5>7n^fi^^Sl^W±©fie^^gHWTft5. S<7 ^>7t^,3;7;U«^ (iii) Cs­137 &tf Sr­90 «, $H4aU;fr&T©fiJc##£gEWT­&5A*, ft^SlTJ&Lk ©fi£#fc?¥£LT:fc9, #£Sr­90 iZ-D^X^Oim&tf^y ^■/\y)no)M)n7kiz'D^x, mm\zft?mftm&?f-ofcm%:\*, ±mmm*

U7^xx^ h;uau^t.fc5*g*tt, ffljii**$?¥W«B$itt:, ?jtt^±8^ba)j§^7

4.3 m®mmntoo%%

mm±mRzfbi-h&±mx\ *n?n\z-D\,*xmme>&t£z>±m-T!'&m&ft^tza m^tzmmz. Mm. A#, ­+BA«, imw-x&z>0 *m^x\z, MmtA&

­ 38 ­ JAERI-Conf 99-001 k:"OV>T©Cs-137 0*£l|l£$g£'T5. Fig.9 HCs-137 ©±8^»J^t^#l Cl^

*£ff« = ffitl^tt*ftt^Mait(Bq/g-wet)/±«^tt*ftt^Sflit(Bq/g-dry)

f^mp^^±mw^(D^fBm\zbzot\zmmyx^^n±^c^^^mzzouxm^y ^^^b«, &ft&&

5. ££& i) ±m^HP (D^r-(X(Dmt (HP©a{b) #£I;T*3D, lo^ratrm, *#&

2) *IISL±«^»^^t^^^^ffii±»tck^itV^^^i^-3fCo 3) ±m$*&mmtfi Sr-90, Cs-137, j@tf7>^(Pu,Arr0k:o#^n^ngfc5;i

4)' ^£^ft(Z)^?T«T3ftlJl£LT, ^ff^^»#ffiff^^BJj^i^-3fCo 5) A^mmnm^mzn-Dtz, 6) HP£^A,/£±ig^b(7);:i;0&, A#^(Z)^ff««J6bn/io 7) ±m^bmw^(Dm^wmx(DWtf\zmyx, Hhft^Mzm^ b^mw^m^

*W9t\Z&\-}Z>Ztlfrt>

%, z.tib®mMm

^ofc^siju mzz\£fimmx$>?>yo sfcgEi- 5oa^_ho)MT*^mFjf^^r^a^a^i^T^n«, 5Px^/7*-r;w!e32<7)iti!^

-39- JAERI-Conf 99-001 mm *mmts yiy-y-i y-mr^jv;y^)imm®¥wn±y?-to ^mAm^mmm\zmw-t^>(D\z\s,AL^A^ity^u^-orzA^\zm

##» (1) Bulman R. A. and Cooper J. R. (eds): Speciation of fission and activation products in the environment. Proc. ofthe Speciation-85 Seminar organized by theCEC. Elsevier Applied Science Publishers, London and New York (1985). (2) Gunten H. R. and Benes P.: Speciation of radionuclides in the environment. Radiochim. Acta 69, 1-29(1995). (3) Griffith et al. (eds): Humic Research, Its Application to Sustainable Agriculture, the Environment, Health and Industry. Proc. of the 7th International Meeting of the International Humic Substances Society (IHSS). St. Augustine (1994). (4) Jones K. C. and Beck A. J. (eds): Organic Substances in Soil and Water. A Collection of Papers Presented at the International Conference on Organic Substances in Soil and Water, Lancaster, UK, Sep. 1992. The Science ofthe Total Environment 152, No.l (1994). (5) Choppin: Humics and radionuclide migration. Radiochim. Acta 44/45, 23-28 (1988). (6) Sparkes S. P., SandersT. W. and Long S. E.: A Literature survey of the organic speciation of radionuclides. AERE R 12487 Harwell Laboratory 1987). (7) For example : Askbrant,S., Melin,J., Sandells,J., Vallejo,R., Hinton,T., Cremers,A., Vandecasteele,C, Lewyckyj,N., Ivanov,Y.A., Firsakova,S.K., Arkhipov,N.P. and Alexakhin,R.M., Mobility of radionuclides in undisturbed and cultivated soils in Ukraine, Belarus and Russia six years after the Chernobyl fallout. J. Environ. Radioactivity, 11, 287-312(1996) (8) G. Rauret and S. Firsakova (Ed.), The transfer of radionuclides through the terrestrial environment to agricultural products, including the evacuation of agrochemical practices, Final report of International scientific collaboration on the consequences of the Chernobyl accident (1991-95),the European Commission, Luxembourg(1996) (9) Hatano, Y., Hatano, N., Amano, H., Ueno, T., Sukhoruchkin, A. K. and Kazakov, S. V.: Aerosol migration near Chernobyl : Long-term data and modeling, Atmospheric Environment, 32, 2587 (1988). (10) MatsunagaT., Amano H.,and Yanase, N.:Dischargeofdossolved and particulate Cs-137 in the , Japan. Appl. Geochem., 6, 159 (1991). (11) Matsunaga T.,Ueno T., Amano H.,Onuma, Y. Watanabe, M., Nagao, S. Kovalyov, A. V., Tkachenko, Yu. V., Sukhoruchkin, A. K. and Kazakov, S. V.: Migration behavior ofthe released radionuclides in the river system in the exclusion zone ofthe Chernobyl Nuclear Power Plant, IAEA-TECDOC-964, 172-177 (1997).

- 40- JAERI-Conf 99-001

(12) Amano H., Watanabe M., Onuma Y., Ueno T., Matsunaga T., and Kuchma N. D.: Speciation of Cs, Sr and transuranic elements in natural organic substances of surface soil layers, in 'The role of humic substances in the ecosystems and in environmental protection', Proc. 8th Meeting ofthe Int. Humic Substances Society, Poland (1997). (i3) AifTt, mnmu* ¥&%%?. $*&. ±M, Mism, /Ms«-:5fx;i//

^#KURRI-KR-18, pp201-212 (1997) (14) Amano H., Matsunaga T., Nagao, S., Hanzawa M., Watanabe M., Ueno T. Onuma Y.: The transfer capability of long lived Chernobyl radionuclides from surface soils to river water in dissolved forms, to be published in Organic Geochemistry (1999). (15) Suzuki, Y., Nagao, S., Matsunaga, T., Amano, H., Kovalev, A. V., and Tkatchenko, Y. V.: Three-Dimentional Excitation Emission Matrix Spectra of Humic Substances in Natural Waters, in 'The role of humic substances in the ecosystems and in environmental protection' Proc. 8th Meeting ofthe Int. Humic Substances Society, Poland, pp 623-628 (1997). (16) Nagao, S., Matsunaga, T., Suzuki, Y., Amano, H., Kovalev, A. V., and Tkatchenko, Y. V.: Fluorescence Characteristics of Molecular Size Fractions of Humic Substances in River Waters from Chernobyl, Ukraine, in 'The role of humic substances in the ecosystems and in environmental protection' Proc. 8th Meeting ofthe Int. Humic Substances Society, Poland, pp 617-622 (1997). (17) fev*K, Hit, ±frP£, Af?^, /HSU-, Y. Tkachenko : fxJl//7VM m^)\\7k^m\±mm\zMr^mn^m^mmm-M)\\7k^m^^^mtm^^m® k(Dl&&

^A^Pk^n(Dm^^wi^m\zmr^MmMi^mm^^M£bzs\z^

- 41 - JAERI­Conf 99­001

Soil X « H20 ■0.5MNaOH Stirring [1 hour] Stirring [under N , 3 hours] Centrifugation 2 [3000 rpm, 20 minutes] Centrifugation [3000 rpm, 20 minutes] Solution Residue I [water soluble] Residue Solution — IMCH3COONH4 [humin and insoluble] Stirring [1 hour] pH2 adjustment

Centrifugation Centrifugation [3000 rpm, 20 minutes] [3000 rpm, 20 minutes] I 1 Solution Residue Solution Residue [exchangeable] * [fulvic acid] [humic acid]

Fig. 1. Speciation procedure A : extraction of soil solution and organic matter.

Table 1. Determination of Pu in same soil at Chernobyl (No. 1 and No.2).

239+240Pu(Bq/g) error 238Pu(Bq/g) error N01­1 1.4E­02 1.9E­03 6.4E­03 1.0E­03 N01­2 1.6E­02 2.0E­03 6.5E­03 9.7E­04 N01­3 1.6E­02 2.7E­03 7.3E­03 1.5E­03 N02­1 5.3E­01 5.4E­02 2.3E­01 2.4E­02 N02­2 4.9E­01 5.5E­02 1.9E­01 2.3E­02 N02­3 8.8E­01 9.5E­02 4.3E­01 4.8E­02

Amount(g) Ignition loss(%) N01­1 1.17E+00 9.0E­02 N01­2 1.12E+00 6.0E­02 N01­3 1.18E+00 9.0E­02 N02­1 1.04E+00 8.0E­01 N02­2 1.03E+00 7.9E­01 N02­3 1.03E+00 8.7E­01

­ 42 JAERI-Conf 99-001

humin and insoluble fraction

< 0.1MNa:P:O7 • TAM solution (pH3) Stirring Stirrins [85 c, 30 minutes] [dark place, 4 hours]

Centrifugation Centrifugation [3000 rpm, 20 minutes] [3000 rpm, 20 minutes] I residue Solution Solution residue [amorphous pH2 adjustment Fe oxides] ■ TAM solution +0.1M ascorbic acid Centrifugation Stirring [3000 rpm, 20 minutes] [85 c, 30 minutes]

i ' 1 Centrifugation residue Solution [3000 rpm, 20 minutes] [humic acid] [fulvic acid]

0.1MNH OHHC1 Solution residue : [Fe oxides] L (pH2.0) 6MHC1 Stirring [30 minutes] Stirring [85 c, 2 hours] Centrifugation [3000 rpm, 20 minutes] Centrifugation [3000 rpm, 20 minutes] Solution residue Solution residue [Mn oxide] L— ■HA (10%, 30%) [clay minerals] [hot particles] digestion IMCH3COONH4 Stirring [1 hour]

Centrifugation [3000 rpm, 20 minutes] I Solution Residue [humin] *

Fig. 2. Speciation procedure B : further extraction ofthe humin and insoluble fraction of procedure A.

-43- JAERI-Conf 99-001

Environmental Samples I Y-ray Measurement

Pre-treatment of Samples

Co-precipitation with Fe(OH)3

Precipitation Supernatant

Pu Purification Am Purification Sr Purification (Ion Exchange) (Ion Exchange) (Ion Exchange)

Exfoliation from Plate

Fig. 3. Radiochemical analytical procedure for radionuclides in environmental samples.

Table 2. Speciation of radionuclides in grassland soil at Novosyolki village (speciation A). organic substances seperated from the soil layer of 0-lcm 241 percentage(%) 238pu 239+240pu 241 pu Am ^Sr 137Cs water soluble 2.0 1.7 1.2 0.5 5.2 0.9 exchangeable[pH7] 1.9 2.4 2.9 0.9 32.8 7.0 exchangeable[pH4.5] 1.7 1.5 1.6 4.1 15.6 1.8 fulvic acid 3.8 4.0 3.6 9.4 2.6 0.5 humic acid 27.8 30.1 29.3 16.4 0.4 3.2 humin and insoluble 62.7 60.3 61.4 69.2 43.4 86.6 total 100 100 100 100 100 100

- 44 - JAERI-Conf 99-001

Table 3. Speciation of radionuclides in surface organic matters at Sahan forest (speciation A and B).

241 239+240pu Am ™Cs Percent (9c) AoL AoF AoH AoL AoF AoH AoL AoF AoH water soluble 2.6 0.8 0.7 n.d. 0.6 0.8 2.3 1.1 0.3 exchangeable (pH7) 1.6 1.5 1.0 4.6 2.0 1.9 8.3 3.9 5.0 exchangeable (pH4.5) 3.5 0.9 1.2 3.6 2.3 3.6 2.8 2.2 2.1 fulvic acid (free) 5.8 4.6 2.3 7.6 3.8 2.8 2.6 1.7 0.8 humic acid (free) 4.0 5.6 3.9 14.9 1.4 1.3 0.4 0.3 0.2 fulvic acid (bound) 4.5 8.2 31.1 21.4 23.0 41.7 1.5 0.9 0.4 humic acid (bound) 0.5 0.9 3.3 0.1 1.9 2.1 0.4 0.3 0.2 Mn oxides 18.7 13.3 14.4 1.6 7.8 5.0 2.3 1.5 0.6 humin 28.6 10.0 0.1 n.d. 2.3 n.d. 49.5 37.9 14.2 amorphous Fe oxides 8.1 45.0 35.8 n.d. 5.8 n.d. 8.4 4.2 2.7 Fe oxides 1.6 2.1 3.2 5.8 n.d. 1.5 1.0 1.7 2.4 clav minerals 15.9 4.5 1.4 34.3 44.6 35.6 0.3 19.6 27.6 residue 4.6 2.7 1.6 6.2 4.5 3.7 20.3 24.8 43.4 total 100 100 100 100 100 100 100 100 100 n.d.: not detected

Soil or organic material}

Distilled water Soil: Water ShaklngpOriiMSri)

Gfctsflcer Iter (07 M m> I Ttton lifer (02 um)

Ultrafltration (MW cutoff of 10,000)

Original MW<10,000 MW> 10,000 extract fraction fraction V JL 1 Measurements Radioactkities (Pu-239+240, Pu-238, Am-241, Sr-90, Ce-137) DOC (dfesoVed organic carbon) concentration Dissolved inorganic cations (Ca, Fe, etc) concentration Three-dimensional exctation emission matrix spectra

Fig. 4. Fractionation procedure of water extracted from soil and organic materials.

45 - JAERI­Conf 99­001

i i i i 111 ii • • Sandy Soil ▲ ▲ Sandy Soil Pu­238/Pu­239+240 global ■ ■ Peaty Soil ■ © A Am­241 /Pu­239+240 global B ■ 10 10" W 10° 101 Activity Ratio

Fig. 5. Activity ratio of global fallout and Chernobyl soils.

I

10'4 10"3 10"2 10_1 10° 101 102 103 Concentration(Bq/g)

Fig. 6. Depth profile of radionuclides in surface soil at a forest near River Sahan.

­46­ JAERI Conf 99-001

H Water soluble □ Exchangeable(pH7) E3 Exchangeable(pH4.5) □ Fulvic acid HI Humic acid □ Insoluble

Pu-239+240 Am-241

Fig. 7. Speciation of radionuclides in 0-1 cm horizon in surface soil at a forest near River Sahan.

- 47 - JAERI Conf 99­001

100

80

60

40 # 20 c o 3 0 20 Q£ 40

60

80

100 Ca DOC Pu­239,240 Am­241 Sr­90 Cs­137

Fig 8 Distribution of species between MW> 10,000 and MW< 10,000 in water leachate from a forest soil near River Sahan

o Carrot • Carrot A Komatsuna A Komatsuna i/\1 i nl 10 * 10 Sandy S oil i u ; Peaty Soil \ ■

o ■ -h>o ­p y io° ^ . O 10° - ■: cd co : EH fe A '. A A p­1, «­1 A fH ­1 A A 0)10 5

■ EH • : H • 3 m­3 , in­ 0 10 20 30 40 50 0 10 20 30 40 50 Cs­137 in Soil (Bq/g­dry) Cs­137 in Soil (Bq/g­dry)

Fig 9 Cs­137 concentration in sandy and peaty soils, and transfer factors in vegetables (Carrot and Komatsuna).

48 ­ JP9950130

6. ^zxi)vjy^)vnm.(Dy^^^^^^-9m^t±mMmmz^\i^wfr

mmm^mriffim m4imy°)v-y°

&¥MM&n(D9^c(Dmmw&n*(DMmzm$bx{&.< ftmmmfcrzib. w^m^o) mnWif^y*~?tehU-y-~-mm\z£r)jSi<.$bbtix%rzo bfrb, Tc\zm%L&Mz& )\>WMmmzm^y, ^^rm^(m.^^b^^ytz±mRummmA^(D^c^it^Am^ ICP-MSH«fcOS*bfc. ^©^^, ±*^©9*TciiS«, WaK±STl.l-9.8Bq^g-dry, & ^M±ST-0.13-0.83Bq/kg-dryT$. D , ffi«W©99Tc^^l9-2.3Bq/kg-dryT&o fc. & ±OilJ;D^ff«Ms6£<^ W«±Ji^-XTte0.09-0.41, «S^K±li^-XT« 05-3.4 «h&o fc. IAEATttS * ©HH^O^ff^^ bT12-2600£$£HJ

The Concentrations of Chernobyl Fallout Technetium-99 in Soils and Plants and the Transfer in a Soil-to-Plant System

Keiko TAGAMI and Shigeo UCHIDA Environmental and Toxicological Sciences Research Group, NIRS

Technetium-99 is a pure beta emitter with a long half-life of 2.1 x 105 y. The most stable form of

Tc under natural surface water conditions is Tc04". In the chemical form, Tc has high mobility in the terrestrial environment, so that it is one of the most important radionuclides for dose assessment. At present, there are almost no data on Tc contamination of environmental samples and consequently, limited information on the Tc activity released by the Chernobyl accident is available. In this study, 99Tc contents in soil and plant samples collected in three forest sites in 1994 and 1995 around the Chernobyl area were determined to obtain transfer factors (Tf) of Tc in soil-to-plant system under the natural environment. After the chemical separations, Tc was measured by ICP-MS. The concentrations of 9Tc in the soils were 1.1 - 9.8 Bq/kg-dry for organic layers and 0.13 - 0.83 Bq/kg-dry for mineral layers. For plant samples, the concentrations were 0.19 - 2.3 Bq/kg-dry. The calculated Tf (dry weight basis) based on the Tc contents of the organic layers and the mineral layers ranged 0.09 - 0.41 and 0.5 - 3.4, respectively. The Tfs were lower than the expected values of 12 - 2600 for vegetables reported by IAEA.

Keyword: Technetium-99, Environmental Behaviour, Chernobyl Accident, Soil, Plant, Transfer Factor

-49- JAERI­Conf 99­001

1. «C86H

99 238 239 felfc/3Mtt#:T$>3 Tc&, U^ Pu^b0^^^itX^^^6%ilt^W^#<, MW ¥WMW&^ (2.ixl05y) £&, H^^O¥?0f'JffltJ;D¥^#^t­i)^it^i)o ­eofc m%, Mffbu-y—tyxmisznx^&A -AX, mz, ^7 7^­;i/FT«i994^bi£ #bTV^­5Enhanced Actinide Removal Plant fc«k D, 7 ^ V v i/=LMfcifcffl£tlfc99Tcfi^

|g±^^(I^ViTtt, 9!Tc©5ig&l;^«](;^V^T^tlSTet^^^^$tlTV^j:V^ b^b, mg*tdrfcffl3nfcTc#, ffl*©S^#:£il£TA#:^fTT5figft£g&©­ ^li, ±S­ffitl^^bfe^tl^^^i0^f1:t­'g)^!?&^^tfbtii)o ?t£t>%, A#^© Wifmzmm-tz>±.x\ 99rc(D±m^x(Di&m&&^±mfr bW^owsowj^fig tfts. b^U 99Tc©m^«S^«l/^;i/r;&3£j6, H^O^^M^­^fflV^T^fT ny*-?tf&ibbnitMlZtetkilted. Ltztf^x, Tc(D&ffnyy.~-5r\ZbU—9—

^^^^■rsfcfed, ^x;i/y7V;ni%^2loMWt*@b^o ^x;M7y;ngc^2l mm^(D9*Tcmmu^)i(D^Mizt£Ufiy #^M$t©*&i^;K ■£­&£>■£, ^D­ a, ±«, ^^^©"Tc^M^ffv^ ienfer­^^n, $m99Tc(Di&ftmmizzD^xmt~tz> z tub*.

2. y-t7*i*i7&

m.7k^\zm\tm%m%xh^ty z(D£?tMmmm%M't*> (Tc04­) T&3£#*.btl3 0 mWMtfJ

$tt±gM3jsrr5Tcra:, ^£bTTco4­T&3£^®£ti3^\ ±«fe^^rs^­?^^x

±®js«frin?¥S­r5, ­r &£>■&, ±W£^S]b­^9n^#;tbti3o ±«ffiT©^S]© ­ 50­ JAERI-Conf 99-001

L^tZonyt — PkLT, «tenTV>3. 0*±^©^i| t bT&Uchidab 7) ^0*©1290±aiias|.S:fflViT, Kd^^j6TV^ 0 £31 £, TKffl, ^^©±^©ffijt^J £, Fig. lt^fo ±M6TTcD, :o^T(:* V>T«TC©pj-^tt^s^ztj>mbn-o>s&&, M^ZTKm±m©«t?£STCW^H^ frTTTc©±^ ^mm & z b ti¥ b < ifefti-r s &®#& s.

99.99 99.99 99.9 Paddy soil [n=41] 99.9 Upland soil [n=45] 99 99 Ov 95 95 90 90 98 50 18 10 5 1 Normal: p=0.000 Normal: p=0.000 Normal: p=0.000 Log-normal: p=0.827 .1 Log-normal: p=0.154 Log-normal: p=0.345 - .01 .01 0.01 0.1 1 10 100 0.01 0.1 1 10 0.1 1 10 100 K„ [L/kg] K„ [IVkg] K„ [IVkg]

Fig. 1 Probability distributions of Tc-Kds. (Uchida et al., 1997)

2. 2 ±m-mm%\z&\7z>m=r -mz, ±mmw.^z^m^MmA^ymxwi±t^Ar.m^ mmzmisn^t^t^ ^.btiTv^c Tctf±mmw.^xTcoA-tLxftftt%t£b&, femLmz&Qmto^fflf b^-rv^^^ns. m^&ftfcmz, -tut>%, Mnww,z&y) *&*&&•?STC* tf&^mmz^yx^z, ±se©«k-5^as^e., Tcbizmj]M \zfft>tlT%1to :ft^07-^il ±^bM^©Sffa«©7c&©A^.*-37T& £Sffil$t (Tf) chbTichJ6bnT^-g) (#J;Ui\ Coughtrey et al.3), Table 1; IAEA8), Fig. 2) „ b^u z\n&r*\znni*nTKz&ft&mt±%t£m&<&K>. *-©a&&# W?Zfctbftt>nx%1to foi^C, Tc©&JK£Eg-r3&JC©^££&i*b fcffi^9' 10) 7)^ £fz, Tc©±^©^£«b7vc$B£r *)&£<, ^OWtlTtt, Sheppard n) 9 b ©#f^;Wfbn£0 HitT«, ^v;*-^£JBK Peat ( *Tc/g dry peat= 0 - 0.1) t Sand (9*Tc/g dry sand= 0-0.05) © 2 8£g©±8W> b 7y>7"17'\©;$fTi^£fc£;J<#)7Co ^© i J|g^, Sand©S-5^Peatct»3 b^ff^*^4i|RiaiV^

- 51 - JAERI-Conf 99-001

Table 1 Reported and calculated transfer factors of Tc in terrestrial plants. (Coughtrey etal, 1983)

Form of administration Plant Plant organ2 Transfer factor

Soil3 Wheat Shoots (d) 340 -150

Soil3 Wheat Shoots (w) 38 - 85

18-166, 32-213, 56-253, 127-268, Soilb Wheat seedling Shoots (w) 209-326, 40-124, 86-191, 48-130, 158-269,107-200, 54-143

357-421,104-112, 158-190,130- Soilb Tumbleweed Shoots (d) 220, 54-114

Soil (two types) Cheatgrass Shoots (d) 294-362,178-248 a b Note) 1 increasing Tc content; =varying soil types. 2 (d) = dry weight calculations; (w) = wet weight calculations.

CROP

io-: 101 10° 101 102 103 104 105 Tf

Fig. 2 Soil-to-plant transfer factors (95% conf. range) based on Bq per dry weight crop/Bq per dry weight soil. (IAEA, 1994)

52- JAERI-Conf 99-001

x^z>0 ±ai^©Tc©JKZk\Zfc%>. Tc7°U>7l;Hi£[EjfffrtlW3o ^©l£JH£Fig. 3£^b&. ifeti zTcLT^z>o mnn\z-tmfrm£ifi$>Za M%.\& &,mm^b\z, ±m\zTcoA-%maL. mm^l^^^^^xTc(D^^yyyy3yf)mmtthlzE(DAolzmtr^(D^^m ^tA\ *-©*££, #i'S5t^fii*^ii-rss^('*5^T, TC^^^^^^L tzV, WM^^Fe-MniHtt)^©^^^ B#M«i:^('±«li§^4I^e>±«©@ffi

('©iR$n('ns.

7 w -;u H ^ b ifetti $nfc&sttt^a*^t* b fds&± £« b T^pffi $ n^«ffi &&mz, ^ff^»**»fc«£m^Table2^-r. ^fflbfc^^±*^l£R±T&Sfc», -)K©I£±£

&g©«ty\zz\yhu-Azntzmm&fttmy mmm%ftAxwi7i%mm&bntzz tX&Zo NRPB^x;U©"Tc©i£ff^jgt (AM) te5£$fflbW3^\ £ ©

jSbT^b©aging(Dg^, 4&g{fc¥lft^li^£+##Ji:-f 5&g#fc£.

3. ^x.)iJ ?A)mmmk

A^Ay74)^Mmixm\^^ntz^c(Dm^y^A\zubhJEmb^zt^^xw^\ 3Ltz, mmmmmmA^^cm&u^A^mittztet/vcit^y mmmmwi. A^A J 74 Ammxmm zntz&^RzSAmz® ^x^j$.^nrzmm^miAEA-373RmAEA- 375£#tfbfcl£!^ IAEA-373T0.86Bq/kg-dry, IAEA-375T0.25Bq/kg-dryTfcofz5\ AM tmizmvxiz, m%bmzft£x\z:mfeyx%tzB*

- 53- JAERI-Conf 99-001

10000

3 1000 c o

100

10

-I u -I u 200 400 600 800 1000 1200 1400 day

Fig. 3 Evolution of the grass-to-soil Tc concentration ratio after two successive surface contaminations. (Vandecasteele et.al., 1989)

Table 2 Comparison of measured transfer factors with current NRPB model values (Brown & Simmondsm 1995) for 99Tc (fresh mass plant:dry mass soil). (Green era/., 1996)

Crop Mean (xlO"1) Range (xlO"1) Model (xlO1)

Green vegetables3 1.0 0.52 - 3.8 50

Leafy green vegetables 1.2 0.52 - 2.7 -

Legumes 0.73 0.48 - 0.93 - Onions 0.99 0.15-3.8 - Root vegetables 2.1 1.1-3.2 50

Potatos 0.64 0.26 1.1 50 Cereals Not measured 50 Note) a: Includes leafy green vegetables, legumes and onions groups.

- 54 - JAERI­Conf 99­001 3. i nmmmzsjj& ±«Uifttt3OkmBrt0£#3JM, A (6km) , B (26km) RtfC (28.5km) Tl994^S.lX i995mzimLzntc&m±& (^$SK±S : Ljf+ofi+ohjf, mmm±m :AhH+B)i) T ^5„ mmmiz±imn3m^x^mmizm^i^nrzy7mRzs^^-m(DMxh^o ± 137 a, mmmmmMt, HSHJITS^TKSU $#b&. ^w© cs^£Ge¥#ft ^tfjgfi (Seiko EG&G) TftiJ^it, "Tc##f»bfco HI W £#«>£&«>© h U­+r­

95m \z\z Tc*m^tz0 %tz, umzMmm&mm. (&mit¥. AA­IOO> ^^fflbfc. #« mmzmAxmwwojzmmytzo ®mmtn ■. mit^mmmmizA^Tc^miay, m a ] ii^fTofco Mte,miNHN03{aj^bfco © > bTf#bn/l^M4 ©Tc^TEVAl/v>

(Eichrom) \ZA <0ftM ' Mbfco ^j5mL©8NNHNO3t0iK£n7cTcte, $70rTi£@ b J fcfct, 2%HN03}§?gtt H^ft¥bfc. f#bnfc^^*©Tc[H]lK^^NaIr>xj^^>^l/_ 9 ^3>*7>^­ (7UA, ARC­380) ICiDlfe, *TcrIlJ£teICP­MS W­JT^UT1^ AAXAAX. PMS­2000) H^rjfrofc. ICP­MS©^ ft TISlI.m03mBq/mLT&o fc. 3. 2 ^Rtf^gl 3. 2. 1 ±«im*©99Tc ±aM*44J©"Tc&r;137Cs^^©^m^Table 3K^To ft, 1994^^1995^©^*^©^ ^ibT^bT&s. tn^tKD99Tcmmz, ^mn±mxi.i ­9.8 Bq/kg­dry­c^o, mm M±IBT0.13 ­ 0.8 Bq/kg­dryT&ofc. ttffi£fo(D9SmTc\ZAZ>\Bl§LmZ62-93%Xh'DfZo W c 1 9 ] 99 aM±« T © *Tc}iSa% *^b^^nSTll»J^bT#7cB*©7Kffl±»4 © TcaSl/ ^;Ur)> ^(DMfctffrfcQnmiznbnx^Zo ^■Mm^fz±mu.m*o 137Csam (1986^4^260) &, W^M±«cr1T15 ­ 195 kBq/kg­dryT$> 0. MK±liT 0.64 ­ 8.8 Bq/kg­dryT $> o ft. ffbtiTc^m^b, ±«tri©99Tc©^it^[p]^©^fTtMb, ^x;uyy>r;u»arafeffl $nT^b8~9^E^S^b7cB#^T, S/fffi^SC'Tc^Wa^l^flffi^F^nTviSt)© ©, ^^HTIif^fTb'O'o&S.hviAS. ^ffM©its£bT, ±*^^Ill:<^ imt)nTvi5lscs^^*«tbTKi*tg«isj±9!>rQ/137cs<&*«)fct3:5. ±mmmm±m i0feTi,?iA^<^5iiBi^ofc. T&fr^ 9*rc©^^137cs«kt)!bT^^©^fT jiS^Jiv^iSr^bTviS. ^©©^/T^^^S^t^Tqim^ffilir^^i^SWT^o fcfcfc, ^J^Tl#bn/lX­^«±«^2HH^»Jb7c:;fo©©^T$,0, ±atT^fT©ffiMffl t^nTttf&t^^i^^fi:^. 137cst^bT«, 'pm

­55­ JAERI-Conf 99-001

Table 3 Concentrations of "Tc and 137Cs in Bq/kg on a dry weight basis and activity ratios of "Tc to 137Cs on 26 April 1986, in soil samples collected in the 30-km zone around Chernobyl.

Sampling site 137Cs (1986.4.26) "Tc Activity Ratio Bq/kg-dry Bq/kg-dry Tc/^Cs

A (6km) Organic Layer 1.9E+5 +/- 5.5E+3 9.8E+0 +/- 3.3E-1 5.0E-05 Mineral Layer 8.8E+3 +/- 1.1E+2 8.3E-1 +/- 1.8E-2 9.5E-05

B (26km) Organic Layer 2.0E+4 +/- 6.3E+2 2.1E+0 +/- 6.5E-2 1.1E-04 Mineral Layer 1.4E+3 +/- 2.1E+1 3.6E-1 +/- 6.0E-3 2.6E-04

C (28.5km) Organic Layer 1.5E+4 +/- 2.3E+1 1.1E+0 +/- 2.4E-2 7.5E-05 Mineral Layer 6.4E+2 +/- 1.7E+1 1.3E-1 +/- 2.5E-3 2.1E-04

IAEA-375 (ca. 180km) 5.9E+3 2.5E-1 +/- 2.0E-2 4.2E-05

Table 4 Concentrations of "Tc and 137Cs in Bq/kg on a dry weight basis and activity ratios of "Tc to 137Cs on 26 April 1986, in plant samples collected in the 30-km zone around Chernobyl.

Sampling site 137Cs (1986.4.26) "Tc Activity Ratio Bq/kg-dry Bq/kg-dry "Tc/^Cs

A (6km) Berry 1.4E+4 +/- 7.3E+1 1.6E+0 +/- 1.6E-1 1.1E-04 Fern 5.0E+5 +/- 4.5E+2 2.3E+0 +/- 2.6E-1 4.6E-06

B(26km) Berry 9.0E+3 +/- 9.5E+1 not detected Fern 4.0E+4 +/- 1.2E+2 1.9E-1 +/- 2.9E-2 4.7E-06

C (28.5km) Berry 1.3E+3 +/- 3.0E+1 4.5E-1 +/- 9.0E-2 3.6E-04

IAEA-373 (ca. 50km), Grass 1.4E+4 8.6E-1 +/- 7.3E-1 6.3E-05

Table 5 Measured transfer factors for "Tc in the 30-km zone around Chernobyl.

Organic Layer Mineral Layer

A (6km) Berry 1.6E-1 +/- 1.7E-2 1.9E+0 +/- 2.0E-1 Fern 2.4E-1 +/- 2.8E-2 2.8E+0 +/- 3.2E-1

Fern B (26km) 9.3E-2 +/- 1.4E-2 5.3E-1 +/- 7.9E-2

C (28.5km) Berry 4.1E-1 +/- 8.2E-2 3.4E+0 +/- 6.7E-1

- 56 JAERI-Conf 99-001

A^Azm^xttzo m&, ^nbmmAo)99Tcmm%ftffiAx$>K), ^tib©x-^ 99 nbnniz, mmxmmtfmbnz>t&tDnz>o 3. 2. 2 ^im*©99^ »H^4©##f^iJI£Table4^To ffi&im©Tc©@JK^«65-88%T&t3, "Tc«£« 0.19 - 2.3 Bq/kg-dryT&o it. Mf4Wv>&^ £ £ tffitoTl^^ ffil&fl K «fc 3 99Tc©}§ S^«^@©^JfT«0J!b^T«^^o7Co -#, 137Cs^PbT«, >^gi«Cs£JtJRM MiKTS^^ftlbtiT&D, ^©M©ttK£IxlftbT\ ^UiffiftT&^'JH&fcr)*) ->^TKvMB;W£nTv>5. ^(Dfttb. m^)A(D99Tc/ulCs\t^^~mAK>hy7mX'2

3. 3 ^x^y7^^Jf^^S^#rtT?(©99Tc(©^fTlliC (±«-*l#l) K^T i©ww*M$ffl^5^i^^/ii nmizizmvwmmzttmzLfzteotfAKtmM mx$>z>„ mz. ^^(Dm\z±mA(Dmmm^izA^T«$6HW^*ii&S^g^&S. b/^U IAEATtt^^S^ ©^?T«£bT12-26(X)£}^{i£bTWT&D,

4. i;£a6 «i&Tte, Tc©^fTl^ic(ngT§^n*T©x-d7^p^, HSit©l^!l^*5 Pn1JS££^u ^x;uy7V^£»±g©7 j-A vtLxm^mmiz-D^xmiZft^tz, ^coAfe^ mbntzfttf%kxiz$>%fiy AX.Ay74A^mmm^Am-mm (y^mR Zt^V-m) ©Tc©SfT^^ibT0.09-3.4^f#btl, »lll/^©^T«©X-d? «t QhftUQfr-z^zktffrfr'iiz. Ltztf-jx, %n^.A(y>Wir^mzzn^x\z%m^ti x^&mAVhAz^zktfA-mzn&o m^(Dm.^.A(D99Tcm7mm^mbMzA^rzmz, ^feommtLT. AMA(D^%A [^©"rc^^f, Tca ^^\. ±a©ngij\ «J©»^©9*TC©X-^£M

-57- JAERI-Conf 99-001

(1) Luykx, F.: Technetium discharges into the environment. In Technetium in the Environment (Desmet, G. and Myttenaere, C. eds.), pp. 21-27, Elsevier Appl. Sci. Pub., New York (1986). (2) Aarkrog, A., Carlsson, L., Chen, Q. J., Dahlgaard, H., Holm, E., Huynh-ngoc, L., Jensen. L. H., Nielsen, S. P. and Nies, H.: Origin of technetium-99 and its use as a marine tracer, Nature 335, 338-340 (1988). (3) Coughtrey, P. J., Jackson, D. and Thorne, M. C: Radionuclide Distribution and Transport in Terrestrial and Aquatic Ecosystems, A Critical Review of Data, Vol. 3, AA Balkema, Rotterdam, pp. 210-228 (1983). (4) Frissel, M. J. and van Bergeijk, K. E.: Mean transfer values derived by simple statistical regression analysis, sixth report of IUR working group on soil-to plant transfer factors, RIVM, Bilthoven (1989). (5) Uchida, S. and Tagami, K.: Possibility of the use of IAEA reference materials (IAEA-373 and 375) as low-level "Tc references. J. Radioanal. Nucl. Chem., in press. (6) Lieser, K. H. and Bauscher, C: Technetium in the hydrosphere and in the geosphere 1. Chemistry of technetium and iron in natural waters and influence of redox potential on the sorption of technetium. Radiochim. Acta 42,205-213 (1987). (7) Uchida, S. and Tagami, K.: Sorption of technetium onto 129 surface soils collected in Japan. Sixth international conference on the chemistry and migration behaviour of actinides and fission products in the geosphere, Sendai, 1997.10. (8) IAEA: Handbook of parameter values for the prediction of radionuclide transfer in temperate environments. Technical Report Series 364, pp. 20 (1994). (9) Cataldo, DA., Wildung, R.E. and Garland T.R.: Technetium accumulation, fate, and behavior in plants. In: Environmental chemistry and cycling processes. CONF-760429. 538-549 (1978). - (10) Echevarria, G., Vong, P.C. and Morel, J.L.: Effect of N03 on the fate of "Tc04 in the soil-plant system. J. Environ, Radioactiv. 38,163-171 (1998). (11) Sheppard, M.I., Reid, J.K.A., Thibault, D.H., Chen, J.D. and Vandergraaf, T.T.: Technetium uptake by and yield of Swiss chard grown on peat and sand. IAEA-SM-257/80P. 358-364 (1981). (12) Vandecasteel, CM., Dehut, J.P., Van Laer, S., Deprins, D. and Myttenaere, C: Long-term availability of Tc deposited on soil after accidental releases. Health. Phys. 57,247-254 (1989). (13) Tagami, K. and Uchida, S.: Aging Effect on Technetium Behaviour in Soil under Aerobic and Anaerobic Conditions. Toxicol. Environ. Chem. 56,235-247(1996). (14) Green, N., Wilkins, B. T., Hammond, D. J. and Davidson, M. F.: Transfer of radionuclides to crops in an area of lad reclaimed from the sea. J. Environ. Radioact. 31,171-187 (1996). (15) Tagami, K. and Uchida, S.: Concentration of global fallout "Tc in rice paddy soils collected in Japan. Environ. Pollut. 95,151-154 (1997). (16) Uchida, S., Tagami, K., Wirth, E. and Ruehm, W.: Concentration levels of "Tcin forest soils collected within the 30-km zone around the Chernobyl reactor. Environ. Pollut. (in press).

- 58 - JAERI­Conf 99­001 JP9950131

7. \u7m^$^7^yx?mmmmjkvz

Oi^M1, M. JEin2, rSffl *fi2, TOtI££3, A. Kh. Sekerbaev". B.I.Busev4 1 &RA¥m¥mMm{& y ^ jimmtmmmm "fc^A^mmmm^immmmim^y * - y^MAmmmm AijAyx? ymmmmmmmm

mym^^^yAyxtmmmm&vz^mmmtnm^m&oimmy^^, #*u, &nm ©5Eai.*f#5/=feic, Am^oiAmmoim^13As RU PU n^n^^m^Ltzo mz PU ©5>w •ij^­m, 2*q24i>PuMmwmzmz-x, mkftw&^m^xnftmm, -&b\z ^AA 23q pu mtLmm^^b^wMw^WM^m^Ltzo ^H^LT, tmt^ft&c^c^M^ ©±J*ct1 K"Cs ftjgli, d[*l© Global fallout (3000—7000 Bq/m2) i; fnj^^^^fg;^ U^;U"c?, ­77 2­^2<»Pu ttSl*il"(60~ 240 230 70%) ttffiK­tffflHi^Wffi^^Jli­r^ffiL­r^sifc^Me^^^^/io £e>d PU/ PU IWJ

Distribution of Pu Isotopes and ,37Cs in and around the Former Soviet Union's Semipalatinsk Nuclear Test Site

Masayoshi YAMAMOTO1, Masaharu HOSHI2, Jun TAKADA2, Tsuneo TSUKATANI3, Alexander Kh. SEKERBAEV and Boris I. BUSEV1 'Low Level Radioactivity Laboratory, Kanazawa University, Ishikawa, Japan 2International Radiation Information Center, Research Institute for Radiation Medicine, Hiroshima University, Hiroshima, Japan 3Kyoto Institute of Economic Research, Kyoto University, Kyoto, Japan ^Kazakh Scientific Research Institute for Radiation Medicine and Ecology, Semipalatinsk, The Kazakhstan Republic

This paper is a report on our survey of residual radioactivity, Pu isotopes and 137Cs, within and withiout the territory of the Semipalatinsk nuclear test site.

-59- JAERI-Conf 99-001

Soil samples within the test site were collected at approximately 30 sites along the roads connecting Kurchatov City, ground zero for the first USSR nuclear test, Balapan, Degelen Mountain and Salzhal settlement. Furthermore, outside the test site, the soil was sampled at about 20 sites, including some settlements (Mostik, Dolon, Tchagan, etc.), forest and pasture areas, along the roads from Semipalatinsk City to Kurchatov City and north Korosteli settlement. The contamination levels of long-lived 137 238 239 2 n 239 radionuclides. Cs. Pu and ' " Pu as well as ="°pu/ Pu atomic ratio in the soil were determined by non-destructive y-spectrometric method and radiochemical sepatation followed by a-spectrometic and/or ICP-MS methods, respectively. The resutls showed that although 137Cs was within typical environmental levels except for an areas near ground zero and Balapan, 239 240Pu was elevated levels contaminated with weapons-grade plutonium in all area we visited. From the stepwise leaching of Pu from the soil, 50-80 % of total 239 2A°?u in most samples was found to be tightly incorporated into the soil components which might have been melted at time of detonation.

Keyword Nuclear Test Site, Semipalatinsk, Residual Radioactivity, Soil, 137Cs, 23° 210Pu.

2 4opu/2 39pu Atomic Ratio

1. f¥M

MAmmzi&iti2nfzmf\mw<7)mAAM, t*tj*>Aimmm-Afo

(7) fallout fMl£ffl^T5ff^£nT£/co Z <7) «fc O ft—a©^©^-?. Hffiftfe &£§£ flT ^Zzbti., M0fiiXLfrb%&7zM (Np.Pu.Am) &mfSltfi&M£2klzt:b\t, mmAmizwmifzznbmyyyTcmvm^mM t&lzZffiftmtBVbnkolzmtlXis^m*, *rc7K^SIi:©*S*Tif©«fc-5ft7tHk7^-;uK5ff^**S^i:ftSo bfrb, m&z £ot£W$Ht Global fallout ©#TJ^£ tltzM^; <^BiMX It WOWfe < , ^ftOfflUJC

n*it, 5 ^mfrb\Bym^^^y^yxy-mmm§(Dmmmimmz&v£mmfimm(DA rzibiz, ^©«©SMM

- 60- JAERI­Conf 99­001 mmis&v±&Zglobal fallout, MMMlDi (Sellafield, UK) £ e>i:f ­^*«fiLoo*6f i^7 ^'J WM^W(&%: Pu ©±ii43'C© #£#tt i: ©Iti^tM fc L fc ^ o

2. iS*4 ?i^^4ti­r UX/W 7*m^X, 1 IMS 9 10 cm g!3©^Jf±ig 3 ­ 5 >j bm$Z(D^$kX 30 cm $£©n7­±ii 1* &$IXLfc0 10 cm g?^©^*±«m^SJ­r53tft< •?■©**, —# 30 cm m^(Dzl7-UniiMM^b 0— 5, 5—10, 10—20, 20—30 cm (ttzit 0—5, 5—10, 10—15. 15—20. 20—30 cm) Mfl­flJLfco JSS£Lfc&, Pfl 2 mm ©.&S^­e#ttIKofc&, ftflrKftLfc. OTK^­fim&E^fco (1) $5£«**ir*J©±8l(Fig.l. Appendix I) 1995 ^ NNC (National Nuclear Center, Kazakhstan) (D\faf}(DbbX, Kurchatov frbMW (D&mmfr^1MZ ntzMMlZMi: &Mfa^RVM'kmAl&, Zb\Z Kurchatov frbmmfc TtmWim (Balapan, Mt.Degelen) IZ M 3 JI©tIiIi:^©B£ftH" , ft^? : PMA • » iff, if^fltl £tt§. 1993 ­ 1995 m (2) ^^.^lM]iZ2©±ii(Fig.2, Appendix I) 1995 ^*>e>i996 mzfrvx, %?yx*ymmm¥&%iw2zi%bftl/^lf;bftTt^5 Semipalatinsk lfil8&VT\i ­Dilf&^T *!&§r*J i: M ft~#&­e±t8KIX&?To fe„ (Hf^^^p£ ­sny-r: xyttA^mswmmmwmb-mmmm", ixm -. itmA •mmw, g. mfe nm, ^95 ­ 1996 m

3. ##r • $]£& 3.1. im^r%%X^y ha* l­ !,< 3T'±iit#r"4£r¥~ 6 cm, ,Tc 2 cm ©­j£77X^ ^f§ (±«M : 50~80g)(CAn, 2­3 MfPH^Lfctl, jlft© Ge ^|{*fttii^&rT]6f#£{gi^

­ 61 ­ JAERI-Conf 99-001

A-ftAX^7bUy-5>-{Ul?S)\Z£^X 2I0Pb ^ 218U(234Th)©$lj£fe^MU£o

3.2 Pu mmRvmi.focDwim Global fallout Pu X'ftri&Ztltz±imz^^Xlt, $Jl£^©££^£ffll/^MV - A >?X, Pu &13.\3%MR}lZftliiiZtl&£\b\l.&<%lbtlX^Z>o U^U, ^Hl^iiif ^ h© Pu ICO^t ] 12 13 15 a. r* j^(D^7-s^^mwMRu^(Dmm(D pu Koivci-ej-s^ ^nr^5ck^ (-, im&, mizmMbtzmMmmfaK**4m±m&?izbyv7zfttzi&ft&

£#fl?&, (1) c.HN03 + H202 - (2) 10M HNO3 + 0.1M HF - (3) Y)lii >J (NaOH) BM¥(f:fc« HNO3 + HF + KCIO4 #&?)£!£#•, Pu ©m^ttW^JI^f^ftSck^JCUfco —#, 3T-M ^Ko^-cwtjl&ffljijfcfrfc-fj;:, t'

4. *g*4:#g 4.1 137Cs fcckt/ 239' 240Pu £M ^ll^iirtfe«t^^©^2^SlKUfegM(0~10cin)*J:Uf3r-|S3r5r(0~30cni){lo^-C© l37Cs^IM (Bq/m2) % Fig. 3 CC^^o 137Cs ^S^TOMB ^©filt&So &S6l*J#r*9 ©,37Cs ^M10«, fiffi©^H»*fT^fe*^JfiMj£© F6(104~105 Bq/m2)^ F5(;l04Bq/m2) X'M^i$.Z^b, Kurchatov 7jft^(D%mbbblzm&mmiZffimLX^&o ^©^©itiL&T (igl^lCrft^fg^^l'ffl^iift^^, 2 x 103 Bq/m2~ft^-C 104 Bq/m2 igB"Cfco/io |S|—iffi /£l?}£llSUfcHf4fS"?, tzbX.\Z F5 TJ 2.5 x 103—2.1 x 104 Bq/m2, A4 T? 5.3 x 102— 5.6 x 103 Bq/m2©J;^(I137Cs ^^ft^^ft0©tf6o#^m^tfj$n, ^fifKTO—-?#>£ £ fc^ft{i[n]ii^||^I^©i:i7Cs S^*JCo^-Cfe|i|^-e*>So &Hlfca»<=>©^it&W Fallout £&tzo igM*© W8 M« (5-7) x 103 Bq/m2 4;ft ^o £fc, Semipalatinsk frb Altai Jfi!^icaCSjl?&l^©^lJf,]K«l[Jfi-CSffiL/fe±«|©¥flia *>*©«£/*,if** (1-3) x 103 Bq/m2 "C, ^©^JKKK UT^ft 0 ffi(^£ bWftfr^ tz* B *TJtt, P$7k©#^B*,gffll] (2000—2500 mrn/y) T? 6000 — 7000 Bq/m2, ^7K©^ft^*¥?¥ JK^jlOOO mm/y)-e 3000 — 4000 Bq/m2 © Global fallout 137Cs ^M#$g£3 tlT^S8 9o £ft£UT, 137Cs ¥fl««flkfcit&ttjfi© F6, F5 £E&^T, X#y hWi: 104 Bq/m2 ©ft^tlil .^fe*S*J, B*© Globull fallout 137Cs WfltMbffl^fr, ^^{RyOlXhS Z £ Wftfr^> fZo z(Dtm&Wixit, m*zz#ztj:*4 7bm&v>W£§&%&&*.%*£mrnxmrn^ntz„ Zb\z, M±.^m&*VL5^<^frO)Myft.W&t>ftt)titzo A%AX<^m%X\t, 'Jgfg©ft

- 62- JAERI­Conf 99­001

z£'Xi£m&izte, AA?(DmA>?ffift&w.^Aiibnz>o ztiboitymmmzmzftz &ftmri*%mtiy %o Zbiz

mm^MlZt:^X b At < MitL, Ztl&mmy * ~)l7y b (Close-in fallout) £o<50 —is, Amm&mzmit£^£ot£MzxM%ifzi§}&iz\z, mimy*-)i7yb\t\tz>hAz ^ft^*\ iofc<4i;4^feifcnt^5. z<7)£otj:z£%^mt££, mw^At(Dmm © 137Cs WWAOftlfytAfy—Xh&Zb&i^j&X'h*), u^ua^KKSUTte^©!*. 37 i37Te _ .37T _>i37Xe(Ti/a = 384 m) _» i37Cs £)_}££) decay­chain ^HTMI" S' Cs #, ^«fiW7*­;Ur^r«4ffMLTl^T1"5BiI{r l37Cs (Dttrte, ll^tt© Te^ I, ZbK ^AX<7) Xe ©­^aP^^fiE^ffltltfcaU/i/ift­Cttftl/^^fc^^^nSo &K&MT? ,37Cs MS. (Bq/kg) ©g^Wi^L/iM^o^T Pu fc3|IJ£Lfc*£llfc* 239 240 239 240 n**ft Tables 1,2 (I^fo mz\t ' Pu «£. SMI^K ^«pu/ ­ Pu RU 230 24t, ,:i7 24,, 239 ' Pu/ Cs JK*fML ZbiZ Pu/ Pu (5]{i^th (atomic ratio) bWAXAUT£o\Z, tgH&lifl^ Salzhal H*§© 23°■ 240Pu Sftmte 137Cs ^tg^${::•?■ ©it ~£ © F5, F4, F3((l—4)xl04 Bq/m2) #ffi&Tfti^. Salzhal H^2 103 Bq/ra2 © 239' 240Pu ¥& M##>5. ifi£|5©Hig Dolon ^ Semipalatinsk TffiC^Sil^l/^©^ (W *$*) Ttfc 100— 1000 Bq/ra2 ©^fW^JienS^, Semipalatinsk rt^ Altai #®TJte^te(,\ftg|S]t;:#>5o Ztlb(Dm&(D 238Pu/239­ 2"°Pu iR*tt6i:k{i||SftJirt^­C 0.02­0.04 TJ& »?, Global fallout Pu TJM^Iii­a­Sitfc^llftl/^ 7W*©CT£&

■ha

4.2 137Cs &# 239' 240Pu M©$S#7fT ?7-±mffl&lZi\,\X3# 90 137 239 24n Dolon Xim\stz±m^7-ffl&Kt5\l\X, Sr, Cs S^ ' Pu «g# 10­15 era $ ^{z\z°-9^AsA§5JK#&?B£LT^5. Jgftifi#jg>aTttSJB©rS^TOW7:*­^7£ h{£

i37Cs ^ 23S. 240pu ^^i^t±i$n/c©afc^6< £©A&WJl#££B­f stofc^xenso

­ 63­ JAERI Conf 99-001

-g-©«t-5fttfi^{Cfc^Tti, £blZ?%^MtX "As A -19 ~4"Pu ^M^trJ-B-SW^tt^feSo

4.3 Pu ©??£®tt f£H^*lFW©±ifgctJ Pu ©^ffiiRftt{Zoi/NT©55Dl.^#Sfe«){C Pu ©iI&##f£^tJf T 10 cm &£ -£.X

ttjlfit© H202 £^fr HN03 sn^'>i-f->^ST{i^±t;tttrj^nft^0 IOM HN03 + O.IM HF m &yyxyay Pu It, M>bi&frb Kurchatov ^IL5TS.r6^XW®lLtz±mxlftM&Hz£<

^SLT^S^, ffi©ifij&(Wl %|^l/NT)T{i^ft^0 M©^?!^^, Pu «, ^H^lF^lT

ti 60- 80 % bft1$iz£l,\0 H^l^©^?!^ Pu It, JlFJfi3J:^T^ft0ti"6O7#, ws it*

X 97 %, W2, W8 ttet 80 — 85 %, ia"^© Nl — N5 fl&j&T 20 — 40 % X&r>tz0 Global fallout Pu {C«tS^^±«UCoi/NTti, HN0< + H20„ 'J - f- yJffexmSfeMWlZ Pu ;&>$&£ n5^< Global fallout Pu + t$M$k&%:&>.$)y * -)i7y b Pu ©^ss^fife^Tttft^^fc^Ae.nSo IOM HNO^ + O.IM HF v-AyAmt-mzmm^ PU Mit®*$tsis%tiz>fflt%iz

4.4. Pu ^gtfg©a$J SH^Irt^©±iictJfCti, ±pBLT$/iJ:-5t:4^ll^^^©^tffif^ fallout i; Global fallout £*© 137Cs A 239 24uPu MftLtffiLtl^o Global fallout fi3fc©J$#£ifc S!lL, Mftf fallout ft*© 137Cs ^ 2j9 '40Pu MS., &5^«#f*S£JBl«Cffifflt5 - fc a, ^{±&©MM£Wi^ir£±T»-cM-co *fc, ^n^n©^&$^6© Pu ©±iS43T©f^7^I4j£Mir5±Tfe^TX^&H!*©JiflM& Pu ©ft* ftfft24UPu/'19Pu |pH£ftJ:ta>#a>Wi, Global fallout fi 0.18 £i£fflLT, TIB©^J:0 Pu ^ikSIJt5 £ £ frWt£ T * 5 c

(Pu)w (RG-Rs) (1 + 3.73 Rw) = y =

(Pu)t (RS-RW) (1 + 3.73 RG)

(Pu)G + (Pu)w = (Pu)s

(Pu) G = (Pu) s 1 + Y

-64- JAERI-Conf 99-001

(Pu)s : imAt&W} fallout Pu © = pu/ Pu [5M£f£i± Y : Global fallout [ZMLT©Jgi&M fallout 239' 240Pu ©W4I±

±iaA°^^-^-©^"C, Rs liiS*4©SlJS*iii;TWS^i;*s-e^5o *fc, RG It Global fallout Pu ±mA Pu ©ii^e.tusci<-*-ti Rw TfcSo ^7°©Mft§*l^©*l ti©^m^^i^ M&Lx^?>b %z.0 Ztifo, -t^s^yAyxy±mxz(Dtt £-££#*£ Cfc«-?gft<^-CS>5-5 <> Rw fa«^4^Ki^(±tilM)^t;^^T5^^^feS i; 137 #;t6n5o ±fE©5$JCJ:oT (Pu)G imMX^&b, £6^TfSi^J;oT Cs £1$SIJT sz

(137Cs)w = (137Cs)g _ (137CS/PU)G.(PU)G

(137Cs)s : 1^*4*© 137Cs^»M (Bq/m2) (137Cs)w : mm® fallout S*© 137Cs ^ifXft (Bq/m2) 137 c 1 37 239 2 ( Cs/Pu)G : Global fallout ft*©3SS©±« r © ' Cs/ - « °Pu Jftft<

37 c cs/Pu)G flu, ift^i^±ai#tt{cj:oT#^^ttsi;#^.^ns**, 30 cm mmtxom £mtmtb, Wl m&X 0.100. SP1 iftfi^ 0.125 (DAAMWS£^t flfe.£*>&5a*. fffi©flfej&« 0.024-1.083 ©f£^fS^^1-c C© hT'©JI*§£& Pu, ^blZM^A Thule fflftlZl^XCD Pu |5]{i{*i±tltzm\, S7J='^n^Jffl©gW-ClT^/ittilT^*^(1965 ^ 1 iD^btl/it £ ft $1 (atomic lake) ©iJHSfilH" J-ttJfi'CSffiU /i±lH(;^^T©a* ©?fllJ£*£SI'C&5o 3©M 0 (COINT, ffi© Pu |i|teft:t)iJAl£Lfe*glft**i;feT Table 4 llt^t * ^< 7iy^-yX^^m Hii^^-CM^trJ^nSffi^ 21"Pu/23"P

- 65- JAERI-Conf 99-001

a^o^-cii, A'\iA*WWbxmf%M{t(yyxy3*-y3y)bfz Pu, zbiz -"hu©*tt AMmx^f&bfz Pu P{£ft03r#fc*5i:%*e>n5a*, ^-©^^©Af^U:, M^SfS Pu -?-©fc©-C(ift^A^%AT^S<» ^ft^i;^3-Cm^trj$n/c 24UPu/23qPu j±©s&{£t^ fl 0.025 ^-t?^/\°9^>^^^^,^©f^^&<]ftfl^^^1-5i:, OT-C 0.03-0.05 igffl^T

tffii-Ctt 95—77 % #JUflilfii:%Jt-c'(^So

5. fcfc 0 fC IJtSM^^M^-CcfcS^, Pge>nfcM#lffa»e>±fti|&lli: LTii(T©d t*^e^(zft^ fco (Difttlt, &^lft*fl&Ot*©TO©±«I$*4© 137Cs L/^;Hi@r*J© Global fallout(3000-7000 Bq/m2) ^(WJ^^^^fg^^^^-C, —^ 239 210Pu ^3^1^^^(40-120 Bq/m2) ©&f£^e> 1ft 100 fg©S(,M"<;i/-Cfc}iJ£nfco (2)m.Wm^\ 137Cs SL7" 2i9 24UPu \t TfebtmMA 5 cm ZXIZft&L, ^(CTO—(hot particle

-M„Pu/2J9pu |sH^jt£$jgL£!£!!, Hl$ilfi©^©l±tt 0.025-0.072, 3II*i§fl-?tt 0.024—0.125 X, Global fallout ©&^^£n/~M© 0.18 «fc 0 fc^ft 0<£< , E£M$ Z(Db(D(D3AmmW.Mffl(Pu XJA%i1snX^&Z£tfmbi)AZtl^tz» M&> ^©^tifiW fallout Kisfc-rs Pu ©!8Sij*-r*ssA£^iEfil(3i?iiL, 117cs ©M&5IML-C, ^ti^ti mm, z bizzcDmm^m^mntfrbcDmmmffimziZfr

g&K, im$aK?ft;fr^fc£^fcrtiF7X*>© NNC tsxvti-yyxfyl&M&m^mw 9Zffi(Dimx?vy, Zblzm?An??MA.¥, £firA^, £m$WA^£^#?RA¥©ffi^X ^70^, Pu [Wlf3z^fJS^t^^^fcf£^M*StIS^fiif^m©^WBgAK, HfRfcOSfcfc

-66- JAERI-Conf 99-001

1) Dubasov, U. V., Zelentsov, S. A., Krasilov, G. A., Logachyov, V. A., Matushchenko, A. M., Smagulov, S. G., Tsaturov, B. S., Tsirkov, G. A., Chernyshov, A. K.: Chronological list of the atmospheric nuclear tests at the Semipalatinsk Test Site and their radiological characteristics. In: Scientific Research Institute for Regional Medical and Ecological Problem, Herald of the Research Program " Semipalatinsk Test Site-Altai" N4,1994, Scientific and Practical Journal, Digest of the International Panel Meet " NATO/SCOPE-RADTEST" (J. N. Shoikhet, ed.), Barnaul, September 5-10, 1994. 2) Bocharov, V. S., Zelentsoz, S. A., Mikhailov, V. N.: At. Energ. 67, 210 (1989). 3) Tsyb, A. F., Stepanenko, V. F., et. al.: Radiologiya Meditsinskaya, 35, 3 (1990). 4) Logachev, V.; Features of an evaluation of the radiation dose received by the population after atmospheric nuclear testing at the Semipalatinsk. In: Assessing the Radiological Impact of Past NuclearActivitiesandEvents. TECDC-755, IAEA, Vienna 1994. 5) Yamamoto, M., Tsukatani, T., Katayama, Y.: Health Phys., 71, 142(1996). 6) Yamamoto, M.,Tsumura, A., Katayama, Y., Tsukatani, T.: Radiochim. Acta, 72, 209 (1996). 7) Procedures Manual Series for Environmental Radioactivity Measurements: Manual for plutonium assay in environmental materials in Japan, Japan Chemical Analysis Center, Chiba, Japan 1977. 8) Yamamoto, M., Komura, K., Sakanoue, M.: J. Radiat. Res., 24, 237 (1983). 9) Yamamoto, M., Sha, L., Kofuji, H., et. al. In: Proceedings of International Workshop on Improvement of Environmental Transfer Models and Parameters, Nuclear Cross-Over Research, Tokyo, Japan, Feb. 5-6, 1996, pp. 198-206. 10) Yamamoto, M., Tsumura, A., Tsukatani, T.: Radiochim. Acta, 81, 21 (1998). 11) Komura, K., Sakanoue, M., Yamamoto, M.: Health Phys., 46, 1213 (1984). 12) Hardy, E.: USAEC Report HASL-306, New York, NY (1976). 13) Krey, P. W., Hardy, E. P.: USAEC Report HASL-235, New York, NY (1970). 14) Kim, C. K.: Docter Thesis, University of Tsukuba, Japan (1990). 15) Hardy, E. P., Krey, P. W., Volchov, H. L.: USAEC Report HASL-257, New York, NY(1972), pp. 1-95-118.

- 67 - JAERI-Conf 99-001

1000km

Russia

China

Iran *».. f Afghanistan /

Dtvillotu *r« la Fwi.

77'E Wl S1H

SON

KaynarVt

Boundary of Iho Tell Slto I- Sotllomcnl or Facilities Power I.lito .r'v' Scuonal DrackUh and Slrcuin • Sampling Polnl of OcL 1995

Fig. 1. Location map ofthe former Soviet Union's Semipalatinsk nuclear test site, with sampling site of soil.

- 68 - JAERI-Conf 99-001

N Altaisk District

100 km _J

Fig. 2. Location map outside the nuclear test site, with sampling site of soil.

69 - (A) 10* Core soil « n (0­30 cm ) 10' Surface soil (0­10 cm)

& 10o _l 14 | UI o I 2 3 12345 123 45 "12 3 12 3 1U F! llll K1 Wl W2 W3 W4 WS lljliilltjli123 123: 1234" ­> 1234 12345 123 (Crass) (Sand) (Forest) (Bare dirt) (Bare dirt) F6 F5 F4 F3 F2 Ft K1AK1AK2 A1 Kurchatov Izvyestka Mostik Tchagan Dolon Sampling station

« | ,0< ra £ 103 2 S 3 o ­J 10 o © 6 3 10' iixiMhitiyfrlolihl^ W 102 12345 I234S 12345 123 123 123 123 I 23 45 12345 123 12 3 4 5 A2 A3 A4 DS D4 DD33 D2 D1 W6 wa W9 SP o Sampling station (Forest) (Forest) (Forest) (Courtyard) o SemipalatinskCity rT 10' rTi()5

"5" ! « 10 fcio« 4 o 5 10 c c Il03 6 105

10' Oi02 ittMWmw12345 t 12345 12345 12345 12345 12345 12345

123 123 12345 12345 123 123 123 123 123 N4 N5 N6 B2 B1 C1 SS11 S2 S3 S4 S5 S6 S7 N1 N2 N3 Sampling (Pasture) (Pasture) (Pasture) (Forest) (Pasture) (Forest) Kolosteri ►­ Semipalatinsk City

Fig. 3. Accumulated levels (Bq/m2) of ,37Cs for surface soil (0­10 cm depth) and core soil (0­30 cm depth) from several sites in (A) and around (B) the territory of the Semipalatinsk nuclear test site. Table 1. Concentrations and inventories of ^Cs and 239,240pu _ activity ratios of 238pu/239,240 ancj 239,240pu/l37cs> and atomic ratios of 24^Pu/2-'"Pu in soil within the territory of the test site

Sample Activity (Bq/kg dry) Inventory (Bq/m2) Activity ratio Atomic ratio 8 9J< NO. ^>u '"CS 239.240pu l37Cs "^°Pu/'"CS " Pu/» °Pu "W^U F5-r 826 ±21" 226 ± 2" 7.75x10 2.12x10 3.65 ±0.10" 0.024 ± 0.002" 0.031 ±0.002° F4-2 465 ± 17 102 ± 1 4.13xl04 9.08x103 4.55 ±0.17 0.023 ± 0.001 0.025 ± 0.002 F3-1 79.0 ± 1.8 29.2 ± 0.6 1.04x10' 3.97x103 2.71 ±0.08 0.027 ± 0.001 0.056 ± 0.004 F2-1 19.2 ± 0.6 23.6 ± 0.4 1.64x103 2.02x103 0.81 ±0.03 0.023 ± 0.002 0.057 ± 0.004 Fl-1 4.86 ±0.18 25.3 ± 1.6 3.86x102 2.01xl03 0.19 ±0.01 0.025 ± 0.002 0.051 ±0.006

Al-4 12.4 ± 0.7 17.0 ±0.3 1.69xl03 2.31xl03 0.73 ± 0.04 0.013 ±0.002 0.051 ±0.004 A2-2 6.07 ± 0.20 10.4 ±0.3 7.06x103 I.21xl03 0.58 ± 0.03 0.012 ± 0.002 0.039 ± 0.005 A3-4 61.0 ± 2.2 47.5 ± 0.5 6.13xl03 4.77xl03 1.28 ±0.05 0.012 ±0.002 0.051 ±0.004 A4-5 62.3 ± 2.1 43.7 ± 0.7 8.04x10' 5.64xl03 1.43 ± 0.05 0.014 ± 0.002 0.049 ± 0.004

D5-3 25.4 ± 0.6 53.6 ± 0.9 2.02x103 4.26x103 0.47 ± 0.01 0.023 ± 0.002 0.032 ± 0.004 D4-3 20.1 ± 0.7 78.2 ± 3.0 1.90xl03 7.40x103 0.26 ± 0.01 0.030 ± 0.001 0.054 ± 0.007 D3-1 10.9 ± 0.3 31.3 ±0.6 1.20xl03 3.42xl03 0.35 ± 0.01 0.016 ±0.002 0.046 ± 0.005 Dl-3 6.51 ± 0.22 85.3 ± 1.5 3.54x10" 4.64x103 0.08 ± 0.01 0.037 ± 0.002 0.072 ± 0.009

B2-3 8.35 ± 0.22 34.1 ±0.6 8.49x102 3.47x103 0.24 ± 0.01 0.025 ± 0.003 0.047 ± 0.005 Bl-2 5.16 ± 0.20 24.5 ± 0.4 5.01xl02 2.37x103 0.21 ± 0.01 0.016 ± 0.002 0.057 ± 0.004

Sl-5 10.8 ± 0.4 52.1 ±0.6 1.51xl03 7.31xl03 0.21 ± 0.01 0.005 ±0.001 0.040 ± 0.005 S2-1 6.76 ± 0.37 53.0 ±0.8 7.53xl02 5.91xl03 0.13 ±0.01 0.009 ± 0.001 0.047 ± 0.006 S3-3 18.1 ± 0.7 70.7 ± 0.8 1.75xl03 6.86x103 0.26 ± 0.01 0.013 ±0.001 0.046 ± 0.004 S4-1 4.29 ± 0.20 28.6 ± 0.7 3.23x102 2.16xl03 0.15 ±0.01 0.008 ±0.001 0.043 ± 0.008 S5-1 fl.O ± 0.4 36.5 ± 0.8 1.42xl03 4.71xl03 0.30 ±0.01 0.007 ±0.001 0.043 ± 0.009 S6-1 2.30 ± 0.09 22.9 ± 0.6 2.63xl02 2.62x103 0.10 ±0.01 0.011 ±0.001 0.043 ± 0.005 S7-3 6.46 ± 0.22 29.3 ± 0.5 7.39xl02 3.35xl03 0.22 ± 0.01 0.011 ±0.001 0.044 ± 0.007

Sample number of one surface sample (0-10 cm depth) at each site which showed the highest concentration of (as Bq/kg) of l57Cs. b One sigma standard deviation from counting statistics ' One standard deviation of replicate measurements (n=6) in the final solution taken from one sample. 137 Table 2. Concentrations and inventories of Cs and 239,240pu ^ activity ratios of 238Pu/239,240 and 239,240pu/137CSi and atomic ratios of 24^)Pu/2-'"Pu in soil around the territory ofthe test site

Loc ation Activity (Bq/kg dry) Inventory (Bq/m2) Activity ratio Atomic ratio

Site No. Lab. ID 2J9.240pu l37Cs m3WPu '"Cs M9.240pu/.37Cs "'Pu/^Pu 2JOPu/23,Pu

Wl-3' SP04 2.02 ± 0.05" 21.8 + 0.9" 2.69x102 2.91xl03 0.092 ± 0.004" 0.019 ±0.004" 0.100 ±0.016c W2-1 SP01 7.03 ± 0.20 35.1 ±0.7 9.30x102 4.64x103 0.200 ± 0.007 0.029 ± 0.003 0.054 ± 0.004 W3-4 SP05 0.41 ± 0.02 17.0 ± 0.5 6.66x10' 2.76xl03 0.024 ± 0.001 0.025 ± 0.003 0.083 ± 0.006 W5-3 SP03 26.0 ± 0.9 19.7 ± 0.5 2.13xl03 1.61xl03 1.323 ±0.058 0.034 ± 0.004 0.024 ± 0.002 W6-5 SP10 3.85 ±0.10 20.9 ± 0.4 4.17xl02 2.26x103 0.184 ±0.006 0.021 ±0.003 0.050 ± 0.004 W7-4 SP11 1.43 ± 0.06 25.3 ± 1.3 2.22xl02 3.93xl03 0.056 ± 0.004 0.033 ± 0.003 3 3 > W8-2 SP12 27.3 ± 1.0 41.6 ± 1.2 3.90x10 5.93xl0 0.657 ± 0.030 0.036 ± 0.002 0.024 ± 0.002 ra 2 3 2 W9-5 SP13 2.42 ± 1.70 15.6 ± 0.5 2.80x10 1.80xl0 0.156 ±0.110 0.037 ± 0.005 o o 3 N5 ZN1 SP07 0.23 ± 0.01 3.41 ± 0.02 3.08x10' 4.57xl02 0.067 ± 0.003 0.022 ± 0.004 0.034 ± 0.005

3 SP1-1 SP08 0.25 ± 0.02 13.2 ± 0.5 5.63x10' 2.97xl0 0.019 ±0.002 0.025 ± 0.004 0.125 ±0.012 o SP2-4 SP19 0.42 ± 0.02 15.2 ± 0.4 4.94x10' 1.77xl03 0.028 ±0.001 0.047 ± 0.006 o

Nl-1 SP20 1.38 ± 1.76 23.4 ± 0.4 2.00x102 3.38xl03 0.059 ± 0.075 0.030 ± 0.005 0.070 ± 0.008 N2-2 SP21 0.54 ± 0.03 12.0 ± 0.5 7.22x10' 1.62xl03 0.045 ± 0.003 0.024 ± 0.002 N3-2 SP22 0.22 ± 0.01 16.4 ± 0.4 3.12x10' 2.32xl03 0.013 ±0.001 0.040 ±0.013 N4-3 SP24 1.18 ± 0.05 22.2 ± 0.8 1.38xl02 2.60x103 0.053 ± 0.003 0.024 ± 0.005 N5-2 SP25 2.15 +0.05 41.6 ± 1.0 2.94x102 5.67xl03 0.052 ± 0.002 0.035 ± 0.004 0.077 ± 0.007 N6-1 SP26 1.02 ± 0.04 15.4 ± 0.4 1.04xl02 1.57xl03 0.066 ± 0.003 0.043 ± 0.007

' Sample number of one surface sample (0-10 cm in depth) at each site which showed the highest concentration of (as Bq/kg) of '"Cs. b One sigma standard deviation from counting statistics. c One standard deviation of replicate measurements (n=6) in final solution taken from one sample. JAERI­Conf 99­001

10 'F ATOMIC PROVING GROUND AND Surfac* toll Cor* toll n ­] SARZHAL SETTLEMENT (MOem) (0­JOcm) ­ 2. 1 3 10* ­ n " 0. o

z 1 n r k $ 8 T = ■ 7 ­ ' - v» F m * *»|

SOME, SETTLEMENTS OF SEMIPALATINSK OBLAST (|U,.tik, Dolon, Shag.*, S.mip.l.tin.k, K.l..l..l,.le.) Gi°b*1 ,»lto"t l,Vel In Japan "a­ ! co 3 io; a. o I 2 io' = •e * srl

Percentage of stepwise leaching of Pu in soil 0 20 40 60 80 100 t Fig. 4. Accumulated levels (Bq/m2) of 239,240Pu in soil_

Fig. 5. Stepwise leaching of

239,240Puinsoil_

20 Off­ilU I C. HNOj­»H202 □ 10M HNO3.O.IU Hf E23 D«compo4inon

W1­3 WM W3­4 WSJ wt­­

wa.2 Wft­S

­ 73 ­ JAERI­Conf 99­001

0.25 Global Fallout Laval 1 ca. 0.18 O 0.20 a.

E 0.15 o < 3 Q. o 0.10 I r> CM . "3 Q. o i T T „ . I T 0.05 CM II i i I II ui T f 7 7 7 T *< T •> 1*? 7 *? " *< 77'7777'? »­•<"«><•• r « £ •> u. u. u. u. u. <<<3 oooo on mm in in in mm Sampling Station

2 Fig. 6. Atomic ratio of ^Pu / 2iypu jn SOJJ around the test site

Table 3. Comparison of 24Upu/2iypu at0mic ratios in samples from various Pu sources

Sample Atom ratio •"Pu/^Pu Remarks

1st Exp Site (This work) 0.036 £ 0.001 Surface soil sampled near the hypocenter of the first Soviet nuclear explosion on August 29, 1949 Bolapan (This work) 0.067 £ 0.001 Surface soil sampled around the top of the bank of crater (Shagan River Site) which was formed by the underground nuclear explosion on January 15, 1965 Nevada Test Site soil 0.054­0.063 (Ave. 0.05) USA: Nuclear Test Site [12] Rocky Flat Plant 0.051 Weapons­grade Pu fabricated at the Rocky Flat Plant [13] Bikini soil 0.338 ± 0.051 Bikini Atoll: Thermonuclear atomic bomb (Bravo: March 1,1954) [11] Bontenchiku 0.318 ± 0.023 Hemp­palm leaves: Fishing gear used by the Fifth Fukuryo­Maru (Lucky Dragon: March 1, 1954) [11] Nagasaki soil 0.042 £ 0.014 Nishiyama area in Nagasaki: Pu atomic bomb (August 9, 1945) [11] Thule sediment 0.058 ± 0.008 Greenland: Weapons­grade Pu due to accidental crash (January 1968) of a B­52 bomber [11] Irish Sea sediment 0.19­0.22 (Ave. 0.20) Surface sediment from 24 intertidal sites around Irish Sea: Release of Pu into the Irish Sea from Sellaiield Nuclear Fuel Reprocessing Plant, UK [14] M. Kanmuri soil 0.18 ±0.03 Surface soil (May 1978); Global fallout Pu [11]

Table 4. Pu isotopic composition in soil from the 1st Exp Site (ground zero) and Balapan

Isotope Activity (Bq/g) Activity relative to "'■1MPu Atom relative to ""Pu

1st Exp Site "'Pu 0.4O4 £ 0.028 0.0145 £ 0.001 (5.91 £ 0.44) X 10­ "'Pu 24.6 £ 0.8 0.88 £ 0.03 1.0 «Pu 3.35 £ 0.27 0.12 £ 0.01 0.036 £ 0.001 "••*"Pu 27.9 £ 0.4 1.0 "'Pu 4.83 £ 0.14 0.173 £ 0.005 (1.16 £ 0.05) x 10­ "aPu (7.5 £0.6)X10'J (2.7 £ 0.2)XlO"4 (4.8 £ 0.4) X10"5 Bolapan "■Pu 3.96 £ 0.08 0.447 £ 0.006 (2.01 £ 0.04) XI0­ "•Pu 7.08 £ 0.13 0.80 £ 0.01 1.0 «Pu 1.77 £ 0.05 0.20 £ 0.01 0.067 £ 0.001 u..i«pu 8.85 ± 0.12 1.0 "'Pu 10.8 £ 0.3 1.22 £ 0.03 (8.99 £ 0.26) x 10­ M1Pu (1.3 £ 0.2) X10­ (1.5 £ 0.3) X10­ (2.9 £ 0.5) X10­

All arc as of the date of sampling (October 7, 1994 for the 1st Exp Site soil and October 8, 1994 for the Bolapan soil).

­ 74 JAERI-Conf 99-001

Appendix I. Geographical position (by GPS) of sampling site

No Sampling Position Remarks No of surface No of core (By GPS) soil (0-10 cm)' soil (0-30 cm)' F6 Oct 26 50* 2547'N 77' 4974'E Bare dirt, ca 1 km SE from GZ"*, vegeuuon cover ca50% F5 Oct 26 50* 26\<2' N 77' 4945'E Bare dirt. ca 1J km NE from GZ.vegeuuon cover ca 50% F4 Oct 26 50' 2oTM-N 77' 5140'E Bare din. ca. 5 km NE from GZ vegeuuon cover ca.50% F3 Oct. 26 50" 31'27'N 77' 5817'E Bare dirt, ca.15 km NE from GZ .vegeuuon cover ca 50% F2 Oct. 26 50" 3T03'N 78" 1341'E Bare dirt. caJ6 km NE from GZ km vegeuuon cover ca^0% Fl Oct 26 50' 44X11'N 78" 2948'E Bare din. near gate of main road from Kurchatov headquarters to GZ. ca 59 km NE from GZ. vegeuuon cover ca.20%

OCL26 50' 4752'N 78" 2709'E Kurchatov, ca 60 km NE from GZ. courtyard of building. vegetauoa cover 10-20% AKI OCL26 50' 4759"N 78" 2T40'E Akzhar (ca. 60 km from GZ). in the middle of town over din road. courtyard of a certain house vegitauon cover 10-20% OCL26 50' 4751"N 78' 2716'E Akzhar, edge of town in pasture, vegeuuon cover 30%

Al OCL22 50* 33"50'N 78' 3ffl9'E Bare dirt. ca. 50 kra E from GZ. vcgcuuoa cover ca.50% A2 OCL22 50' 2T34-N 78' 29t>3'E Bare dirt. cx20 km S from A1 along road vegeuuon cover ca.50% A3 Oct. 22 50" ITOS'N 78* 2574'E Bare dirt, ca.40 km S from A1 along road.vcgeuuon cover caJ0% A4 Oct. 22 50* OcTlJ'N 78* 4146'E Bare dirt, ca.80 km from AI along road,vcgcuuoa cover ca.50%

D5 Oct. 25 50" iys«'N 78* 2143'E Bare dirt. ca. 45 km from GZ, vegeuuon cover csu50% D4 Oct. 25 50" oyss'N 78" 1070'E Bare dirt. ca. 45 km from GZ. vegeuuon cover caJ0% D3 Oct. 25 49" 5cT56'N 77' 5934'E Bare dirt. ca. 55 km S from GZ, vcgcuuoa cover caJ0% D2 Oct. 25 49* 4753'N 77' 5949'E ML Dcgelen, in coppice, ca. 72 km S from GZ Dl Oct. 25 49" 4cT59"N 78* 02X>8'E ML Dcgelen. about 75 km S from GZ, vegetation cover ca. 100%

B2 Oct. 23 49 53"54'N 78 5

OCL23 49" 3<7Q5-N 78" 4471"E Sarahal (110-115 km SE from GZ), in th tmddleof town, bv the side of a certain house S2 OcL 23 49" 35"56~N 78* 44T)2*E Sarzhal, u th middle of town, by the side of a certain house S3 OCL23 49' 35*46^ 78*44 15'E Sarahal, u th middle of town, by the gate of a certain house S4 OcL 13 49* 35"36"N 78' 44T)7'E Sarzhal. in th middle of town, courtyard of a certain house S5 OCL23 49' 35"30~N 78* 44 12"E Sarzhal, ca. 0 .2 km south of town in pasture (ca.50% cover) S6 OcL 23 49' 36~02"N 78* 45'14'E Sarzhal, ca. 0 J km east of town in pasture (ca 80% cover) S7 OCL23 49' 36'35'N 78* 44 14'E Sarzhal. ca. 0J kra north of town in pasture (ca. 50% cover) * Area per one sod sample coDecsed "17.34 cm* •• GZ* ground zero ( 50* 2c711"N.T7" 48 39' E) for the first nuclear explosion site where we were escorted

Site Lab Sampling Posiuon Remarks Dose rate" No of surface No of core No ID (GPS) (uSv/h) soil (0-10 cm)" soil (0-30 cm)- WJ SP04 10/3/96 50' 3608'N 78" 5I45'E Izvyestka. near Pcchjka. sand 006 W2 SPOI 10/3/96 50' 42TU'N 79' 0740'E Mostik. in forest 006 W3 SPOJ 10/3/96 50' 36t)8' N 79' I248"E Tchagan, near railway suuon, vegeuuon cover ca. 0% 008 W4 SPOT 10/3/96 50" 393T N 79' 1906'E Doron, bare dirt near Charch 009 W5 SPOJ 10/3/96 50* 3940'N 79' I977'E Doron, on side of nvcr in pasture.vegiuuon cover ca 50% 006 W6 SPI0 9/24/97 50* 4439'N 79" 1845'E In forcsL on side of the road connecung Doron and Semipalaunsk Oty 006 W7 SPII 9/24/77 50* 4977' N 79' 2536'E In forest, on side of the road connecung Doron and Semipalaunsk City W8 SPII 9/24/77 50' 4478'N 79" 3831'E In forcsL on side of the road connecung Doron and Semipalaunsk City W9 SPI3 9/24/77 50* 3853'N 79* 5336'E In forest, on side of the road connecung Doron and Semipalaunsk City 0 05

ZNI SPOT 10/3/96 50* 0473' N 79* 3713'E Ziuraenka, u the middle of town, courtyard of a certain house

SPI sptx 10/3/96 50* 24 30'N 80' 1535'E Semipalaunsk City, courtyard of a certain house

SP2 SP19 9/24/77 50' 23TI2'N 80' 17XI1'E Semipalatiiuk Oty. in field, vegiauon cover ca 50%

Nl SP20 9/24/77 51 03-04'N 81 0074'E Kolosten. in pasture, vegeuuon cover ca.50% N2 SP2I 9/24/77 51' 02-05'N 80* 5857'E Kolosten. in pasture, vegeuuon cover ca.50% N3 SPH 9/24/97 50' 43T)l'N 80" 56-37'E In pasture, on side of the road connecung Kolosten and Semipalaunsk City N4 SP2< 9/24/77 50" 4375'N 80" 54 11'E In forcsL on side of the road connecung Kolosten and Semipalaunsk Oty N5 SPU 9/24/77 50' 3872'N 80' 34-37'E In pasture. 00 side of the road connecung Kolosten and Semipalaunsk Cit N6 SP26 9/24/77 50' 2840" N 80' 1739'E In foresLon side of the road connecting Kolosten and Semipalaunsk City

• Exposure dose rate (pouble type survey meter, PDR 101 Csl detector. Alotu Co . Ltd, Tokyo) in the air at about I m level above ground where soil sample was collected •• Area of soil collected (17M cm')

- 75 - JAERI-Conf 99-001

Appendix II. Depth profiles of 239,240pu and 137Cs and their actjvity ratios in soil

Site Depth Concentration Inventory Activity ratio °Pu 7Cs -.v,-*pi> '"Cs ,JJUPu/'"Cs ^Pur2*^ (cm) ( Bq/kg dry) ( Bq/kg dry) (Bq/m;) (Bq/m2)

F6 0-5 5017 ±63 941 ±4 332268 62311 5-10 14.5 ± 0.2 4.86 ± 0.28 1093 366 10-23 0.42 ± 0.02 0.70 ± 0.07 50 84 Total 3.33X10-1 6.28x104 5.31 0.028

F5 0-5 439 ±7 175 ±2 27880 11100 5-10 6.78 ±0.21 4.09 ±0.14 343 207 10-20 0.04 ± 0.004 0.30 ± 0.04 5 38 20-27 0.01 ±0.004 n.d. 1 Total 2.82x104 1.13xl04 2.49 0.026

F4 0-5 515 ± 10 138 ± 1 30154 8103 5-10 3.54 ±0.14 3.30 ± 0.20 243 227 10-20 0.03 ± 0.003 n.d. 5 20-25 n.d. n.d. Total 3.04x10' 8.33x103 3.65 0.023

Fl 0-5 1.79 ±0.03 12.8 ±0.4 105 752 5-10 1.02 ±0.06 4.49 ± 0.25 57 252 10-20 0.12 ±0.01 0.42 ± 0.04 21 74 20-30 n.d. n.d. Total 1.84xl0: 1.08xl03 0.17 0.023

Kl 0-5 1.02 ±0.02 20.6 ± 0.7 60 1217 5-10 1.23 ±0.04 22.0 ± 0.7 74 1331 10-20 2.20 ± 0.04 17.7 ±0.5 335 2702 20-25 0.05 ± 0.006 n.d. 5 Total 4.75xl0: 5.25xl03 0.09 0.032

AK2 0-5 1.78 ±0.05 15.7 ±0.4 110 972 5-10 0.04 ± 0.004 n.d. 2 10-20 n.d. n.d. Total 1.12xl0: 9.72xl0: 0.12 0.035

Al 0-5 9.56 ± 0.08 21.4 ±0.6 658 1476 5-10 4.02 ±0.04 7.98 ± 0.33 272 540 10-20 0.08 ± 0.006 n.d. 13 20-30 n.d. n.d. Total 9.43xl0: 2.02x10' 0.47 0.012

D5 0-5 10.1 ±0.2 28.6 ± 0.6 673 1914 5-10 7.63 ± 0.26 2.80 ±0.15 515 189 10-20 0.04 ± 0.003 n.d. 6 Total 1.19x10-* 2.10xl03 0.57 0.020

-76- JAERI-Conf 99-001

Appendix II. (Cont'd)

Site Depth Conce ntration Inventory Activity ratio

2»J40pu '"Cs '.»240pu ,,7Cs -^-^opu/'-'Cs ^Pu^-^Pu (cm) (Bq/kg dry) (Bq/kg dry) (Bq/m-) (Bq/m-)

D3 0-5 31.1 ±0.6 76.3 ± 2.3 1537 3768 5-10 5.25 ±0.13 6.34 ± 0.43 316 382 10-20 n.d. n.d. Total 1.85x10" 4.15x10-* 0.45 0.036

Dl 0-5 10.3 ±0.2 177 ±2 207 3576 5-10 0.51 ±0.05 n.d. 15 10-20 0.04 ± 0.003 n.d. 4 Total 2.26xl0: 3.58xl03 0.06 0.026

B2 0-5 2.19 ±0.06 10.2 ±0.5 139 643 5-10 0.04 ± 0.005 n.d. 1 10-20 n.d. n.d. Total 1.40xl02 6.43x10: 0.22 0.026

CI 0-5 14.5 ±0.2 48.7 ±0.8 773 2603 5-10 1.86 ±0.06 1.95 ±0.11 58 60 10-20 0.03 ± 0.005 n.d. 5 Total 8.36x10: 2.66x103 0.31 0.014

SI 0-5 8.56 ± 0.36 54.8 ± 1.2 419 2683 5-10 7.98 ± 0.25 53.2 ± 1.2 474 3157 10-20 1.82 ±0.05 13.4 ±0.5 220 1619 20-30 n.d. n.d. Total 1.11x10' 7.46x103 0.15 0.005

S5 0-5 25.6 ± 1.0 123 ±2 1453 6991 5-10 5.79 ±0.28 14.3 ±0.5 337 834 10-20 0.05 ±0.01 1.69 ±0.07 8 254 20-25 n.d. n.d. Total 1.80xl03 8.08xl03 0.22 0.007

S6 0-5 14.9 ±0.5 112 ±2 718 5392 5-10 3.74 ±0.12 26.6 ± 1.0 184 1309 10-20 0.04 ±0.01 1.05 ±0.08 6 148 20-28 n.d. n.d. Total 9.08xl0: 6.85xl03 0.13 0.013

The error shows one standard deviation of counting statistics. n.d.: not detected.

- 77 JAERI-Conf 99-001

Appendix II. (Cont'd)

Site Depth Concentration Inventory Activity ratio

l40 l40 7 2 40 7 , 2,,J40 Pu "Cs Pu Cs "- Pu/" Cs " Pu/ Pu (cm) (Bq/kg dry) (Bq/kg dry) (Bq/m:) (Bq/m2)

Wl 0-5 1.15 ± 0.04 18.4 ± 0.7 96.5 1546.2 0.062 (SP04) 5-10 0.40 ± 0.03 17.2 ± 0.7 34.0 1453.2 0.023 10-15 0.60 ± 0.05 16.7 ± 0.7 42.3 1172.0 0.036 15-20 0.68 ± 0.04 16.6 ± 0.5 52.8 1284.6 0.041 20-25 0.69 ± 0.04 18.3 ± 0.5 59.3 1585.5 0.037 25-30 0.45 ± 0.03 19.2 ± 0.6 37.9 1613.7 0.023 Total 3.23xl02 8.66x10' 0.037 0.030

W2 0-2 6.11 ± 0.20 65.5 ± 1.4 209.3 2243.5 0.093 (SP01-1) 2-7 2.43 ±0.11 17.8 ± 0.6 163.5 1195.3 0.137 7-12 0.034 ±0.011 n.d 2.3 Total 3.75xl02 3.44xl03 0.11 0.019

(SP01-2) 0-5 33.6 ± 1.2 139 ±2 1329.6 5501.8 0.242 5-10 2.93 ± 0.07 5.77 ± 0.35 181.0 356.5 0.508 10-15 0.222 ± 0.024 n.d. 13.4 Total 1.52xl03 5.86x10' 0.26 0.020

W3 0-5 1.11 ± 0.04 21.0 ±0.6 98.9 1874.9 0.053 (SP05) 5-10 0.82 ± 0.03 7.75 ± 0.52 82.4 780.1 0.106 10-15 0.044 ± 0.008 0.39 ± 0.08 4.0 35.1 0.113 15-20 0.017 ± 0.003 n.d. 1.6 Total 1.87xl02 2.69x103 0.069 0.025

W5 0-2 0.62 ± 0.04 4.59 ± 0.3 16.3 120.0 0.136 (SP03) 2-7 16.2 ± 0.4' 14.1 ± 0.7 1047.5 911.1 1.150 7-12 0.19 ± 0.013 2.88 ± 0.2 16.1 251.3 0.064 12-17 13.7 ± 0.4 2.42 ±0.18 1143.2 201.2 5.681 17-22 0.024 ± 0.004 n.d. 2.1 Total 2.23xl03 148xl03 1.50 0.039

W6 0-5 14.2 ± 0.3 60.6 ± 0.8 901.2 3838.9 0.235 (SP10) 5-10 0.50 ± 0.02 2.64 ±0.17 35.1 187.4 0.187 10-15 0.072 ±0.012 0.58 ±0.11 5.9 47.8 0.124 15-20 0.045 ± 0.008 n.d. 3.7 Total 9.46x102 4.07x10' 0.23 0.023

W7 0-5 2.05 ± 0.07 30.8 ± 1.3 144.2 2160.4 0.067 (SPI1) 5-10 0.17 ± 0.03 3.16 ±0.11 13.1 244.0 0.054 10-15 n.d. 0.43 ± 0.08 33.4 Total 1.57xl02 2.44x103 0.065 0.030

W8 0-5 26.3 ± 0.8 39.3 ± 0.6 1897.2 2830.9 0.670 (SP12) 5-10 1.70 ± 0.07 10.0 ± 0.3 133.3 784.9 0.170 15-20 0.038 ± 0.005 1.03 ± 0.07 3.0 80.98 0.037 20-25 0.021 ± 0.003 0.19 ±0.05 1.6 14.7 0.110 Total 2.04x102 3.71x10' 0.55 0.022

78 JAERI-Conf 99-001

Appendix II. (Cont'd)

Site Depth Concentration Inventory Activity ratio 2 J40 " Pu '"Cs 2J9.WOpu '"Cs 2"*°Pu/"'Cs 2'8Pu/2"-24(>Pu (cm) (Bq/kg dry) (Bq/kg dry) (Bq/m2) (Bq/m2)

W9 0-5 1.90 ± 0.06 53.5 ± 1.1 133.4 3756.9 0.036 (SP13) 5-10 0.12 ± 0.01 1.60 ± 0.28 8.9 119.0 0.075 10-15 0.023 ± 0.003 n.d. 1.9 Total 1.44xl02 3.88x10' 0.037 0.038

ZN1 0-5 0.32 ± 0.02 6.02 ±0.10 22.9 424.6 0.054 (SP07) 5-10 0.052 ± 0.006 1.22 ± 0.03 4.2 97.6 0.043 10-15 0.036 ± 0.005 0.86 ± 0.04 3.0 71.9 0.042 15-20 0.083 ± 0.008 1.08 ± 0.04 6.3 81.3 0.077 20-25 0.11 ± 0.01 1.68 ± 0.07 8.4 133.0 0.063 25-30 0.061 ± 0.008 1.08 ±0.07 3.7 65.0 0.056 Total 4.83x10' 8.73xl02 0.055 0.021

SP1 0-5 0.23 ± 0.02 10.2 ± 0.2 15.3 686.6 0.022 (SP08) 5-10 0.32 ± 0.02 7.72 ±0.31 26.0 622.4 0.042 10-15 0.34 ± 0.02 7.12 ± 0.42 25.0 531.3 0.047 15-20 0.26 ± 0.02 3.60 ± 0.27 17.1 236.4 0.073 20-25 0.03 ± 0.006 0.65 ± 0.06 1.4 31.0 0.046 25-30 0.013 ± 0.004 0.35 ± 0.07 0.94 25.3 0.037 Total 8.58x10' 2.13x10' 0.040 0.022

SP2 0-5 0.51 ± 0.04 18.0 ± 0.5 27.6 980.6 0.028 (SP19-1) 5-10 0.33 ± 0.02 4.45 ± 0.09 21.2 289.4 0.073 10-15 0.24 ± 0.02 6.71 ± 0.21 14.9 420.0 0.035 15-20 0.61 ± 0.03 21.1 ±0.5 37.2 1286.9 0.029 20-30 0.053 ± 0.008 1.14 ± 0.06 7.0 151.9 0.046 Total 1.08xl02 3.13x10' 0.034 0.026

(SP19-2) 0-5 0.48 ± 0.01 16.3 ± 0.3 27.3 928.3 0.029 5-10 0.38 ± 0.03 9.15 ± 0.33 23.4 582.0 0.040 10-15 0.80 ± 0.02 6.40 ± 0.23 52.0 414.8 0.125 15-20 0.31 ± 0.01 6.21 ± 0.20 20.7 411.3 0.050 20-25 0.21 ± 0.01 3.74 ± 0.08 13.4 251.7 0.053 25-30 0.015 ± 0.003 n.d. 1.1 Total 1.38xl02 2.59x10' 0.053 0.031

Nl 0-5 5.83 ± 0.14 67.2 ± 1.1 340.6 3930.0 0.087 (SP20) 5-10 0.39 ± 0.02 7.23 ± 0.20 23.0 424.6 0.054 10-15 0.034 ± 0.005 1.23 ± 0.07 1.8 66.7 0.027 Total 3.65xl02 4.42x10' 0.083 0.024

N2 0-5 0.80 ± 0.03 25.7 ± 0.9 47.4 1587.2 0.030 (SP21) 5-10 0.63 ± 0.03 8.12 ±0.64 42.1 544.0 0.077 10-15 0.59 ± 0.03 7.92 ± 0.60 37.9 507.7 0.075 15-20 0.22 ± 0.01 3.36 ± 0.29 16.7 251.0 0.067 Total 1.44xl02 2.89x10' 0.050 0.026

- 79 JAERI-Conf 99-001

Appendix II. (Cont'd)

Site Depth Concentration Inventory Activity ratio

2"-40Pu '"Cs :3,-240Pu '"Cs 2"-240Pu/'"Cs "«Pu/23,-40Pu (cm) ( Bq/kg dry) ( Bq/kg dry) ( Bq/m2) (Bq/m2)

N3 0-5 3.36 ± 0.09 60.9 ± 0.9 213.9 3880.2 0.055 (SP22) 5-10 2.40 ± 0.06 61.5 ± 1.5 141.9 3633.7 0.039 10-15 0.80 ± 0.03 20.1 ± 1.1 51.7 1298.2 0.040 15-20 0.086 ± 0.007 3.37 ± 0.33 6.4 249.7 0.026 Total 4.13xl02 9.06x10' 0.046 0.029

N4 0-5 1.58 ± 0.05 33.6 ± 0.3 109.6 2326.1 0.047 (SP24) 5-10 0.096 ±0.015 0.60 ± 0.06 8.1 50.1 0.161 10-15 0.069 ± 0.007 0.41 ± 0.05 5.7 33.3 0.171 15-20 0.026 ± 0.005 0.40 ± 0.06 2.1 32.4 0.066 Total 1.26xl02 2.44x10' 0.051 0.030

N5 0-5 3.28 ± 0.08 49.1 ± 1.0 227.4 3407.2 0.067 (SP25) 5-10 0.11 ± 0.01 1.62 ± 0.16 8.3 123.3 0.067 10-15 0.01 ± 0.003 n.d. 0.7 30.3 0.024 15-20 n.d. n.d. Total 2.36xl02 3.56xl03 0.066 0.026

N6 0-5 2.08 ± 0.06 49.0 ± 1.8 95.2 2238.0 0.043 (SP26) 5-10 0.037 ± 0.005 0.60 ± 0.07 2.9 47.0 0.062 10-15 0.015 ± 0.007 n.d. 1.1 15-20 n.d. n.d. Total 9.92x102 2.29x10' 0.043 0.034

Error shows one sigma standard deviation from counting statistics. n.d.: not detected.

80- iiiiiiiiugiiiiiinuMniiii JP9950132 JAERI-Conf 99-001

8. The present status and recent applications of the accidental tritium assessment code UFOTRI

W. Raskob * Forschungszentrum Karlsruhe GmbH, Institut fur Neutronenphysik und Reaktortechnik Postfach 3640, D-76021 Karlsruhe, Germany * D.T.I. Dr. Trippe Ingenieurgesellschaft mbH, Karlsruhe, Germany

Abstract: The computer program UFOTRI can be used for assessing the impact of accidental released tritium in the two chemical forms tritiated water vapour and tritium gas. By applying UFOTRI to potential European sites for ITER, it could be demonstrated that the main goal, the non- evacuation criteria, is fulfilled for the present release limits. Contributions in international studies together with the re-evaluation of experimental data showed that the plant sub-model as well as the soil sub-model are areas for further improvement.

Keywords: UFOTRI, ITER, SEAFP, tritium, modelling, dose assessment, experiment, comparison study

1. INTRODUCTION

To estimate the spectrum of consequences after accidental releases of tritium from nuclear installations, processes such as dispersion, deposition, reemission, conversion of tritium gas (HT) into tritiated water vapour (HTO) and conversion of HTO into organically bound tritium (OBT), had to be considered time-dependently. To that purpose, an atmospheric dispersion module has been developed which allows for reemission after HT/HTO deposition and which considers all relevant transfer processes in the environment (soil, plant and animal) up to approximately 100 hours after the release event (during which atmospheric transport plays the dominant role). It was coupled to a first order compartment module, which describes dynamically the longer-term behaviour of the two different chemical forms of tritium in the food chains. The physical and mathematical basis of the new model called UFOTRI is described in detail in (1)'(2). UFOTRI was applied in the BIOMOVS II (Biological Model Validation Study phase II) study with the aim to test and validate environmental tritium models. Based on the experiences gained within this study and during the applications of UFOTRI, two areas have been identified where model improvement seems to be necessary. This comprises the OBT build up during the night and the reemission of HTO from soil directly after deposition. However, further experimental work seems io be necessary to better understand at least the OBT formation process. UFOTRI has been widely applied in fusion related safety studies. Among others assessments have been carried out within the SEAFP (Safety and Environmental Aspects of Fusion Power) and in the frame of the ITER (International Thermonuclear Experimental Reactor) project. The SEAFP study described the potential design of future fusion power reactors. Within the ITER programme, probabilistic dose assessments for accidental

- 81 - JAERI-Conf 99-001 atmospheric releases of various ITER source terms which contain tritium and/or activation products were performed for the - at this time - potential European ITER sites Greifswald, Germany, and Cadarache, France.

2. MODEL DESCRIPTION

The present version is based on the Gaussian trajectory model MUSEMET^. The importance of the reemission process necessitates two level modelling of the atmospheric dispersion. Primarily, MUSEMET calculates the dispersion after a single release event and the subsequent deposition on soil and plants. In a second step, the reemission of tritium after deposition from soil (evaporation) and plants (transpiration) is taken into account by an area source model specially developed for that purpose and combined with the original model. Hereby the area source is simulated by a single source point in the centre of the area, with a given initial widening of the plume(4). All processes which may modify the total balance of the available HT or HTO such as the conversion of tritium gas into tritiated water (HT into HTO), the transport of tritium into deeper soil layers, the uptake of tritium by the plant root system, and the conversion of HTO into OBT are taken into account in the atmospheric dispersion module, together with the foodchain pathways such as the production of milk, milk products and beef.

2.1 Plant I atmosphere exchange processes The exchange reaction of the plant with the atmospheric tritium takes place via the water circulation in the leaves. The mechanisms of the plant/atmosphere exchange are described according to 'big leaf approach^'' * \ There the aerodynamic, boundary layer and stomata resistance determine the sensible and latent heat fluxes at the earth's surface. To determine the HTO exchange between the atmosphere and the vegetation, the model of Belot^ has been used in UFOTRI. There the temperature, the inorganic content of plant matter and the transfer resistances determine the uptake of tritium in the vegetation as well as the loss of tritium from the vegetation.

C = X^(l-e-) (1) with k — (2) aprG where C is the tritium concentration in tissue water in pBq g"1, X is the concentration of tritium in air in pBq ml "\ k is the time constant until equilibrium, \i is the water content per unit area of leaf in g cm"2, TG is the total resistance in cm s"1, t is the time in s, p is the weight of water vapour in saturated air in g ml"1, and a is the H/T isotope ratio (set to 1.1). The loss from the vegetation can be determined by using the same time constant k:

-82- JAERI-Conf 99-001

h 6C = C0e~ (3)

The dominating factor however, controlling the flux of tritium is the total resistance TQ which can be subdivided into its three components atmospheric resistance rav, boundary layer resistance rbv and stomata resistance rs: rG = rav + rbv + rs (4)

The aerodynamic resistance rav characterises the transfer from the free atmosphere to the surroundings of the leaf, whereas the boundary layer resistance rbv describes the mass transfer through the quasi laminar air layer directly connected to the surface(8):

u(z) rav „ 2 x (5) and

1 rbv = - B" (6) where u(z) is the wind speed in m/s in a given height (10m),: ux is the friction velocity, and B is the Stanton number. Since rav and rt,v depend on the atmospheric stability and the surface (8) properties, the commonly used Dyer-Businger equations are used in calculating ux . The stomata resistance rst describes the transfer of tritiated water vapour via the leaf surface into the plant. As this transfer depends on the environmental conditions, correction functions according to (5) have been introduced: r'-r"41+r)m (7) with the weighting function humidity /, = 1 - bv Ae,

T-Te) (Th-T the weighting function for the temperature ft = T0-TJ \Th-TQl

with B, = Jo~Tti and the weighting function for soil water content which is a linear function ranging from 1 (if the water content > 5% above wilting point) down to 0.07, if the water content is less than the wilting point. In this set of equations, rst,min is the minimum stomata resistance, Ae is the vapour pressure deficit, bv is a plant specific constant, T is the actual temperature, To is the optimal temperature for photosynthesis, Th is the upper limit of photosynthesis and Te is the lower limit for photosynthesis. At night, when the stomata are closed, rs will be replaced by epidermial resistance which is a factor of 15 higher than the minimum stomata resistance.

-83- JAERI-Conf 99-001

Because vegetation occurs always as a plant population (fields, forests, etc.), an effective stomata resistance (now canopy resistance rc) has to be calculated, by dividing the stomata resistance of a single plant by the leaf area index L, which describes the area of all leaves of the vegetation normalised to one square meter. r--T <8>

UFOTRI considers four different plant species, namely nutriment plants (leafy vegetables, potatoes and winter wheat) and pasture grass.

2.2 Soil/atmosphere exchange processes and transport in soil The deposition process of HT and HTO to the soil is expressed in the form of a deposition velocity. The HT deposition rate Vd,HT depends on the type of soil and on the free pore space in the first soil layer (5 cm).

vd,HT = T*" (9) Zref with 175 T \ 0c-0 Deff=0.7-D0 's 273/ tort where Deff is the effective diffusion coefficient, Do is the diffusion coefficient of HT in air 2 1 (0.634 E-04 m s" ), zref is the reference depth in m (r = 23 mm), 0s is the maximum water content, O is the actual water content and tort is the soil torture factor. Once deposited, HT is transformed into HTO very quickly as a result of micro• organism activity. Only the transformed part of HT remains in the soil. The dry deposition rate of HTO to soil Vd.HTO is calculated dependent on the status of soil and atmospheric turbulence. It will be expressed as the inverse of the atmospheric- and soil- exchange resistances.

v = (10) ".«° r +r +r 'av ^ 'bv ^ 'soil with the soil resistance rSOii z rsoiI D,ff 1 The effective diffusivity Deff can be expressed as: ( T« V'75 1 D „ = Dn x —2- x — j— x tort eff ° U73J (®sj-9^ 0

-84 - JAERI-Conf 99-001

2 1 where D0 is the diffusion coefficient of HTO in water (0.23 E-04 m s" ). The depth of the dry layer is assumed to be variable and depends on the soil water content:

0 where zO is the initial depth of the dry soil layer (4 mm). In addition, based on comparison with experimental data, a residual resistance rsm has been added to prevent the appearance of a zero surface resistance(9). This leads to the following equation for the soil resistance:

soil p. im U* (11)

The process of wet deposition of HTO to soil is considered in the model as washout from the whole plume. The washout coefficients depend on the intensity of precipitation. They are very small for HT, i.e. wet deposition is neglected. The reemission processes from soil are modelled by coupling the reemission of HTO to the evaporation of water from soil. There, only the water content in the top five centimetres of soil is taken into account(10). To describe the water flux and thus the coupled flux of tritium, Monteith's bulk resistance formula for the actual transpiration is used(8).

M +Sc (es -ea)lrav AE, = a P 6 + Y(l + rJrAV) ^ where A. is the latent heat of evaporation in J kg-1 , Cp is the specific heat of air at constant -1 1 pressure in J kg K , Ea is the actual evapotranspiration, Ia is the incoming solar radiation in 2 2 W nr , es is the actual saturation vapour pressure of air in N nr , ea is the actual vapour pressure of air in N nr2, 6 is the gradient of the vapour pressure curve at ambient temperature in J nr3 K1, y is the psychrometer constant in J nr3 K"1, TAV is the sum of the atmospheric and the boundary resistance and rx is the resistance of the surface. Derived for vegetated surfaces, it can be also used for the soil by replacing the 039 1 incoming solar radiation with the fraction reaching the soil IaS = Ia -e' * and the surface (11) resistance rx with that of the soil resistance rs . The water vapour flux finally is linked with the specific tritium content in the upper soil to obtain the reemission of HTO. Even if the reemission of tritium from vegetation is expressed by equation 3, the transpiration of plants has to be taken into account for the replacement of the transpiring plant water by soil water. This uptake of HTO by the plant root system compensate the transpiration loss. Again, Monteith's bulk resistance formula for the actual transpiration is used; now by replacing the incoming solar radiation with the fraction reaching the canopy = e 398L anc tne sur ace h L h ' (l ~ '° ) * f resistance rx with that of the canopy resistance rc. As often used in UFOTRI, the movement of tritium in soil is coupled to the movement of water. The water movement vd>b from layer a to layer b is calculated by using a simplified version of Darcy's law(12):

85 JAERI­Conf 99­001

where Azi and Az2 are the thickness of layer one and two, respectively, Si and S2 are the pressure head of layer one and layer two, respectively and Ki,2 is the mean conductivity of the two layers. To solve the above equation, the hydraulic conductivity K and the pressure head S of the soil have to be calculated.

S =15-105W+h,v+cV" (14)

K­Q) with the relative water content of the soil layer W = (©5­e*) a and the conductivity function K = ——— (15) where 0$ is the maximum water content, 0W is the water content at wilting point, 0 is the actual water content, and a, b, c, n, a, m and p are soil specific constants. The tritium movement in soil is simply coupled to the water movement. Diffusion of tritium however, is not considered explicitly.

2.3 Exchangeable /non-exchangeable tritium Plants exposed to a tritium atmosphere contain tritium not only in the plant water (HTO), but tritium atoms are also incorporated in the organic matter of the plant (OBT). A photosynthesis sub model calculates the hourly built­up of organic material. The photosynthesis rate is based on the amount of CO2 assimilation within a time step. A commonly used approach including respiration can be found in(13):

p £H m „ p-'t^-R 06) 2 1 where Ppot is the potential C02 assimilation rate in g C02 m" h" , Pm is the maximum CO2 assimilation rate in CO2 m"2 h"1, H is the absorbed photosynthetically active radiation in W m" 2, e is the initial light use efficiency in g CO2 W"1 m"2 h"1 and R is the respiration rate in g CO2 m"2 h"1. Integrating this equation over the whole canopy which means over the present leaf area index L, the following equation for the total canopy assimilation Pc can be derived:

with = I ■kL Ians n0-ke

86 JAERI-Conf 99-001

where: Iabs is the radiation flux absorbed by the canopy, Ino is the incoming photosynthetically active radiation, L is the leaf area in m2/m2, ranging from zero to the total leaf area index and k is the extinction coefficient (0.69). (14) To express Pm, an approach has been adopted , taking into account for the dependency on the temperature also.

9 0158-Cu*10 -T-exp(-^) P = \__RJ_A I AHA (AS\ W 1+expl-wexplirJ where AH1, AH2 are the activation and denaturation energies for the electron transport, 2 1 respectively, in cal, Co is the value for the formation of organic matter in mg C02 m" h" , R is the gas constant in cal/Kelvin per mol, AS is the entropy change on denaturation of the electron transport system in cal/Kelvin per mol and T is the air/leaf temperature in Kelvin The total respiration R can be split up into two fractions.

R = Clp-Pc+C2m-Wd (19)

where Clp Pc is the photorespiration, dependent on the photosynthesis rate, C2m Wd is the maintenance respiration, dependent on the plant weight and Clp and C2m are constants. Applying equations 17 to 19, and taking into account the conversion factor CO2 to dry matter as well as the weighting functions for the responses of the stomata to the environmental conditions, the actual photosynthesis rate can be expressed as:

Pacl=Pc-COA-l/f(sr) (20) where COA is the conversion factor C02 to dry matter and f(sr) is the weighting function for the stomata opening which is identical to those used for calculating the actual stomata resistance (radiation, temperature, humidity and soil water content). The specific concentration of the built-up HTO is connected to the actual specific tritium concentration in the water compartment of the plant. Until now the OBT transfer model is only physically based for the hours with solar insolation. During the night it is assumed, that the transfer rate is a quarter of the daily mean.

2.4 Foodchain compartments For all crops, in particular grass, leafy vegetables, winter wheat and potatoes, the above mentioned dynamic transfer rates are applied starting with the beginning of the release. In addition, in the atmospheric part of UFOTRI, all exchange processes cow/atmosphere, cow/plant and cow/soil, which are important for the ingestion pathways via milk, beef and dairy products, are also considered. The transfer rates are in general the same as for the long term ingestion module of UFOTRI (see below), which were derived on the basis of a constant daily rate, but now converted to an hourly value.

-87- JAERI-Conf 99-001

2.5 Long term ingestion module of UFOTRI In this part of the model, the long term behaviour of tritium in the environment and the assessment of the long term doses of the population from the consumption of tritium contaminated foodstuffs are described. To that purpose, the model calculates the time integrated tritium concentrations in vegetables, meat and milk products. To describe the transport processes mathematically, the areas in the environment where tritium may appear are divided into different compartments. The transfer rates which quantify the transfer processes are averaged values valid for longer periods and calculated by assuming equilibrium conditions. The exchange processes between the individual compartments are treated by first order differential equations which describe linear dependencies of tritium concentrations or concentration differences^1 '.

3. Areas for model improvements

Within the BIOMASS exercise it was demonstrated that the present tritium models differ mostly in assessing the concentration in the foodstuffs and the reemission of HTO from soil^16). From the recent applications of UFOTRI it was also obvious, that the contamination of the agricultural products may be one of the important tasks in defending the ITER source terms^17). Therefore, experimental work has been carried out at FZK in the years 1995 and 1996 to get a better understanding of the reemission from bare soil and the formation and translocation of OBT in wheat plants.

3.1 Plant experiments

3.1.1 Experimental design Winter wheat (Triticum aestivum L., cv. Contra) was cultivated on a small field (3m x 3m) in 1995 and 1996 within the area of the Forschungszentrum Karlsruhe (FZK) from sowing in October to harvest in July of the next year. The plants were provided with fertiliser as required and additionally with water in extremely dry periods because the soil (sandy soil) had a low water capacity. Before exposure to HTO, the plot was covered with a layer of Parabraunerde (3-4 cm) which was removed after the exposure. This procedure was necessary to reduce the influence of HTO reemission from soil. The exposure box was made of plexiglas (ground area 30 x 30 cm, height 100 cm). Inside were sensors for temperature and relative humidity and a fan to prevent gradient build-up and to minimise the boundary layer resistance of leaves. All necessary environmental data to operate tritium models were either measured directly at the field or taken from the meteorological tower of the centre. Winter wheat plants on the experimental field were exposed to HTO vapour between the 12th and the 28th day after the beginning of anthesis which is in the period of grain filling. Experiments were performed at different times of the day under conditions of sunrise, morning, afternoon, sunset and night. At high light intensity (morning and afternoon), the temperature in the box was up to 10°C higher than outside. The difference was very low under conditions of low light intensity and during the night indicating that the influence of the heating unit for vaporisation of HTO was low.

- 88 - JAERI­Cont 99­001

3.1.2 Results Besides the uptake of tritiated water during daytime and night­time conditions, the formation and translocation of OBT was measured intensively. Detailed records on the OBT formation allowed to compare measurements with model calculations. To evaluate the data, a special model named Plant­OBT was developed for describing all the relevant transfer processes in detail which are both dependent and independent on solar insolation. Especially the consideration of light independent processes was a considerable improvement of the existing tritium models^1 '. As this work was also aimed to improve the present OBT modelling in UFOTRI, comparison calculations have been performed for both the Plant­OBT and the UFOTRI model. In its newest version UFOTRI is modified in its photosynthesis submodule, in particular the daytime/night­time factor of 1.75 was deleted for the improved photosynthesis option. In addition, a reduction in the OBT production rate was introduced at those times when water stress due to solar insolation occurs. This modified version was applied for the comparison calculations, however, the changes will be made only official, if further experimental data support the revision.

450 | , 400 ♦ OBT meas 350 + " UFOTRI 3 300 r ,^plant-°BT a m 250 l- 200 4 m O 150 ^ A 4 ♦ ♦ 100 A ♦ ♦ 50 + A ♦ 1 * ♦ 0 ~ 0 5 10 15 Experiment number Figure 1: Comparison of the measured and calculated OBT at harvest time

Comparing the measurements with both the Plant­OBT model and UFOTRI it becomes obvious that both computer codes overestimate the OBT formation in most cases. However, the general agreement between model and experiment was within a range of two. Only in few cases, this difference was exceeded. Another effect could not be predicted by both computer programs. Within the measurements, in particular during the night­time, OBT was formed rapidly at exposure time and within the first hour after the end of exposure. In the following hours, however, the OBT formation rate was nearly zero even if the TWT concentration in the plants remained nearly constant. There was no explanation found and the assumption of a linear production rate at night, which simply depends on the specific TWT concentration in the plant, could not be verified. Even if the final OBT results ­ at harvest time ­ could be reproduceu sufficiently, further work seems to be necessary at least to improve the understanding of the process. Without the understanding, it might be not appropriate to apply the same approach to other nutrient plants.

­ 89 JAERI-Conf 99-001

3.2 Reemission from soil As described in(19\ two HTO deposition/reemission experiments were performed at FZK in 1995 by scientists from the Zentrum fiir Strahlenschutz und Radiobiologie (ZSR) of Hannover. One took place at 09.00 a.m. (sunrise) whereas the other was conducted at 07.00 p.m. (sunset). After a deposition phase of one hour, the reemission from the bare soil was observed over a period of 12 hours. In both cases, the wind speed was very low and the daytime period can be characterised as a typical mid summer day. Comparing the measurements with calculations from UFOTRI by using the default parameter values, differences can be easily identified. The high reemission rate in the first hour found in both experiments could not be reproduced by UFOTRI. The further course of the concentration pattern of the sunrise experiment was at least partially covered by the model. At the end of the experiment, the measured and predicted concentration differed by a factor of about 2. This relative good agreement was never reached for the sunset experiment. The initial as well as the following reemission rates were drastically underestimated by UFOTRI. The main reason for this discrepancy seemed to be the steep concentration profile in the top soil which might be not well represented in UFOTRI. This steep concentration profile in the top soil of the HTO is different from that following a deposition of HT-gas(20). But most of the data which were used to test the reemission part of UFOTRI were taken from the HT-release experiments. As described before, the reemission rate from soil is linked to the water vapour evaporation. But as the gradient of tritium and water vapour differ in general shortly after deposition of tritium, scaling parameters were introduced in the tritium reemission formula of UFOTRI.

Fre =f-C1exp(-^) +*6«p(-f) (21)

where Fre is the reemission rate per time step, Ea the actual evaporated water per time step, 0 is the actual water content, and Ci, kb, and T are scaling constants. Kb is assumed to be constant and determines the reemission rate at night. The time function t/T is introduced to simulate the movement of the tritium into deeper parts of the upper soil layer and the constant Ci determines the basic relationship between the flux of water and HTO. Changing the basic values (Ci = 500, kb = 1 and T = 50) to the new ones (Q = 1200, kb = 23 and T = 5) resulted in a rather good agreement with the observations (see Figure 2). However, the initial high reemission rate can not be fully simulated by the model. Nevertheless, the agreement between the data and the simulations is sufficient to that extent, that further investigations about the dose relevance can be performed.

-90- JAERI­Conf 99­001

A: Sunrise Experiment

30

A — 25 *­­* ♦ " Reemission Rate 'sz (Experiment) 20 Reemission Rate rr (UFOTRI 2) c o 15 Reemission Rate '35 (UFOTRI) V) E 10

7:00 10:00 13:00 16:00 19:00

Time of Day

B: Sunset Experiment 30 ? ?5 "•""Reemission Rate .c (Experiment) 20 A Reemission Rate V (UFOTRI 2) CO rr 15 ♦ Reemission Rate c (UFOTRI) V)o V) 10 E A­ V Cfl­C 5 ­A­

0 21 :00 0:00 3:00 6:00 9:00

Time of Day Figure 2: Time courses of reemission rates measured in the field and modelled with the original (UFOTRI) and the modified default values (UFOTRI 2) after 1­hour HTO depositions at sunrise (A) and at sunset (B). Vertical bars indicate the total experimental error (Figure according to Ref. 19)

The question arises now if the reemission pathway is important with respect to the dose. Most of the dose assessments, in particular for licensing purposes, are explicitly directed to the release of HTO only and to obtain the dose for a person who is living close to the fence

­ 91 JAERI-Conf 99-001

at the most contaminated point. As the measured reemission rates are strictly valid only for bare soil, dose assessments by using the new values can be only performed for a dose without the ingestion pathways. However it can be speculated which influence might have the new reemission model also in case of the total dose. To answer the question if the reemission pathway is important with respect to the dose, the contribution of the resuspension exposure pathway IHR has been investigated by applying the old and the new reemission approach for an accidental release of HTO from a ground level source (10 m release height). The same weather conditions as for the two experiments were used. The wind direction was set to a constant value as no measurements were available for this period. The dose from IH and IHR was calculated for a period of 12 hours exposure. The difference between the old and the new model approach is not very high for the sunrise experiment but much more obvious for the sunset data. One reason for the relative high contribution of the reemission process can be found in the fact that the wind direction was hold constant for the 12 hours.

old approach new approach IH(%) IHR(%) IH(%) IHR(%) sunrise 96.7 3.3 94.5 5.5 sunset 94.1 5.9 78.9 21.1

Table 1: Contribution in % to the inhalation dose after 12 hours exposure

When thinking about the transferability of these results to other conditions such as the reemission from vegetated surfaces or after rain, it is necessary to estimate the dose relevance of the reemission process in general. The inhalation dose to the most exposed individual (MEI), however, will be reduced in real assessments due to changing wind directions within the reemission phase. Coming to the ingesting pathways, the contribution to the ingestion dose of that tritium taken up by roots from the soil can be estimated to be about 20% to 30% for the MEI at 1 km distance, assuming an accidental release of HTO near ground level(21). These numbers were obtained by using the default reemission rates of UFOTRI. When applying the higher ones, and speculating that they are also valid for vegetated surfaces, one can assume, that the root uptake from soil is diminished. Together with a reduced - or at least an equivalent - contribution from the inhalation pathways, the overall dose will be lower due to the lower ingestion dose. However it is not possible in the present stage to quantify the reduction in the contribution from soil and thus in the resulting dose, but it appears to be necessary to investigate this in future. To this purpose, further reemission experiments have been carried out by ZSR to investigate the influence of vegetation cover on the reemission rate. However the evaluation of these experiments is still ongoing.

- 92 - JAERI-Conf 99-001

4. Application

4.1 ITER

4.1.1 Objective of the application One of the most recent applications of UFOTRI was to perform site independent dose assessments within the ITER programme, to derive the release limits associated with proposed dose limits^. Since a specific site for ITER has still to be defined, generic calculations have to be compared with site specific ones to complete the environmental data base. To this purpose, probabilistic dose assessments for accidental atmospheric releases of various ITER source terms which contain tritium and/or activation products were performed for the - at this time - potential European ITER sites Greifswald, Germany, and Cadarache, France. No country specific rules were applied and the input parameters were adapted as far as possible to those used within former studies to achieve a better comparability with site independent dose assessments performed in the frame of ITER. The calculations were based on source terms which, at the first time, contain a combination of tritium and activation products. This allowed a better judgement of the contribution to the total dose of the individual fusion relevant materials. The computer program UFOTRI was applied for the tritium fraction whereas calculations for the released activation products were performed with the version NL/95 of the program system COSYMA(22) (subsystem NL), including extended data sets for activation products. Probabilistic dose assessments, based on hourly meteorological data, have been performed. 144 different weather conditions - together with their probability of occurrence - have been selected therefrom to be representative for the vegetation period of the year under consideration. Mostly potential individual doses and, if appropriate, also the need to initiate protective measures have been investigated for three types of accidents, all of them placed in the event sequence categories IV ('extremely unlikely events') and V ('hypothetical sequences'). For details see Ref. 23, 24 and 17. Source terms of up to 100 g of HTO, 3000 g of HT (both elevated) and of up to 2000 g of activation products (elevated) have been considered for the CAT IV releases. The CAT V scenario comprised more than 4 kg of activation products and 42 g of HTO, both released at ground level. Two different types of doses have been obtained. The individual early dose results from the first week exposure and a 70 years integration time but without ingestion, whereas the individual EDE is based on a chronic exposure, 70 years integration and includes also the ingestion pathways.

4.1.2 RESULTS One of the key points for ITER is the non-evacuation criteria. This means that under no release condition evacuation has to be initiated. To this purpose the early dose as defined before should not exceed 50 mSv at the fence of the fusion installation. This value was selected to represent an average value which can be applied within all potential ITER home countries. The assessments showed that early doses from all CAT-IV release scenarios do not exceed the lower reference level of 50 mSv for evacuation at 1 km distance, when compared with the 95% percentile of 'he probabilistic calculations. Independent from the selection of Cadarache or Greifswald as site, the new release limits fit with the proposed dose limits.

-93- JAERI-Conf 99-001

However, the dose values for Cadarache are slightly higher than for Greifswald. The dust composition steel showed the highest values for both the early dose (13 mSv) and the EDE (910 mSv) when compared to the maximum percentile. The highest early dose for the 95% percentile resulted from HTO releases (5 mSv), followed by steel (1.2 mSv) and the other two dust compositions copper (0.8 mSv) and tungsten (0.5 mSv). The early dose from the other CAT-IV scenarios is lower and reaches only up to 0.7 mSv for the 95% percentile. CAT-V releases, which are stated to be hypothetical, should be compared to the 50% percentile or the mean value of the probabilistic calculations. Early dose values of several mSv at 1 km distance were obtained when looking at the lower percentiles. The dust released as pure steel shows up to 7 mSv for the mean and up to 3 mSv for the 50% percentile of the early dose distribution. Even if recommended to use average weather conditions, a look at the upper percentiles is also interesting. In particular the 50 mSv intervention level for evacuation is almost reached at the site of Cadarache (48 mSv), up to one half of this value is found for Greifswald (26 mSv) when comparing with the 95% percentiles. At present, release limits to avoid evacuation are key criteria for ITER. However, other protective actions such as sheltering, relocation and food banning may become important in future. None of the source terms caused evacuation beyond the proposed site boundary of 1 km. Also shelter areas were rather small and were only obtained for the CAT-V source term (up to 1.4 km2 as maximum). Only banning of agricultural products was found to be important. Dependent on the scenario, banning affects initially areas of several hundreds of square kilometres and can be as large as 10000 km2 and more for CAT-IV (up to 11000 km2 for the wet bypass) and CAT-V (up to 18000 km2) releases - when considering the 95% percentile of the concentration distribution. Most of these large areas are attributed to tritium and the fact that there exists no special intervention level for food banning for tritium. Therefore, the value of 1250 Bq/kg fresh weight was selected as this value is appropriate for Cs and other long living radionuclides. However, the radiological significance of tritium is much lower than for Cs, thus an overestimation of the ban areas cannot be precluded. It seems to be necessary to evaluate specific ban criteria for the use of tritium. Nevertheless, also when releasing the CAT-IV limits on dust (steel), initial ban areas of several thousands of square kilometres - for Cadarache (up to 2000 km2 for the 95% fractile) - have been estimated.

4.2 SEAFP One of the aims of the SEAFP study was to quantify the environmental impact from future fusion power reactors, in particular to demonstrate its potential in safety and environmental aspects(25). Two power plant designs were studied: 1. PM-1, using an advanced vanadium alloy structure, a lithium oxide pebble bed tritium synthesiser and pressurised helium coolant. 2. PM-2, a near-term concept with ferrous structural materials, tritium synthesis in liquid lithium/led, and pressurised water as the primary circuit coolant.

When identifying the potential accident sequences, no active safety countermeasures were considered. Mobilisation of the inventories, their transport to the external environment and finally their consequences to the public were assessed. As for the SEAFP study, the computer systems UFOTRI and COSYMA were applied for tritium and activation products, respectively. Differing from the ITER applications, the definition of the source terms within SEAFP took full credit of the transport and depletion processes inside the power plant. This led to rather small releases into the environment, even if several kilogram of activation

- 94 - JAERI-Cont 99-001 products and up to one kilogram of tritium was mobilised initially. Also the accident sequence lasted up to several weeks which is again in contrast to the one hour duration of the ITER scenarios. A further difference was the selection of only one deterministic weather sequence which was identified as worst case for HTO releases. The early dose for both concepts are far below the conditions where evacuation should be initiated. In no case, one mSv was exceeded. Also the EDE was found to be rather low, highest values amounted to about 40 mSv. Within all calculation, the advanced plant concept PM-1 showed lower doses than PM-2.

5. Summary The UFOTRI is widely accepted in fusion related studies as a reference tool for assessing the impact of accidental released tritium. By coupling it to the European assessment system COSYMA it was possible to perform dose assessments for combined releases of tritium and activation products. By applying these tools to potential European sites for ITER, it could be demonstrated that the main goal, the non-evacuation criteria, is fulfilled also for specific sites in Europe. However the banning of agricultural products was identified as one potential countermeasure which might be initiated after a major fusion accident. However there exists no specific ban criteria for tritium, thus these calculations are of preliminary nature. The assessment of food countermeasures also highlighted one of the areas where UFOTRI is still under development. Plant exposure experiments performed at FZK together with the development of a specific Plant-OBT model suggest an improved modelling of the formation and translocation of OBT in cereals. In addition, the soil model is under revision and may be also improved in the next version of UFOTRI.

6. References

1) Raskob, W., UFOTRI: Program for Assessing the Off-Site Consequences from Accidental Tritium Releases. KfK-report 4605, Keraforschungszentrum Karlsruhe, June 1990 2) Raskob, W., UFOTRI: Description of the New Version of the Tritium Model UFOTRI, including user guide. KfK-report 5194, Kernforschungszentrum Karlsruhe (1994) 3) Straka, J., GeiB, H. and Vogt, K.J. Diffusion of Waste Air Puffs and Plumes under Changing Weather Conditions. Contr. Atm. Phys., Vol. 54, pp. 207 - 221 (1981) 4) Turner, D.B., Workbook of Atmospheric Dispersion Estimates. Public Health Service Publication No. 999-AP-26 (1970) 5) Jarvis, P.G., The Interpretation of the Variation in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field. Phil. Trans. R. Soc. London, Vol. B 273, pp. 593-610 (1976) 6) Deardorff, J.W., Efficient Prediction of Ground Surface Temperature and Moisture, with Inclusion of Layer of Vegetation. Journal of Geophysical Research, Vol. 93, No. 4, pp. 1889-1903 (1978) 7) Belot, Y., Gauthiers, D., Camus, H. and Caput, C, Prediction of the Flux of Tritiated Water from Air to Plant Leaves. Health Physics, Vol. 38, pp. 575-583 (1979) 8) Brutsaert, W.H., Evaporation into the Atmosphere. D. Reidel Publishing Company, Dordrecht, Holland (1982)

-95- JAERI-Conf 99-001

9) Plate, J.(ed.),: WEIHERBACH-PROJEKT: "Prognosemodell fiir die Gewasserbelastung durch S toff transport aus einem kleinen landlichen Einzugsgebiet". SchluBbericht zur 1. Phase des BMFT-Verbundprojektes. Heft 41, Mitteilungen des Instituts fiir Hydrologie und Wasserwirtschaft (IHW) der Universitat Karlsruhe, in German (1992). 10) Garland, J. A., The absorption and evaporation of tritiated water vapor by soil and grassland, Water, Air and Soil Pollution. 13, 317 -333 (1980) 11) Ritchie, J.T., Model for Predicting Evaporation from a Row Crop with Incomplete Cover, Water Resources Research, Vol. 8, No.5, pp. 1204-1213 (1972) 12)Walley, W.J., and Hussein, D.E.D.A., Development and Testing of a General Purpose Soil-Moisture-Plant Model. Hydrological Sciences Journal, Vol. 27, No. 1, pp. 1-17 (1982) 13) Sellers P J, Canopy reflectance, photosynthesis and transpiration, Int. J. Remote Sensing 6,1335-1372 (1985) 14) Weir, A. H., A winter wheat crop simulation model without water or nutriment limitations. Journal of Agricultural Science, Camb., Vol. 102, pp. 371 - 382 (1982) 15) Shaw, P.V., Haywood, S.M., A Dynamic Model for Predicting the Movement of Tritium in the Environment. Radiation Protection Dosimetry, Vol. 16, No.1-2, pp. 59-62 (1986) 16) Barry, P.J. (Editor), Tritium in the Food Chain: Intercomparison of model predictions of contamination in soil, crops and beef after a short term exposure due to tritiated water vapour. Technical Report No. 8, Published on Behalf of the BIOMOVS II Steering Committee by the Swedish Radiation Protection Institute, Stockholm, Sweden (1996) 17) Raskob, W. and Hasemann, I., Dose Assessment for Greifswald and Cadarache with updated source terms from ITER NSSR-2. Report FZKA-6101, Forschungszentrum Karlsruhe (1998) 18) Raskob, W., Diabate, S. and Strack, S., A New Approach for Modelling the Formation and Translocation of Organically Bound Tritium in Accident Consequence Assessment Codes. In: Proc. of the International Symposium on Ionising Radiation: 'Protection of the Natural Environment'. Stockholm, 20.5.96 - 24.5.96, pp.: 400 - 408, 1997 19)Taschner, M., Bunnenberg, C. and Raskob, W., Measurements and Modelling of Tritium Reemission Rates After HTO Deposition at Sunrise and at Sunset, Journal of Environmental Radioactivity, Special Issue: Environmental Tritium, Vol. 36, No. 2-3, pp. 219-236, 1997 20)Dunstall, T.G. and Ogram, G.L., Diffusion and Biological Oxidation as Component Processing Regulating the Deposition of Tritiated Hydrogen to Soils, Ontario Hydro Research Division, Canada, Report No. 90-235-k (1978) 21) Raskob, W. and Barry, P., Importance and Variability in Processes Relevant to Environmental Tritium Dose Assessment Models, Journal of Environmental Radioactivity, Special Issue: Environmental Tritium, Vol. 36, No. 2-3, pp. 237-253 (1997) 22) Commission of the European Communities, "COSYMA: A New Program Package for Accident Consequence Assessment. A Joint Report of KfK and NRPB", Commission of the European Communities. Report EUR-13028 EN (1991) 23)Piet, S.J., Analysis and Harvesting of NSSR-1 Dose Release Calculations, Internal ITER report: S 81 MD 85 97-01-03 W 0.1 (1997) 24) ITER Non-Site Specific Safety Report (NSSR-2), Draft working version, ITER, January 1998 25)Raeder, J. et al., Safety and Environmental Aspects of Fusion Power, European Commission Report No. EUR XII-217/95 (1995)

- 96 - JAERI-Conf 99-001 9. xrvrnmmsxn&mmmwm

W) nj]*&m9ffi\ A^®¥$

mA^*kwm\x\z, \m*&Mz%L7*j7*n$$\zt A^&®nv>mmMm

«sis©^rat**s{3o^*r, mm^Ayuzmmm(D80%&A*Amx%zz£*mMsytzo $b iz, Am(D£oizAwm&*mmytzmM"EA*A*m\ nmzttmtzmmit'&wbzfrb m\ztix%tzfrbuyf&&m!%l3-t>nMt)'3tzo mmn&mz, BMAMmmizkzmww, !kii\(Dmw2o%, Amo^A-moxx&^tzo g&, ftM&<ztfimmtemmizt£-DX%fz0 &&&wmtz-o^x, ^mtmt^^x^

Evaluation of Long-Range Transport of Acidic Substances in East Asia

Yoichi ICHIKAWA and Hiroshi HAYAMI Atmospheric Science Department, CRIEPI

At the end of the 1980's, the Central Research Institute of Electric Power Industry (CRIEPI) began an analysis of the transport of air pollutants in East Asia. A transport model of sulfur oxides, in which various physical and chemical phenomena in the atmosphere were simplified, was developed, and the validity of the model was studied using the data obtained from the acidic deposition monitoring network. The results indicated that the calculated and measured amounts of dry and wet deposition at most of the 21 locations throughout Japan agreed within a factor of 2. Furthermore, the transport model was able to predict the annual amount of sulfur deposition in Japan at 80% or higher ofthe observed value. Also, using the transport model whose prediction accuracy has been thus confirmed, the source of sulfur compounds deposited in Japan was estimated. The result indicated the contributions from Japanese anthropogenic, volcanic and Asian continental sources to be 40%, 20% and 40%, respectively. Recently, many institutions in both Japan and abroad presented similar research results, but the results do not necessarily agree regarding the source contributions. Under these circumstances, re-evaluation

- 97 - JAERI­Conf 99­001 of the compatibility of various transport models has become necessary. This paper introduces an international project, in which CRIEPI participates, regarding the compatibility of these models.

Keyword: Acid Rain, Acidic Deposition, Long­Range Transport, Model Intercomparison, East Asia l. littofc x^mmnvmmmmvmmiz, mznmzt^omj&tf%btiz>o z.0 &*®mm*L%&5%tiz-o^x, w^izmm^uux^^m^^-otzty z® &, W,A, &mLx, A^mmw(Dmm^mmmm®fm*fio£?iztt^tzo ZLX, & Mxiz2mzfrtzz>mM®M(Dm%.mB%Zi am*?, 199450 , mmmtmzmtz&feibvm Tmmm (1988^) js&vmL^mfemai&ffiiz&t), imxizjjAyvmmmyu xy t±(i 98530 , T7Mj£©^^b£©rftIE (199050 ££»), *m^l£tJif ©#&§©», ftM timmzMA,x^z>0 ­#, A%^mim(D&\tim.b^*mmy, <$&, mtarnvtovmimm inmizzAo, xuimmmt^o%yytfx%z>tf, ^?tim%wmGLtti \z*tzmmtz>tz?>oy, mzmmftttmibtimmmtimfDmAzmb^, m&mttfR*mtsni& tttf*­5o sfc, 7V7±fc(D2/3®~WLx&z> rnTyrmm^-wyxAv by~?A ty 2m%.(D^jmmzm7x, mm^nfrb minmiti&tbtzo &#©0!cflft;LH, ffl&bmiLx^nmmmifi'Sm\zt*z>0 mmmm

^^ommfmom^tmt^Ltzo *.%*xmzz>mzt£®m, it^mm^mmitytzmnmit tJ©Hi^­t­T­';i/^o< f), «*^*jW^m©Ktttfc^­affl«H©x­­­5'*'fei:C't7i;i/©S^tt* mmytzo $biz, A^yk^Wftbzfrbbz^mzhzfrt^omztmmA, ■o^'ommx %n%Lfiitzo Wok, \H%(D^<0mmt^A.mm^(Dn^m^^%^yx\^-hy & tyx^zmm*:

2. smmmm^rfromxtmL mAfy&fflftpftvmmmm^y'Mz, byyx.yb^-w.bbyyx.ybv-ttjy-o : j ; j^7Vyb°mx&z>0 &* r)i'i 7*-*<»&, imiz^mtamms.^^zp^

­ 98 ­ JAERI-Conf 99-001 x^2)-3)^^xno ^Anx^myxi^^m, it^Mmiz, =zm immcDMmjxy^v&n, zimitmntmm^^yo)^^tyt^y^yybizx^m^, S7k^®mD3i^, m7kA®MJAy(DmAA^®&o ztib^mM nifim&izmBizitmLx&bzb^jLzb, x^fDr.mitmmbft+mmj*>m&, m 7kA(DMmjAym&o)Mtmftmbtiz>o mmz7KA^mziZA.m^^, mm^mziz-m^ ^^{S^LTI^O O^D, tmii^ziz-mv^Ahx&Zo mm&^ts^yyxxynm®. jiiktz>ztiz£>o, ^^(DmmjAyvm&mmxzZc byy^ybv-\z, mm, m?3mzmbtz>m.(Dm*mmyx>k&)Z>o OT£ft©a®im, znzx, wm\A-y%mm ffltniz££yizt£-Dxi^o byy i^h'j-ii, 850hpa mi±mA% i~6mmz:£\zioum&&f£hz>o mjk&iz, Bigtetfi nAf%m&mA~y tn^%MA-yfrbmz0 -mvbyy^ybv-m^Anxiz, tm&%:wi&\z, ttytM£ j mmzAMxztei^ztft&z>0 Mmm&*m&z.&m%&z>o AJy-m^AMzm&(D$'m7yjA£Amx%, xi^^zbtz bt^Jtm^i)^o tzztf, Myvy^i&^vxjy-m^AiMDMmiz, mmA^z^my tz&Mtem&m.A-y*m%zttfx%t£^t£b(Dm&xMyiy zzx, Hg.it^ivw^ 3 4) 'J^Ff-trMMlfe ' 0 Z(D^A)lX\Z, Mfi(»%A.mfrbt%lti£hZ>V>)niZbyy^ yb])-m^A)ixmi\ tm&(Dfo<(D%Amfrbmiti£hz>y!)mz-Di^xtztt, x^y-w ^A)i*mmyxi\z>o ztaz, m^xmta^nrz^mz, mmm%£nzmizz.ti^o{fc%.izi)t-3^xi^o ZCDVZ&Z, mAA$ffi$mi$M\\ 3 5) immmxmMLtzm-£mmmiz£>oikm-tt?titz - 0 /w^u v ^^^©aw^-asa ©M, it^mmiz, mm, &wnfi3&KT:&zzb*m^x, byy^ybv-m^Antm MsX$b%>o

g2) Trajectory Modfc JIU* receptor cone. , far sources mixing z Eulenan Model

nearby sources recePt°r cone.

(cgncentTalion) tkbnd.Model

receptoLr cone .

Fig. 1 Conceptual schematic of the hybrid model.

99 JAERI-Conf 99-001

A%,&m0 h-5^^ y b v-m^xyuzmokm mA(DMy^yMA~y, ^JXV v YM^TJWXJ v-gu^ii, 7K¥^rS], tmnfab* 3ig%ft^ftMmitt)^BA~mA-y]tm^z>o Myyy^m^bm &£tiz=.&4hmm&tpMm5M7]tx, *o Aiufrbvm ffiSt21980W*ai^TO150/jt&o£o Mmz&AlliMMVzzMimMb^lbtzo ffl%Ltz&&Mmm*:r)]/tziib£, mA^^m%pf\(Dm^nr^mwme) (DA-yttmytzo mmm&mmmi%&mfrb%>HmmzmzBA.±m2m&x&%>o 2114 ^©^igRii, BA-zmmffo, %m®mmzi^xmiytz&m(DttmM& (ISM) , Mmm& 5 s (5M&) , *#^©^^/fA fe^.m«ll5^aftJ-efe^o SIp^{i(5^^^ x^iteTf-e, ^©

Fig. 2(iii«©^f4^*s©^f?gfiidoM-c, n^-t-rOKi^^^ij^iiiij^fb^Lfe^^-e $.^0 &&mMmzmmmmzmMM&*myxnfeytz0 •t^uxvvbm^y'ii, mwi yy^ybv-m^AiMDmmx, m-vmmm mmm&) izftyx^yxmztixi^o m izizAwmtmmmtf 1 *f 1 \znmt^U£yryy-2vn-ttmrnytzo m^AiKD^^zu mzm^m&&&Kfiix&Zo ^K^PKMLX, >\JXV V YI&^MZ, by y^y b v-m m^A)KDttmMW(Dm^:, mmmizMt^MAmmiZTi-^ y-m^An {yjxyAo STEM-II) -^n©byy^y b u— rn^An (RAINS-ASIA ywx-y bxm^btixi^ BAT •tf;!') -e^iBj^-efeofe7-8,o b(DZott^:r)i%m^xmm(Dmtmm^^(Di:m^myxu z>o )\4xvv bm^AiKD^^byy^y b v-m^AnzbmmiMtv-mzty^ mm& nvn&mmz, mxvv Ym^A^vAwmifiiw m, wmmftsw mx, ^AMZM mm)

Table 1 Comparison of sulfur depositions predicted by long-range transport models with observations. (Units are in 106 t/y) Trajectory model Hybrid model Observation Dry deposition 0.11 0.16 0.21 Wet deposition 0.25 0.27 0.32 Total 0.36 0.43 0.53

- 100- JAERI­Conf 99­001

S E 9 "3D "St. 2 *0

"0 **0 sVu a.

1 2 1 2 Observed (g/m­y) Observed (g/m­y)

Fig. 2 Comparison of dry depositions of sulfur Fig. 3 Comparison of wet depositions of sulfur predicted by long­range transport models predicted by long­range transport models with observation. with observation. #: Hybrid model, I: Trajectory model #: Hybrid model, H: Trajectory model

3. %tmm^v>mm &%m$x-%AytzA^^nftbz\zi!mtz>frtyo%A. 'Vmommz, nmnm^ #­i^j:t*siiio0 %A-mmvmmz&io, &%mmm&&mm.*?mmzmbt\z\z, ST, b®mtm$mm*wmt'zttfxzz>o maxiz, ^Am-mmtmrnm • mm®-?b vyxtfz<^tziomiz'imzti, mnmit^^mmit^^KD^^mMmizmmy xy%o i^#i©v K u yxvmwzmw' #&&©­<:*##(;: iti^fcu0 $T, yyyx%A-&M(»?m*mmtz>\z\z, m, A\z£^xizAtefrbi&Mm%foz>z. otzo mm(Dmz^i£nzmmjAy®mmmmmz%]isbxm£$titzio) t^uz, i*w frbzcD&otmtt^M^wtwmfrtitzo Z(D&, %<(DAI$%A>ttwvmm^mmA ummmm*tz>£o\zt£y), AU< tmftiz&ttz>MVim\zteo -&\z, mm^TMz&zwrntzttxtt<, mtmAmvmm^A^^wmmmmMttcD^iz, xmfrb®mt-&&mxt>wm\zmztonmm&ffiffiLxuzo u^u ymmm^&mtv %'tjytz r^mmmim^ ■­«, mm^m^m&mzAmfimfrbcD^miz&My, \UMA ^ajfct­^­fcMni­jrj*, nmmm*%tfxy%ii) ti^ommmmztixi^o zz xmntKDiz, ?s%k®)nftmi%*fflz-xMz>, **v^> n<, fifr%y^mimtz>(Dx\zft<, tan\ztn\tmW^^^i&Wizmk^o mAAMK%mcRmn)\zmn

101 ­ JAERI­Conf 99­001

Table 2 Comparison of source contributions to acidic deposition in Japan (%). Organization Substances Period Source References Japan Volcano China Korea Others CRIEPI S(wet) 1988.10­89.9 29 20 38 13 0 (12) S 1988.10­89.9 40 18 25 16 1 (3) Osaka Pref.Univ. S 1990 37 28 25 10 0 (13) N 1990 76 — 13 11 0 (13) Yamanashi Univ. sulfate 1988 47 11 32 10 0 (14) World Bank S 1990 38 45 10 7 0 (15) CAS S 1989 94 3 2 1 (16) CRIEPI: Central Research Institute of Electric Power Industry, CAS: Chinese Academy of Sciences

^£tfc#3©rflffi£ffoTU3o m&b&&*tia7Ltzmn(D±tf:%ttttLx, B#©AMM ©«5o^j4o%, x\h(D^tfm2Q%, Amvmwmoxt-k-DX^Zo &&&»£©£#* &©^­£#ii

T3£>©ft©­e, ^■m*©^^b«tit©i*«f*­tJt­rnHHi*i©­^^{iiSint­­5o nmm(DX \k\z\z, fa(Dmmft%A.m\z^tbx^t£i^ybAyyj?yj u to>©ALU^^sti^­o5, *n &#*­t£>rfiW6£&oTu3o ^mnm% (CAS) ^wamm^Mo^m^mt, xmvm^ ifi5%bfrftt)m^ Table 2®mz&^mmm¥A¥i7)^MffiRpftis)xMrnx^m® fem&r&mffi&iffrtix^Zo Table 2pt>t>frz&5K, frtfmizmmt ZMM®o*>xmfrbmiznx£A%^(Dtzhy $mfrb% 3 ttzl^LtzZ b&ttU B*t^fcST 3$tlt©­5 *> *ffl©^^(i, «#*:*flr&J?f©:P«!l*s25%, *@^^P^©:?SlJ^3%­efe^)o Table 1 ©Mllte B#£^Fr| 53£t©ffi$t#&­f­r<5c:i:&^l/tv**<5o «*•>£, «##jfeffi&ffi©WT?lil3>5t, ^H

*ffi3©^$JT'(i^2/jt©ft*M£ft30 c:n?>©ffili, ^HO­K'fbflKft (M&H) ©38 ^«(il000/jtl^± (1990^T­1100/jt, 1995^150073 t) X&%ftb, fpffl­eSS^LfcflKSS (DMbit^Zt l%gg&£^li*niUT©ISC&o­t:L£5o WS©M*^&«mg© #»#«&ii, ^tmT­>*T©^m0MtHts­^taiiiw­hta^w^cHt­s­>>*•>••>A­C, ffi ififfi*rTAs­?«!iLfci6'* • ttW(Dm&tmA*&ffiftpft&zv^mm¥f%&u,

^&©©, %A.-mmo (*«&) ^^©p­fl­e^­e^

i9) ­a^ 0 ■intt^frnw**rfe'ri«i­cfe­So jygm^­^&p^u %

­ 102 ­ JAERI­Conf 99­001

LT*), ^AMzZiXm%ki$n-kZ>o ICli&il^Sllli, Zti&X(DZo\z&ffi$i%tf mmzmmmm*yx^tz(Dx\ztzibx&z>0 zh^h, Qm^tmA, ^nyx^x^cD^ &mz^uxtmz!fe®%bz^mMiz£x^z>Q 4. mm^=r^(Dm^>&.mmxuy^yb ^A)im-mzttmm*yxM1z,zbx&z>0 m±A&imm\z, zn ^x^m(Dy^AyA^^^^nA^n0^m^^i-trz^mx9-(DX)i-xbmmmm^A)i (D)tmm*B$)bLtzA:mjm*'?%MLfz0 T^:*9A^©^flf^t;£1993^12f!~96^3 s Rizmmzn, zQ ^^x^ayxn-xbo^ mffi$l\Zm5%7R-98%6RlznM$n, 98^12^1 B^^bT^­te^­ r^JfeEBft i^^fM^j tffflMztixi&$k*£mtz>zbizt£~>x^z,o ztib0^mm%xmmyrz^X)i (Dtmmmzz'o, mm^xiitf-mizbvm&o^mm&ik$>-?&, Am&mzm^tfmtiz mm&m\ zn?n<7)^X)ix&&t-

• mmmm^AMzmmmby ryy-2 m^x-mttnzm^zubnx.^o • mmw£ft%k*%:ttx^z> b&frtizmwm&izftyx\z, bvzotz^y-yizm^x&MA

• u^n:^^Wi^^m^mm^bnA^mmm^<7)^mm^0m^t)\ %A • ttmvm&mmiz £%$)tzbyx^z>^mmi&z>o

- M&izz^x\zm^^M.x-y-ty b mmx-y, mAMA-y, ^M^A^o^mm

• ffimfifaiz%M(D^y-)ix\z, mm^\^

■mm, mmmzmzmmzftftzuzzbizii), Amm&ofaAmzfrhZo Zb\Z, mA^ffiftmZbo-^fr&fr, 1997^10£~2000^3£©i^E~t*, yyyvM %mmm^Ayi®M&&*tmtzzb*mmfomyxAAMtmftpft (HASA) izmttLtzo , IIASA\ZA~X b 'JT • yyAyxiiyiz&zjmftt, %mm0 i998^7i!27Bi:28B^ IIASA x ryyyvx^m^nommizmtzmmy-y ya y xj ififflmzn, mmMmzmtz^mxm(D&, *7)wm&&*Mm*ztziibiz&WAftm 20) \z-o^xmWi^fitzo ^mu iZi^m^Aiz IIASA frb%ft$tiz>0 Fig. 4 \zy-y ya y7 #sp­t©^**^­ro #ip#ii, R*. $m, £^, nn, ^^A^20AHt*fe­3fco c©?­ *S/3y:7T?­£j&;*ftfcc:£:l;J:, ­t7­0l/©ffi51:b^a+^©^^ttT"fe^o Cl©|g|ft4§|­fr, T -lAy A¥® Carmichael t&& £*fr #:*5ff ^#f ©S*#$f#*S!£fcoT, rLong range transport and deposition of sulfur in Asia A model intercomparison study J (DXuy x.y b Jt^tWA%> Z b\Z fcofco ^(D^omW^iiisAlzAto • mm^A)l(DimiZmu^(D^y yAl TT­fr o o • #^ :r> ©If &£$B ©­£&&< , ffiM#?#@ftT­fe3o

­ 103 ­ JAERI-Conf 99-001

• ^%V>yxy\Z Blind Test, Fixed Parameter Test, Source-Receptor Test, Tuning Test *£>bft-5o • Blind Test X\Z^MXAX~yA y b £$oTff-^£f]-Oo tbl|&fti'©H$Jl!ttW3o • Blind Test MTff O o • ££,^mbX—yAy b

• Blind Test b Fixed Parameter Test (21999^ 5 M 1 B, Source-Receptor Test b Tuning Test IZ 7 M 1 B^T'^fiOo

•mmizmm^AizmtzmnbsbWfaM*m%tZo km&^z&mtziby. -ITM^

• IIASA \z rM2myvymmy~yy3yyj (i999^sc *-Xb')y • yyAyXAXxmm) ^^^©lilbTgftt^o zX- TvTPhase-11 7-^^3»;7 ("filMIB •??, T^T^^g^iii) ©^±-t?i»a^r-$nfeo ^<©flf^-t*j*i*i©^>7i/y htasaL ntfts-^Lfco *±m\z, ttmsfwitmmmz&Btzzbiz, m&mwvmmcDfrmx mmxm m%UZ>ZbX&^X, ^y'lKDm^^^oZbX^ZtHUo URg, Ztl?n\tx, kmmw*t%mf?izznb

Fig.4 Participants of the workshop on transport of air pollutants in Asia, held at IIASA, in Laxenburg, Austria during July 27-28, 1998.

- 104 - JAERI-Conf 99-001

5. Rlj^TjWDfflfflzlimx

^b^zmmnmizm^mtszbizu^o yyycDmmnn^^mm, a$^i:i»^t:tt, %A • rtmvmmz'Di^xmmmv'&m, mnftmbtitjy^bi^ztjy^ €©£»£(;*, fiis-e^ zmm^Aiiz^tzzbtimmx&Zo 2i wwmmfoz RAINS-ASIA yz, yyyMMxmm"£X)i(Di±^{k*\ziy>%yuy^y bbmZ-Zo b-bZA;, RAINS-ASIA IZ, ^*)i¥~mm(DyAVAftj&iy>bbti%-DX, mMM ih^mm, mm, **», Am&^wiz^z>--m®mmzfio^X)ix, mm*X)itz\zzwco ©T-fi&^o -fcxuy^y b\zm\\*MM.bytz RAINS oyyyfkx, 1989^^^-rOXTVT

7aH,XI(il992^t^^D1995^t|l7Lfc^, H£, 1997^12£frf>1999^ 7 £ £-£©i^ -e^wx ii t>mv>btix^Z)o RAINS-ASIA "EX)i(DnRbmmty yyymm&fiv^m iz^fo^m, #>(, jybx-yy, jybxrifotix&io, fcgi^^iafctfMIc mir-£Stfi/o5i998^ii£6B, TBizttHxmMztifzy-yysyyx&ztifzo x%mmiz o^-cii, *m&mfemmn

^©a^w^^n^p^^^a, its, ^b^i¥ (xm , ^>^>, B*©*p^T"fe^0 ^*© zo&^xiizfflftt^gfr, z(Dtzmz\zn*t£t^fr\^\^mm\z&-Dtzt>y n^ftft &m\zxxi^i^0 z(DZoizyyymmxmmmmm^X)v^^^yzobi^dm^izui^izxizui^, & jrti©«t*5t-o©^^;i/*T!l64 •?*»©M^fHifli*:ffv^, •£ft£fcfc£ftfflS8d«&&#>SKIi ! liif-iiv^o £c:-e, &%*7 fr>©m^&^, ffiHiiSititfc-tf^, #&«&££ Jt«L-t i^o |5]a©ft^(i±il©B^^^r!+iii©#Pl1^^^-?r^fffcnfco c©ct?ft-y-vU-X^:r ^-;<^^fc^<©^7r;i/©4]*^, —^ZMiRyxm^zbiZttfrttipMLiy AJig

•frr-5©#«u^*>-5o €LT, mfammomft&ftzwz, ^(DrnzmmmtaAtmrnt^< :r l ©#«U^*>-50 &*>3A,, cti^-C^7 ;i/|||g^^fcoT$fc#P 3^©«M^P^

- 105 - JAERI-Conf 99-001

Xfc>Z>o (2) b-fr,> RAINS-ASIA xizyyy^m%ftMiz yx\^t>y BAt^b^x.ti\z^.y yyx A^xh^o —DO^Thx-pm^Bm, u^mbi^tzmytemm&mt£%M., tmttiftm&mmL x&oizizmmtf&Zo x^m^o^^tzfrbtnizMyvym&vm&ftmwx&Zo u fru, ^xyimm^vmfrbtnizzbizmAftmzuzc fflztt, ^yxiuzii^xxyy *<3iibx'&L^bm5frt)totitii^o ^XMmmyz\zw\\zyxyyy±w*~%\zffltfct% *-*, hy>pyAzt^mzftttxm\f\t%fr\z, &^X)^%(Dm\m -mmiz^^x^^^ $)(Dtz50o (3) ^X)l(D]s'fr'? A;^xMz%A-m^(Dmmwzm\^zbftmx$>z>frb, ^^y-bm\ntlX%tz #, My^yfo^yzyyy±mx(Dm.mzAftxtjy^ %A-mmz.ot£b, %(»mm\z~3\^xmst%>&wfo%o zvm, ^xnm % (Dtmt\m ^h^ht£z b%m?Lx < n^0 (5) KitfteSfr? ^Xhtiz>mfoifi&Zo mt$L^%%., xu&^xuzm mt^zx, &i&*fm%i®mvr£mnLx\zM7-&^o ^^XIMD^M, mnizmm&ote* AmmizittzvtytUo tztzb, z®m, &G;e;r)i&%#&vz®i3m, mniz{zmm^ts mxztiztzZyo &m(D®.m%fe%^m¥%ft&&iz^X)i*&ftxz%mmzmz.x&IM*?%\i-lk Web ±X'ifJLZ ct y UyXA A£

$>t>#x mmt % &m #& % 0 (6) wfifflmizftzfr? TVTx&ftmto®mim&ifi£iz£iznmx, mmmzx^mvonvmmfmzyx, m mn^zmfom^yb^^mm^iz^yi^ w&^BAmomAizufozft, EWH© i^;M3 mtzmvioizm^o mtmtuzmmt^ti^rz^yo mm^xji&^iz-Di^xb, z®m%> mmzgttwtiififrfrz&tititmztiZo ®mz, T-fromxix&Zo %mx-y\ztm$) Bnmznbtiztt, m&wx-yizzyuymizm^teUo B®-bm&ft>Ateizz biz&ij&mz-bZo mmik&ty)(Dmmh&Zo mMmitrnz^xiz, yyymmx^^xn^ KififrtabMAjizifi, &fom%feffixmyu^m%fats^mik&mz^\^xizznfrbtzo $b IZ, RAINS-ASIA-^ Sida-SEI (X *> x--r>SM28t&7Jff bX b V ^*;i/ASf^3f) 22)©X

- 106- JAERI-Conf 99-001

uy^y \>zb$)mm

6. ist>*)tz x%im®W(Dmmmmmm&, amm^XA^m^, (2)mm^X)i(D%^&(Dmm,

(Q)mmm^An-n&z>o *m^x \z, (u^mz^^xmA^xfflftpficDmm^AyicDf&^i&^tzo $.tz, mm^xiKDm^^. tm\z$>tz-oX, boi^ojifa&*btHZZ:^fr, Z5^o&lz\%Mt*%fr, m^t^, ^ti^ti5^ ytzo %<

(1) Evelyn, J.: "Fumifugium: or, The inconvenience of the aer, and smoake of London dissipated. Together with some remedies humbly proposed by J.E. Esq; To His sacred Majestie, and to the parliament now assembled.", Printed by W. Godbid, London (1772, Mfr^(^1661). (2) mjiifis-, mmm-, mm^^-.Myy'ymm^n^bytzbyy^yb^-m^xiiizz: *ffi&-*f #>©«tt*fc«©#tff, ±*^#ira£ft, 497/11-28, 127-136 (1994). (3) Ichikawa, Y., H. Hayami and S. Fujita: A long-range transport model for East Asia to estimate sulfur deposition in Japan, J. Applied Meteorology, 37, 1364-1374 (1998). (4) Hayami, H. and Y. Ichikawa: Development of hybrid LRT model to estimate sulfur deposition in Japan, Water, Air, and Soil Pollution, 85, 2015-2020 (1995). (5) miiifii-, m7k^:Myyy^n^bLtzmnmim®mmmm^XA(Dnm, mmA. T.^m%, 12, 5-14 (1998). (6) Fujita, S.: Atmospheric concentration and wet deposition in Japan, "Acidic deposition in Japan", CRIEPI Report ET91005, 24-36, CRIEPI (1992). (7) miiifii-: itMyyyiz&ttm&mncDmmmm, *#m#*, 242,51-67 (1988). (8) Phadnis, M.J., G.R. Carmichael, Y. Ichikawa and H. Hayami: Evaluation of long-range transport models for acidic deposition in East Asia, J. Applied Meteorology, 37, 1127-1142 (19 98). O) mm- -. x?wm m&wgo&vmtiij&j, x%mm^Mt, 33,A9-AIS ci998). (10)B*«M: BMM&mbZfrb&tz (1992.11.10). (ii)Axm, mmm, m^m, &mm, m%», mmm.- mm\zmm%mm3i, ^mmmm %A , *mmmm¥&f&tt, 38-45 (1997). (12)lchikawa, Y. and S. Fujita: An analysis of wet deposition of sulfate using a trajectory model for East Asia, Water, Air, and Soil Pollution, 85, 1927-1932 (1995). (i3)Yfeffl«, mmmft:M7i?7m®*M&t\stzW&&i:to

- 107- JAERI-Conf 99-001

(i4)jm»*: axvm&ftTtofctttzxmm&mo^momfe, mwrnximm^^ liMSIfi, 537 (1997). (15)Carmichael, G.R. and Arndt, R.L.: Long-range transport and deposition of sulfur in Asia, "RAINS-ASIA: An assessment model for acid rain in Asia", Report on the World Bank sponsored project "Acid rain and emission reduction in Asia" (1995). (16)Huang, M., Z. Wang, D. He, H. Xu and L. Zhou: Modeling studies on sulfur deposition and transport in East Asia, Water, Air, and Soil Pollution, 85, 1921-1926 (1995). (17)Kitada, T. and M. Nishizawa: Modeling study of the long range transport of acidic pollutants over East Asia and the west Pacific ocean — Sensitivity of acid deposition to scavenging model parameters and emission source distribution —, J. Global Environment Engineering, 4, 1-29 (1 998). (i8Mmn^mmm^mm^^\mnmibm(Dmmmm^X)ibMyyymm^(Dmm, m& ffiim&WM£m34^, %Mm%n a 995). (19)$f§,

- 108 - JAERI-Conf 99-001

1 0. jAffit-tfiV -Mry'TvmMMitywmm- AM & femwk %MXf %MM%pn MM. Bm^gfflftW %MfflRffix~\*M7y7&mz£ifzm&ikM*nmtztz&K, $&%.&&

&U &m%%%.&&Zz?mLtz0 mm^X^rAKiiy Xy y'J^iA-^t

&MU mxK\ZyyXA • yt-y&zm^tzo *izftmk%, fefrKiz

1985 ^}

Keyword : Long-range transport, Acid rain, Sulfer oxide, wet and dry depositon, scavenging, Lagrangian particle, randum-walk.

- 109 - JAERI­Conf 99­001

1. l±C*lc #7i?7J&mt&&%Xfflt0 ^^(124^ > y*&£zftnmiVb#±fs.*\zmih2tLX&i), mmtmmnti?*mt%>Q-o-o&Zo i y £z>mmtMmiMmtz>^t®Mx&

IS 3 ft TV *•&:*)* (#]£t£Venkatram, 1982; Liu t Stewart, 1982; Shinflfa 1992) , Zilb(D *7)^imm2tltz^ML7~9Z%^tzi>*Jr­W^^r­f > ^*L^^i1^Tf;U^ffiv\ 4 ■^BJtWfift'riiJfcjiP­tT*^ (EURAD : Molders flfa, 1994) f±MM4 ( I7y*7*i*li^ < bb fix £ i), *ijffl nlfg^mi^mr ­ •)• *4%v\ i ©31

2. jef';i/(7?^^ Tp^tiX^io Tm*Xlhte£frbm&Zti%S02tt±^\z£^XWk¥R&£MlXS04 t?£t), tizmt\z$kixmix^(0&¥,imuxx±%*frbm*ti&wkifc m, ±^^'Dm^m^^^&in±%^^b^^ti^m^itM^^X'z>xmm^wrLx^io m>*^mAh%%xx*7)\sjA$w^ &tt tt.%RzFso2frbso4o VlA\z&XX*7>^\Z'O^X®Mtho

■&

**«

»­=> S Or* S 0«

•—MgO, )

«f> ntn »«■«« Alll SO,, SO) **t*<*>l«(R

Figl Transport processes of SOx

2.1. ^^­9­7*^f';u

•4^©^*53R©i^SiaiW­9­**tt*t4few^**oTyTife*tt*^*i L"Cv­.s©flSC>*ri ^H^(cov^­rftf:t^^f^i^o­rv^0 zzxm\M-^mumGoB.<^WMA\z^-y

110 JAERI­Conf 99­001

-Xf-UtmZ2titzMMKniXl&mXfoK73(DfaA, *:lb#|fi]K 55 »■?■*■# LTV­­40 *T)i

Fig 2 a) Domein of model and Topography b) Descritization of vertical co­ordinate and array of variables

Lrv»40 ­g­ft­pfttc^jSLr, iiis^fi^ %R&#Tv>S0 2.2. n^r^f­*^

­ ill­ JAERI­Conf 99­001

MOSH A:&X-^zt^ y-^tm^iiX^^oZCDA^li^.W£it^E&mniM10Aft­ *i­v>fcv­­?#«*#■•­>­cisiK txy^^^m^^y^b^mm.Jxmfmzm^btix^^

4^t4: h ii­C^ &i>0­^#>imNtK/h£%%LAt *4 LXg&nmibb t> Kitl"*

W*4il»lcMt4ffiSl4i­^^»*­t*jai*4!RF*a*«Fo­cv^o £<*>£*, f&£iK

•tai­r*4^i*tli¥l*i*»^^44 4^W'X^*'tt­cv^(Fig3)o

•38^5*^

**. *: ****» **. ft : ■£!!* miRXtr-)\,: 3 Bffi RH*4*­­JU: *?8L «F (aMEfc SIII^'!r­;U:»2W,

:i. *­f 7­:57^■^,^

te:?•E••^•'.'^

Fig3 Schematic chart of transport model

^m^Kis^xitB^z^^xmwi^ti^mmt^n^^^xy^mtm^M^^^t^^

ffiti ymym \z x o ­c*^ ­•> & © K^aa^­ffc^­as K x z m. <»m& * tr o ­c v ­.* #* •M­P*M,±lJILT'7)J:^^'3:o,rv^o litta^i±lii:­©'f5S^BU^o­C^*^?^JS,Hdep = 0.99 ft£:$Ktf>ail£«: fflv^TSI* #it^fiffi^fcL*«fjL, /^^9­ixu so2, so4RifN03£:tc*tf7***E­F;^

112 ­ JAERI­Conf 99­001

f±Sp$Pe­Jltf: U O.lmm/hour &±^l$7k/6J£)£ i^­KM mmz&wt &%x$mLt:0 PI*,CJ:4*11tit*$,CBBL­CJi#<(7)Bf^*«­45tL­Cv­»4A« (*OTx.«dT EHassen, 1982 * Fisher,1985 ft b) , L#>U *^^WMt­fi le­5/s*^ le­3/s 4­e*1!t^^:# >t«ll***'6 o L/:­)sot, >I>I'Cfi0.1mm/hlil±c7)|^^iC^L­CS02{Cov^­C(± 3e­5/s. S04 Cov>t '±le­4/s£i££Lfc im^mW^7)VXytS02^bS04^tZo 0lx.tf, Cox(1974)im~fii$.40 :otfJl/*eii 0.01/h £i£;e L/^o Nguyen Ife (1974)i* itlffm^it^m^^^W^^^tLTV^v^^iC^^a S02 H *H"4 SO42­(7>^SJtt±SO2<7)'ft*&A%Jt­h.tf«E*fa0.9 •C*^«t\ "­Ef ;WCiitt<&$Si'7)± IS*90%tlli!IR*'H­»t^:o 3. •^f*;K7)STyTi&i*'^'7)'affl 3 .1. ffilf B­fMfcw­l&feilg 77#~x?>£^*x?>J;i3 jg<7)7v7 25 *S£fc»t4ii1f&ft*wA;ftW3&£ig{± 1975, 1980, 1985 Rlf 1987 ^K^^XmmmMi^mzLXif^.^AXH'O (MM ­ffi, 1991 ; Kato fc Akimoto, 1992) , til t ­f > KCov^tlif, ffl­Si­'S'ftlStfCv^o §

7­3||£S£l&v>fc66'3j£if£#fflL.fco AUJ^m<7)g«fe^^^|&^^^l^v^­C*4oFig4(± Katoetal. (1991)£ & b

Fig4 Distribution of Sox emission

3.2. y5al/­y3>J:f(7)gl v~ ^­va Xil985^HOV^­Cl^Pt5H}|L^o fr­*>Jll^fttSK£^tlW<7)fil£^­*> y

­ 113 JAERI-Conf 99-001

<^^

Fig5 Distribution of observation point and selected point of model OB: observation point, CA: selected point of model.

o. Total (a) 2 o. Dry 1We t

ta ,3 <>• g* o. 'Li.k: FU fW ru a. fk KM CA1 CA2 CA3 CAa4 CA3 CA6 CA7 CA8 CA9 CA10 Receptors PrccIpltatioD Ob) s B SO; S Wet deposition £ *a»

OB3 OBS OB7 OB9 OB11 OB13 OB2 OB4 OBC OBS OBIO OB12 OB14 Observation stations

Fig 6 Annual depotion amount of (S02+S042-) a) model result, b) Observation from April 1085 to March 1986.

114 JAERI­Conf 99­001 mM4o ninizX &mnmtto<»&&%VM&&MM\:*ft%£&MLTFig6(a)^/^Lfzo gtti*t#*t'75'¥ra«J|Lffiii*b**aw^,­:ffiiSt4,J ­fe7° * ­K&W.h­'S < ftoXfi­^lWH P,­ri4**, ?S1^^lKti­<7)^&MfaiiJl

7tcl<7) J: 9 4»«^«#1­4 J: •) &&fatt££­rifcv>oilfl££­Wi»3r*J ­t7°? ­ i­gcL­Cva

5£ffi*Jtl!!EL­C*£ t, i­fi^wHittKistt* S04­2 <7)*S14?t#fi<7)Btfffi(±¥^;rJtiiw^ 0.05gS/m2/*$&­e* 1, %ttW4«gt±Ji

•94?* * t VRfct&z. b \tX § ftv>o ? y? >ya^f­HiH4gi 'J ­fe A 9 ­©Hi* £*fe£t £ w K tt#3b­e* <0 ,l8*t****ft*{> A§V^t^Lffl%^^^lt^ft*ft^^4LTV^||^j|ilr|^^T^^<7)^Fig7­e$)^o

Kita­Kyushu

Taiwan Sooth Korea China

20 40 CO 80 0 20 40 80 Kdatfre contribratkw. (%)

Fig7 Relative contribution of each source region to Kita­Kyushu (a) dry deposition in January (c) wet deposition in January (b) dry deposition in July (d) wet deposition in July

^7y'7&mxyt%-^b'M.^Xli%K.&mtf#1f;iZ&tj: 0 >4&Wift%E.1F&7iS7±miZ®. t u &\<*imm.tf$■&•$■ &o Ltz-h^xznxn ftj^*ft^f±«aoti&'iiso­»4**etttt M^MLxx^^o^^^M^^M^^^xi,mm^^\h^x&^b$>Zo ­^,M^^f±^v^^E^A¥^^SgL,iitf±B*­ei±I|v^jai^4Mt^oL^La985 %7R

- 115­ JAERI-Conf 99-001

i±nm tiit. ^m (&»), g&\ s*u ±& (*§) mxhz>0 ttz, ^nsKm^xa^ zrfytyyvb (94) %bti&o

W^#tll^^0fr^*^<7)a:if»(i^.^^m7v7A^<7)|&^^^A^<^#§-a^*(i^^ KM&Zti&o Fig8 (iff^*^^io(t^^t{c^t^#ilW^^-?,-riWll^^^'b<7):i:4^;& ^L/ctWT'*^o-w^^^^#^#x^l&^^(i^il(7)^#^A^v^b%ffl<7)^^t(i^:< H£*K 7R(D&&itM£Wte*m%£.m

20 40 (0 80 0 20 80 100 Bdatt-re coat-Anton (*)

Fig8 Relative contribution of each source region to Niigata (a) dry deposition in January (c) wet deposition in January (b) dry deposition in July (d) wet deposition in July

4. ;fp m j&7y7mmz}otfmmfcMzwmt&tz&< ^-v a yifr^tz0^^txm

§k&mtomMWzi3\,>x,ttx&t>&zb tttt^bfr/urf z-bHZ>o ±yJA?^bW!tiHm\±®'B.-kZZ. MW-ffc^WteJ? •$K J: oTA# <3J*b4- btmfeZti.ZVX *> fcl^fc^WteK &+#£%*Lfc-fiv*** L

- 116 JAERI-Conf 99-001

< *7WttZZbffma0 m & zartk mim%o%

mxm Akimoto, H. and H. Narita, 1994: Distribution of S02 NOx and C02 emissions from fuel combusion and industrial activities in Asia with 1° X 1° resolution. Atmos. Environ., 28, 213-225. Alkezweeny, A. J. and D. C. Powell, 1977: Estimation of transformation rete of S02 to S04 from atmospheric concentration data. Atmos. Environ., 11, 179-182. Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67, 3095-3102. Cox, R. A., 1975: Particle formation from homogeneous reactions of sulfur dioxide and nitrogen dioxide. Tellus, 26, 235-240. Diehl, S. R., D. T. Smith and M. Syder, 1982: Random-walk simulation of gradient- transfer process applies to dispersion of stack emission from coal-fired power plant. J. Appl. Met., 21, 69-83. Eliassen, A. and J. Saltbones, 1975: Decay and transformation rates of S02, as estimated from emission data, trajectory and measured air concentrations. Atmos. Environ., 9, 425- 429. Eliassen, A., . Hov, I. S. A. Isaksen, J. Saltbones and F. Stordal, 1982: A Lagrangian long range transport model with atmospheric boundary layer chemistry. J. Appl. Met., 21, 1465- 1661. Kato, N. Y. Ogawa, T. Koide, T. Sakamoto, S. Sakamoto and Research Group on the Energy Consumption in Asia and global Environment, 1991: Analysis of the structure of energy consumption and the dynamics of emission of atmospheric species related to the global environmental change (SOx, NOx, and C02) in Asia. NISTEP report No. 21, 4th polisy- oriented Research Group, the National Institute of Science and Technology Policy (NISTEP), Science and Technology Agency of Japan. Kato, N. and H. Akimoto, 1992: Anthropogenic emissions of S02 and NOx inAsia:Emission inventories. Atmos. Environ., 26A, 2997-3017. Kimura, F. and T. Yoshikawa, 1988: Numerical simulation of global scale dispersion of radioactive pollutants from the accident at the Chernobyl nuclear power plant. J. Met. Soc. Japan, 66, 489-495. Liu, M. K. and D. A. Stewart, 1982: A mathematical model for the analysis of acid deposition. J. Appl. Met., 21, 859-873. Louis, J. R.. 1979: A parametric model of vertical eddy flux in atmosphere. Boundary-Layer Met., 17, 187-202. Mellor G. L. and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layer. J. Atmos. Sci., 31, 1791-1806. M*lders, N., H. Hash, H. J Jakobs, M. Laube and A. Ebel, 1994: Some effects of different cloud parameterization in a mesoscale model and chemistry transport model. J. Appl. Met., 33, 527-545. Nguyen, B. C, B. Bonsang and G. Lambert, 1974: The atmospheric concentration of sulfur dioxide and sulfate aerosol over antarctic subantarctic areas and oceans. Tellus, 26, 243-249. Rolph, G. D., B R. Draxler and R. G. Pena, 1993: The use of model derived and observed precipitation in long-terra sulfur concentration and dispersion modeling. Atmos. Environ., 27A, 2017-2037. Shin, Woo-Chul and G. R. Carmichael, 1992: Analysis of wet deposition in the eastern United

- 117- JAERI-Conf 99-001

States. Atmos. Environ., 26A, 465-484. Stewart, D. A., R. E. Morris, M. K. Liu and D. Henderson, 1983: Evaluation of an episodic regional transport model for a multi-day sulfate episode. Atmos. Environ., 17, 1457-1473. Venkatram, A. B., B. E. Ley and S. Y. Wong, 1982: A statistical model to estimate long-term concentration of pollutants associated with long-range transport. Atmos. Environ., 16, 249- 257. Waleck, C. J. R., R. A. Brost and J. S. Chang, 1986: S02, sulfate and HN03 deposition velocities computed using regional landuse and meteorological data. Atmos. Environ., 20, 949-964. Wesely, W. L., D. R. Cok and R. L. Hart, 1985: Measurement and parameterization of particulate sulfur dry deposition over grass. J. Geophys. Res., 90, Dl, 2131-2143.

- 118- JAERI-Conf 99-001 JP9950133

11. ^M^TV^fflWc^ \?Xm^WXDMvT

&B*mmffi)

%AMA¥ x^m

AMtem^7±>^fflv^•r9 b'ymm^mmm^n^A. y b'>w^^mAbzbfrA£tiAo mmmtfbmut£tt: tffrzbftx%teA^tz0 z

Analyses ofthe Variation of Rn-222 Concentration using the Atmospheric Dispersion Model

Tetsuya Sakashita The 4th Research Group, National Institute of Radiological Sciences Toshiyuki Murakami Nippon Steel Co., Ltd. Takao Iida, Yukimasa Ikebe School of Engineering, Nagoya University

Analyses of the variation of 222Rn concentration have been carried out by the atmospheric dispersion model. The relation between the origin of radon and the concentration at the observation point was investigated. As the results, it suggested that 222Rn emanated within 40-kilometer circle around the observation point mainly contributed to diurnal variation at that point. The variation of 222Rn concentration during the passage of migratory high at Nagoya and when a northwesterly seasonal wind was blowing in Kanazawa were simulated relatively well. In addition, the transport of 222Rn by the low-pressure system, which it was moving northward and to the east, was visualized as an imagination. However, the high

- 119 - JAERI-Conf 99-001 concentration during the passage of low-pressure system in winter could not be reproduced by our model. Although the some factors of it were considered, it needs to investigate the more detail analyses in the future.

Keyword: Origin of 222Rn, Transport of 222Rn, High- and low-pressure, seasonal wind, diurnal variation

i. wn 198 8^© UNSCEAR 1988 report0 [Zio^X, &9&1&tfiU\ZZL*)W^%U&Tzb£A%ztfim^tsA J it0 #3fe* yb*yimmtem$y b*yfrm%t5Atz3\ ft-g-m, x%(Dxmn^X7v*m*#if«^#ag£A#>-cv^ 0 L^U yvytmm^^'btyx^^tz^xbw^yx\^fz^, mmzmi&Lx^^ y b'y(D$zm£mfeAz>ztimy\<\ sat.. A^zion6i&m&(Dy Fy&mfe-tzzbizb.

ttm&xb. m±xxyb*y(Dmm*%±\zmmx%T^t\x\^Ax\^myi\zhZ)a xx^-b, h

y—V-bLX^W£tik&ft&tZ>0 AtDtzfr, 7tA7Himz£&yb'ym&%.W)

xy FWIMSJ^MU Azb*&.tt0 itti-tfx/^T'-fyit1', ^b\zyy^xy7(Dm^x

imm&.&tiZ£0\ztev1zo z^ufu2 m%&ti?>zbtfjf'mx%z>i>K z(D7rX7^(Dmi.\zy Yy^mtsA. ^X7^

2 mxix fflv^AMtet^rvw-ov^ra-r 30 3 m i wxix y b'ywt&mmxb(D& mtx%

XT&-<. 4MXl&%ib^&

2. ff^-r> 2. i tiwrn® mmttfciziotfzxn^y b-y^m&Mm^^mx^tc^iz, nimmkLxmmtxmk Z kfrBmkAZo 7kAAfa 4000km x 4000km, ^W-AfalZ 4km

- 120 - JAERI­Conf 99­001

(Dmi&XhZo |tf]"fSM£7k¥^­ft(­ 50X50, ­Sf}fi#[P]{£20 (I#§iJLfc0 M%Ltz^X^(Dm& ±, ii±i!i^T^±M^fa^«7­~P y?wj&&, At&x

50 r^^l^^ Figs. 1 \zAAo

Fig. 1 Local computational area. Fig. 1 Regional computational area. (a) Local area (b) Regional area Figs. l{a­b} Computational areas 2. 2 %\%A'&.

%\%A\XBiyS^yy-y £ Table 1 \Zt. t fc50

Table 1 Methods and parameters for the simulation nn^mRxf mmmn iA^f+^i

200km X 200km X lkm 4000km X 4000km X 4km (lcell.4km*4km*50m) (lcell:80km*80km*200m) W83m Xnyy ffi& mmmmmm ■Steffi -^vXyry y ^E­T> (A)W : 1983) 6) OfJJH : 1992) 7) mmm E#fe Diehl(1982)C0 7 yXX r> ;*­* ftuJH (1987) (DWiE EXQUISITE y&8) &9) &m« Yamada(l983)60 2 TkXk—#—im 3.1

it#r## >F>co»ftA^L .fcf^C

%x%%§m*AyX 150 # 300 fp

- 121 JAERI-Conf 99-001

3. fr£*rS*;&tf-%Ms 3. l y^yWiMmmXb(DmmbXm.tpyb-ym^b(Dmm yFyw&mffibmm&bnmmtf. ^n, xx.xm& (iiim) izm&i-zoMz^

^^xmpixz>0 nwx&zsixizAAo Fig. 2 (d^-TJ; 5 (-7 K^»fC]t^Jg^, ^MA^-M 10km Ufa. 10~20km, 20- 30km, • • , 80~90km b K-A^M^g:^ "9, &mm* b&fet Z y F>{z&.m$$

AIXMy^ * y-y3 y£ft^tz0 z

Fig. 2 222Rh source area divided into some rings

tr»^*-Sr Fig. 3 Sd^-ro £fc, ^-fl90km Wr*3^->fj*Sjai-5 7 K^fc 100

Xb(D^A% Fig. 4 t0^-f0 Fig. 3 J; *), #«^fe<7)3r^f&*tlt;i\ B^Sii* £ t(-i|^b

TV^1iW;b^50 £fcFig. 4 ±19, fflffl^bfcfeS^tbHu ¥@ 20km tM^ro*r^

3/4, ¥& 40km £XfabA^b^9mi5:<(D^A\z^^0 £XA(D$mfa$kXb, SI$iJ\&ror:< i£

1 B^TOfa^it^f^ttSo r<7)H#U3, (l 0©¥^«t*(-*f-rSJt) - (a@-t-59#

- 122 - JAERI-Conf 99-001

// 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 Date

Fig. 3 Variations of 222Rn concentration emanated from each area

100 -

50 - - 30 -

20 -

O 3 10 B a s o - ° 3 2 -

_.I I . . . . i i . i . . . . S 10 20 30 SO 100 Distance from each area (km)

Fig. 4 Contribution to the 222Rn concentration at the objective point

123 JAERI­Conf 99­001

CO) Ratio ■■ (1) 24 £>>* J iaotiIt^5„ ^"C, C(/)li7^»S (Bqm ), t\mM*&t>-t0 X. (1) :«t«9 **­tug** Fig. 5 t^­n

1.4 • . ­«•"*»

5 1­2 ./Cr?"^\ a 1 •a ' •' *■** \% r '-. N — —y~. ­a *L> « 0.8 «a ••• •*•• •^•■••••••■•*« • • «••• ^k* «•■••••**• • «^*F "*& ******* *^ *"^ * • • •^ • • • "

& 0.6

• 0 ­20km 20 ­40km 40 ­60km 60 ­80km

0.4 i . i .j.. 1 .i. 12 18 24 Hour

Fig. 5 Ratio of concentration each hour to the daily mean

Fig. 5 xb, mi&i5:frZ>0 #(­, 40km U&izftZ b$lAMM& x% M:mz<&mmzxzMmw£B&W}X%btix^\ Bmmtf&btix< te&mmix, mmx>An.izmktzt>

*%bfflm», jsiia*3 m/s­cfcs­t*, nsnk

wft&xmmztizmrxhZ) (Fig. 6b)0 u&*­u H^«, sij^­rs^^roar^^^^^tt

­ 124 JAERI­Conf 99­001

K&SO Ats (Fig. 6c)0 uA&r- m (15B#r:^>) ciiLfc7F>^ fk&m&tf&mztLZtifm (emzz) xmm&\z$mA Z>m^f)\ \5tfB^m£At5XM$XhZ>bAMX%&0 AXt>h. M 1 m/s X54km,

2 m/s TM08km, • • • tf BMW]%A£X< 45ii­Cfc50 Lfl»U !HlS^i£V*­Jft^ • ^'fc&'ft

^jSLfc^x/vfrgfl^ra, *­©Bg«;*)S#j 40 km Xh&bmfe£htz0 ZfolA Mm^ijLM 7&K 7KAm%A^x%(D^^xM(Dmtxbm%w\zm^^^tzi,(DXh^zb^x^yx\^o

Wt^zbtmrnx^Zo

a a 6 a •a *T3 *T3 43

O O

0 6 12 18 24 12 18 24 Hour Hour 222 Diurnal variation of Rn emanated Diurnal variation of 222Rn emanated close to the observation site 30 km away from the observation site and with the same concentration as it left from the origin 1 "I 1 § (c) \ >s, ' x ^^ ' \ «J r \ ""^. ^"5 i o o •■a «j tA 1 1 1 12 18 24 Hour Diurnal variation of ^Rn transported through the various atmospheric conditions

Figs. 6{a­c} Concept ofthe diurnal variation by 222Rn emanated from near observation site

­ 125 ­ JAERI­Conf 99­001

3.2­ mmb$mmbo &Witi£.ft%.JEtf&.nizt>1zo za z^nm^mMmb-xmub^it^ytx^^^, #@ %%Lsikx, Fig.7^^­r0 $m\z. 1990^11^ 14­17 B­cfcs0

20 *■'"­" ' " ­' ., ■ Calculflted( tool) I CalculHted(remote) h cr CQ c o s 10 ■y u

o u ■ •

Weather and (D

r

Fig. 7 Comparison of observed and calculated concentration with some meteorological parameters

: Fig. 7 i>9, *T^XZ>0 Z^­5^<

&>9ii^, fe«fc^*«:J;b|SEWJ:

(b) i£Mff(^J:Sffl1^ (*0!l2) 11 12) i3 i^ ' 0 s/c, mxmmmttm byx. Mxi/xmz&^xmmviibm

126 JAERI-Conf 99-001 x^y\y^-yAxumt^Atz0 zzxix, fcnmzx&y byymm

fr£*£*&7 K^M(75«$!0

Figs. 8{a-c} Transport of 222Rn by the low pressure system

Figs. 8 j; >9, i&ni± b b t>\zM^16l&&hX^fr

- 127- / v Si TtffShnl n o w- r* ex r 2£ rv so- "^ rt Ft ° -Dill •» $B in ^ ^ ->r m Pr H H> Q *# =" r ^ 2H- *4- PF £F ^ X •u- ^ Concentration co TtffMrnl Pr u n ex rv Si* ^ SS r Q (Y & fv* r ^ Vr s^ m + o o c fv- ^ (S A H ex [ $ ex ^ O Cf T) fv* m 3 o O » m vj- rfr T^ m - 3 a s rv X ^J- ri O O 21 s- VO is a *• ^*s^ i-4 rs $1 GJ ^ [ED ^ 2 rs a n Q­ o 0) X 0 o ^ ^ » gf n ID p 1 SO tf # 9 /' $*• — \*~*— 3 a«r- Q­ ■ l c* (jj ' <* a — ey i ** • VO g. X 3» ' ° e>s X D" fv- s "— 0 o Q n ^S O O ; o 31 0 im ^ rt 3 — • Q- 1 T- o 0) ri 0 Q 4 ^ a 3 $8 rt $* Q f>f? 3 i Q- A •|g •# Mi 9 M / 3Sp 5 o + n "7-; 3 - ^ si & V A ■ & r* r Q fv- (jj ■ ulU sm Ml m S r^ >T i "77 5 ^ ^ r* V fv- iS fT ex H 31 i^ 0 r< % 0 ^4- «r- rv (Y ft ex A

Fig.9*3xr>*Fig. 10«t 19, i&n&mmmzy b'ymfex^fcmzmMyx^^^b, ^x^%\ 1 %(Dffi^AX%X^X^ZbXXXZ)0 Z(DA-3k(DWM\z^^X^AZ>o M. mbyxn, ®mmm(Dmm, ©xmx^mytzyb~y\zx^^x, ®ma UX, #i^.::ov^:£-<50

m%j±0 A%!±xmxx^zb\zx^, i^i^iaot 14) %m£AX\sXzy b*>-XAyl^\znAZ)Z bX, nmz£VmWXAX^^Z> 0 rcDE k, ©-MJEroaignm^ffi^fiTt-t (Fig. 11)„

1030

1020

1010 ^

1000 v/ 10 20 21 2223 2930 31 12 3

Day

Fig. 11 Change ofthe atmospheric pressure in Nagoya Schery bit, Sandy loam \Z-o\^X%J£(D^Ab 7 b'y^M^(D%itb CD[H#,£,

J = J0-kl\p-p}-k2-l- (2) \z£vmmytzi4\ zz.x, jitm&m (BqmV), xnxxjUkMm (Bqm-v1), *„*,«;£ mXAAXA 2.738 XlO2 (BqmVkPa1), 814 (BqmVkPa1), p ,p lt%j± b TOMffi (hPa) X h%0ZZX,3\ BXbl B\Zi)^7X(Dm£(DmtX\0\5Xbl005\&aby,X-$}%R.Xl0l0\&a 1 xh^tzbw&x^b, x. (2) xbm-xt5tizmmmZbA, 31 BXb 1 BlZfalfXffi imm &&£>&&&$> -otzZb^^^A^b, %B

\zmm^^:^^(DbAmx^ 60

©xmx^mytzy b'yizx&^x

xmxb\AZ>o %tz, &$Mt&Xb(D^rA$; Fig. 13 \zXAo Fig. 13 xb, 31 BXb i 0^^'-fcfi-5tE(7)^-(fi^#v\ tpmtpftuxm&Lizy b'ymmyx^ zzbxmx&A&x, ±&b yxitxmxmmytzy b'y{zx^^xxmm^.tz

129 - JAERI-Conf 99-001

LTV^0 ~£tz, *m*&nb. 3 B$>Mm&xxt7 tilibXA, z0 UA£V, z

Fig. 12 Six separated areas on 222Rn emanation

Fig. 13 Contribution of 222Rn originated far from the Nagoya area

31 BXb2B\zxnx, %^m

u^xtemvxfcMxh-otzzbxbttxzxo\z, z(Dmm^^&tfm]§yx\^(D{z^>x

- 130- JAERI­Conf 99­001

XbX, ±%X%7riytztkmzh^tz0 «, X%

'XXi^b^b 1 BZMXb yx±Wmz%l£XX.U\zh^tzZ bXXXZ (Fig. 14)0

1200 I i i i I ' i' i I i i ' I ' i ' I ' '

XX-X ' 29 ■ 30 ­ 0­ ­ 31 ■­X­­ i •A • 2 U ­ 3

I I 1111 6 8 10 Potential temperature ( K )

Fig. 14 Vertical profiles of relative potential temperature at Nagoya

©mB*tt&MbA&y b^yo^X mBA^xbiD^xzm^&tzmz^ x,m\M^%ftmytzfab^xhz> Japan WXbWk Ltzy \ty

• / *^ • / ^ (b) 1 Jan. 1991 J% (c) 2 Jan. 1991 *nl •• yl/^ •• JL/lj&i \ y 1) '^s^jy'--\ "• c 7 J ■Jn * * > | r­4­­^ Wx

Figs. 15{a­c} Contour map of 222Rn concentration at ground level by Japan source

Figs. 15 «t 19, te­saJEE©­!­®^ SB*(­£^TM7 K^«|^SiSJ< * ­X ^"fl^^frf­ £\ ft^^F^^Stte^^B^cD^tci^S^^^l^^iS­fiSo i£l§M#\ t£«k

«±5o<7)^i:i^t#it5^ ^$e^BEiiig^*7)ra«iards, aa!i^ia^*7)^*«,tvc

M%A.Ltz^m&tfh&ZbtfAvk£tiZ>0 Z0

- 131 JAERI-Conf 99-001

(d) MiXffXmm (*#J4) ^^(DtM(Dm%mx^k

■ Japan □ Russia ■ Korean Peninsula ■ North China ■ Middle China ■ South China

—"—Observed —'— ■ Japan -^Calculated d : ( ) D Russia fl Korean Peninsula 2 2- ■ North China ■ Middle China ■ South China

22 23 25 26

Figs. 16{a-d} Comparison of observed and calculated 222Rn concentration in Kanazawa and Contribution of 222Rn originated far from Kanazawa

tmytzMffliA m<%Mi&(D%mmxmfflm.xMX'Dtz 1990^12^ i6~i8 0122-26 0 •cfcSo \$infflbi>, &m.xz b hxmxhzx, #< (Dmmxmw&xbzz>xhz>0

A%mk^x^%ri\^xy byym&£W}

132 JAERI-Conf 99-001

y b~y^xm^x, mm&frb 40kmmmz{u.mxzzbXA^Atzo yxy, &&&&&$! x^mxbhftxztoiz, mfeytzmxttx<, %%tm^\zxK>m\zrz>\&xhz>o mmbtmrnbtttmytzfagk, ^XMZXV, &m-&mn&m^y b'ymm(Dm^ifW-xbn, fe%&ti:oik-k-Mm(Dm*&&:X-z> zbxxztz0 L^L, ^m&%!±mmtff(DMmfe%xiz^^xtt, ^x^t\%\zx*)A(Dmh znm.Az>zbxx%xx^tz0 z

[:Kof:SB*©7 b*yXW£t5Atzffi$k, mXLtz»jmi±Xh?>zbXAv£i5titz0 z

W

(9) m)\\m-.^'Xx^wM^i\mz^7xm$.^M(ii), R#MAAJ¥£U<,29,PP.823-833(i987>. (10) Yamada, T., Simulation of nocturnal drainage flows by a q21 turbulence closure model, J. Atmos. Sci., 40,91-106,1983.

- 133 - JAERI-Conf 99-001

(11) Dorr, H., B. Kromer, I. Levin, K. 0. Munnich, and H. J. Volpp, C02 and Radon 222 as tracers for atmospheric transport, J. Geophys. Res., 88, 1309-1313, 1983. (12) Polian, G, G Lambert, B. Ardouin, and A. Jegou, Long-range transport of continental radon in sub- antarctic and Antarctic areas, Tellus, 38B, 178-189, 1986. d3) mf mxmb : 7i?7xm*b,m£ffl=x.-*,is*5-s§-, 1996. (14) Schery, S. D., et al.: Factors affecting exhalation of radon from a gravelly Sandy Loam, J. Geophys. Res., 89, pp.7299-7309 (1984).

- 134- JAERI-Conf 99-001 JP9950134 12. tmrnmrnm* mm^nftx* mtmrnzmzmi

w.TtmLftbx.%Mzimizfttzimm^ imwm\z^x tt±tmm\Hit^imwtimm&

*-3B^x?fi, tmm^imytzmmmmmmm^bAM.^bmmmx%mm, mmm \ZJ&\ZT± - ^ • m$^bxm*^bm7ifflcrz>h(DbLxwiy\ tttt&zim. wm\zm$mz&zbmmbntzo

Studies on deposition, adhesion and resuspension of radioactive substances on the ground surface and ground cover

Susumu KURITA, Kazuo KURIHARA Atmospheric Environment and Applied Meteorology Research Department, Meteorological Research Institute, Japan Meteorological agency

After the Chernobyl' nuclear power plant accident, resuspension of radioactive nuclei into the atmosphere is recognized as the one of the important processes that must be considered in the estimation of inhalation doses to humans'-4). In this study, resuspensions of particles from soil and grass have been studied. The resuspension of particles from bare soil was modelized by using Shao's method5'. The resuspension of particles from grass was studied by a wind tunnel and a field experiment. Dependencies of the resuspension rate on time and on friction velocity were obtained clearly. And it was also found that the other meteorological parameters, such as temperature, relative humidity, solar radiation and condensation, affected the resuspension rate in the field.

Keyword: Chernobyl' nuclear power plant accident, Atmospheric Diffusion Model, Resuspension of Particles, Resuspension from Soil, Resuspension from Grass.

1. ztm^V&fWffflL i. i ^XACDym zn^xcDimwrnvimxiXAxu, A^*\zmisntzffi&

- 135 - JAERI­Conf 99­001 i/otfc L^U ^M\zAo±mmz)Zbfrb%mnx$z>Az)\z, mfi*-m%m\ztmytz m, mf*%&^.ftMLtzQ, ±m\zty£nfztimmmyx, Am^vmmmmmmxz&z zb%%mux\7nwj.btx^?mx&z>, znbvpm • zY>m• # yx-F*ybbW/ux^z>o £tz^wzmit&ytzxmA-\z^*zmzmnx®< mm.-.?* shao bv iz-VAX-ysyxx)Vf—yB.> • #>A*­­M>b\zA%ty \zAz>mM3m&w%xz> z b\ZA O ^XAvmm^Xo

i) xm-bimi-amm ±XAX\ZI£?, x.^\z&MLtx^ttttb. ftm-z»mA-\zftttz>0 xm-mmzt, mmm m (mmftximmfrbxmzttbnmmxzzzm-nyt-y) r)mRimmm*mz.z>A otx&^m^Xzmz, yv-¥yybV)ix-y3y\zAvtmmttfcx, -Xo, x m-\mtz\7x\mtixz\\ znmmm^ < &■&b, m\zAmfrxti\zttxz>ttMt)a ^tf-(DW¥^m\tMalcolm and Raupach 7' CftV* W. = {(4(pp/p)gd)/(3CDs(Ret))} '/^ pp:fe­*F*« p : S^8& g : lttj£8 d :&g c **:#£&& R e, : W /;UX»(= w , d/ v) v : r$^©«*!n4»»

d<30//m w.ocd^ (CDs=24/Ret) d>1000//m w,ccd 1/2 ( Cos =—£=0.48)

ttumzAzmmmmz, «u., «■ #;i/?>£& (=o. 4) u.: &&6ig

w t (d 1) = 0. 5 K. u ♦ tfc­SdifcaU &&d£fflV>T, d

­ 136­ JAERI-Conf 99-001

d>d! -*•&-? amLTx^)

2) KgH*8e£&

*$tl, ^n£|&#«ig (u.t)

THRESHOLD FRICTION SPEED

THRESHOLD PARAMETER

Fig. 1 Dependencies of threshold frictionspee d on threshold parameter (Greeley and Iversen 8> )

is$w*S6£&»z>8£K*. l/2 A = u.t(p/pP gd) Afe^Wtefc^nTI^T. Wy;UX» R..= u..d/v£fflK 0.03

A=0. 2(1+0. 006/ppgd 2. s) i/2/(i+2- 5 R tl) 1/2 0.3

2 s A=0. 120(1+0. 006/p P gd - ) "-«

{(1-0.858 exp [-0. 0617( R.t -10 )] } btxZo 3) j$L:7Wr-)]rr-->a> ±tkT

137- JAERI­Conf 99­001

2 m; znummmtz u.i) Owen 1 °> HA­b^yb

2 £7,F (kg/m s)T4X.e>n30

/j^foggsd.iu iti&iwmffiizmms* n^ftmtmzm). whm, X^JI^­OJKS

F(d.i, d) = (r Cbmdg/c, t/»)Q(d)

m,.: /J^­^OWI

c b : ZL*)l%-

Tz, m^mm&n (7rdd2/4)p [u.t(dd)2] bmZvmtXA-Afrb c ♦ £•»»£ LT i/> = c#(7r/4) p u*t(dd)2dd3 x&%b%xbn%a znztXKLx F(dd,d)=2/3(pp/p)(^rg/ [u..(drt)] 2)Q(d)

/3(cUd) = /3i(d)/32(di) £LT, il'f­^eiiri^M, 31 (d)=ah(d)+b a=0. 125x10­*. b=0. 328x10""

/32(dd)=exp(add+b) a=­140. 7, b=0. 37 5) mtfsmm.Tztswfe zn&x\*&-isxm0m&\zzi\,*xft*fctfi. ^m^xmuu^um^^xr-^t/yx^^ Z

6) :EXA

xm": tmnxxmimmfzvmm

- 138­ JAERI­Conf 99­001

A%LA- : mffl±x

T»5. a, ­m mmmmtxbizmtmi^XAmfrb-5-pLZc j&wzffim-z^¥\m\z&om2tix®7)^ tmmzLouis'i»©^&

tM®^bv?iiLfe/J^T©tBrlSL^fliit^ Mellor £ Yamada • 2> CDI^;i/2­^x;i/£/B^Tfr#­f 3o zcDwmm^xiuz, £*&­?.6T©*m a^^btanifeii^^^^fWi^csrjsfecDTsso /J>&­*P©*^#T©*¥;^©^tt 2 ^©■H^TH­IJtL, ­tfl^^fcW^glfcT^cabtlfe{g«> © 2 m/s SOUTHS. £n£TI3zii^bttfcft£T«> D-JVr-i/a ybXAA-ya y • #>A'­ K* > b(Dsfn\z\zmm $£. Tfmmm (mmx-Miz, n^m.w^.^\zm<) csstLTi*­**.

7Dy ^ffitlSffl? ^ ;^­§|ft*'&to*frTW­»­£fT*pTlri5. i. 3 m&^XMz^z shao bv (DmimmcDmt shao b«) {fct^iT^^­tic^­viT^^sAc^fc, mmmzft-DTz, fm^^

Fig. 2 Wind tunnel experiment by Shao et aL fi)

shao bsu2j?>v)&@£^L mmimt^^x%\m^n-Dtza &ommto\vMxni m

­ 139­ JAERI­Conf 99­001 b\2. 9m/stf)#&£^Lfco mmW. 8m/s ©1S£«, a^tlfi«7­57^X^lt^L, i^^«777 ^X^tfASWI^L, 12. Vm/sXiZ^^Mfrb®<»yyyy7,1bAi$,

40

20 i—j—4—4—*—­J—i i—* F * * 9.8 1 0 100 « Total 3» 80 • Sand 12 9 ~ * Dust o 60 O 40 ^:­t;\; 20

0 j i j r­^ri^ 0 200 400 600 Time ( a) Fig. 3 Time dependencies of horizontal flux (experimenO.

m>iu­. b7myyyyy.Q<»mw

5 ­♦—Sand ­­­­­­­Sand(Shao) —*—Dust ­­x­­­Dust(Shao) —•—Total ­­­­­­­Total(Shao) 4.5

™ 35

O 3 c

2.5

1.5 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 lnUr(m/s)

Fig. 4 Dependencies of horizontal flux on wind speed, (broken line : experiment solid line : model)

140 JAERI­Conf 99­001

ztuzKL, m^XAxzcDmMminm&m-tz, ^XMt^&Tmh^cm, mxmnm £, 5,10,20cm, *

W$0kVrbLX, rmW\Z\m *§T300­500^ m ©&ff£2cm M\Z, ­^©®Tfi'JtC2m mX2[i m ©&ff£ 2cmm\zm^rzo z(Dm&frbmwmft$:m\ &?mttbfc¥yyyyy(Dmfflmt$:#tifz. *¥ yyyyycDmmt, HP (A:®.?) \zzo\,^x\to @}&I^bfr»L, g (Aft?) \Zzo\,->X\**&&X

0.= J n(z)U(z) dz frSffl­ffLfc. Z(Dm§

•&«, Fi&3zbifit>frz>,

TJ = 9.8m/s ooi U=12.9m/s <£>*§­£­ 40 80 70

Sand ■Dust

10 20 30 40 20 30 40 60 Time (sec) Time (sec)

Fig. 5 Time dependencies of horizontal flux (model)

ai^i^ys­iWya yfrb&&tz7mb7myyyyyb(Dmi&* Fi& w$mxm: (BUPf­ggft) £**£ (y$a^­y3» Ttt­'M^fcJULS­tf, £<^LT£D^£^­*iiiSII£ i. 4 mtizmzmymt-zamir-n ¥MW&x(omw)fffi$:*m£ ytzmmxMzA%nm7mz^x%tz$>

WM^T-DTZO

1) fiwre©©^^

141 JAERI-Conf 99-001

mbxJ»*-7A) £o.6mx2.om (Dfc2\zm, -?:CDaTfi!l5mmntzt&&X\ iS$10cm,50cmT^M^^>7T^lV^Tl'>/^^-TM^ -A-ZMML, ^(Dyjxy-Aoby-x-ztTyybLtz. mmizmgfvm&zft-irzo ^CD^IH x^rztitmm, &fflm

Table 1 Particle density in the atmosphere by the experiment (model results in the parentheses.)

3 SfM (xlO-kg/m ) fflM (m/s) a<2£Lft ilic? 10cm 50cm 1 2.66 4.53 3.1 A 2 3.06 0.268 2.8 A 3 16.43 2.97 3.0 A (5.4) (1.4) 4 0.376 0.062 2.8 A (0.12) (0. 031) 5 0.768 0.232 3.0 A (1.9) (0. 46)

2) m&xz>, 9bmntz%Lj-mmz%z>b, mw&mm%.m cut^, mmvm mk^AZK, a nfuifflz&KtTifi. mm*x^x£b, fn»©!mt*«t<^LT-feo, sfc^iitc-fe^-smRj-hfc-sc LT£0, ^i-t-r^^i^CO^^tC^V^T^^l^-t-^nJ^T^S£5a.^-v3>^rTV\ mWmg£jm%'h45 ®x, i&%

- 142 - JAERI­Conf 99­001

2. ^frbvu^vmrnm mmz. ftyxmmztfmytzi&Mmmtfbo mmznmLrzWLM^mm^m^^3o L^L&^b ^Tn*>, m*Zb\zJ:r)y |f j||S, mWmz&Qib&z^fz, Un#yr)Aligg3 0­3 45

2. i ap^nftnis^^oe­^offfrift^oas a«^»tt!Si«nw^0fo*sajH*ffl^TfTofc. m&mmvmg* Fig.6t^­r. J

3. 4g*»T«*Lfc. a*tt^^cff^­i«jS­6*^*&fcft. s«^5»a**rfofc. m mL^\r&^\zmnytz^yXy-xmi*fti$zi$.#>tzo wsfanftWttoZftvibft-iitT- y,bx$.tbumzzn&mxzo mx\zh^yXy-^mtxyyyyyy\im^^M^zb

(*«­Jf=2m. «=3m. *jjf=18m)

SiBILiS U«>

1 i H=100cm

&*«»*«

" 1 H=60cm

1 i H=35c*n ^­5>r*ffl 1 H=20cm t ■ 1 H=10cm |­t*­>^­J­(f­««)| H=60om, W=55em x 4fl »­HKffi >)*.•} St? (:7"7>*—27x45*))

^— 3 m ^ £­ 6 m US 6m , ­^^•0.4m^ ■>f M2. 6m Fig. 6 Schematic diagram of wind tunnel experiment

143 JAERI­Conf 99­001

£fz®mmzmwLx&Q* z n*»^c*^5aaEf**&to­a­s^s**»5. ^©siif*«fco^**'S^5a©^^^ wi^ffi **^t»^ciabfemxztx^$.mx$)Z7)y z

1000 S_LJ,.|,ULI||.== V'­l­—TurbuIent *~t ­■[ F i e aninai i _:: / LII LH~ .. .^.ibUX. 1 1II T K^W?*>.r.^JIII« . / 100 ^ li'S ■| _5E3 l!'Mi­ E «*<■■■ :| TO fffim T > * 1 Mill Iv 3 •pp 10 :1 t j 0.001 0.01 0.1 10 100 nz/U

Fig. 7 Wind Spectra over the grass in field and in the wind tunnel with laminar and turbulent cases.

W(' Ja­V tV) <7)*­V/t*­<7)

8 6 fliSl [aatl 7 B ^ 6 ­»­aj»*i3 ­»­*«a.t.5 fi Bfl R­H 1­ 1 ­ ­•­asans J 4 ­•­«»» &3 J 5 ­*­a«*7 , ­*­«nas •o t y* ­*­*ifc*i3 a ­a­*ifc*i5 ­a­*ifca3 a yff \ ­A­$ib/i7 ­*­*"*> as 1 3 s rf*f

2 J 1

1 ! 0

0 10 1 00 0 height (cm) 0 height (cnv 1

Fig. 8 Wind profile over grass at two sites, left: laminar case, right: turbulent case.

144 JAERI­Conf 99­001

Fig. NZZ(D9tf(D&t£Mm., ZO, d(zero­plane displacement) #&< #t#) bftfcV^TKt",,

6 1 1 5m/s ■

o o 4»4 J ­ T © ­ ao 3 CO ^ 12 "^ ■$"[** SL5 ,­' ­*­ zO, U*

10 100 z ­ d (cm) Fig. 9 Example of determing friction velocity in the case of turbulent wind.

$l£«3ai£ (aP^kaS^ajlTl.5, 3, 5 m/sec) frV>, 1f>7°U>^ttO. 5­0. 5 ­ 1 ­ 1 ­2­29^(7)yV-XXft-ofZo $!l£iig3l£ Fig. IOIC^TO Z(D&mfrb\Z, V>T n^<^§*i;j;StS,fens0 fcfc'L, gfiviastHLTtt, «]ffi­7)*9*>^'j>­yi^m**­s­r*gfTii«ffi[**«¥^'(t$nTi1 fiy7A&fayx^%mzillXX^%h^ u>­yi^ra&«koai^

! HI T 1 ;KH«*17m/s­l*J.« 5m/s| o ? I­ E? ^ ? £ LU E ­ c

" T 5. LU 5*^ ^^

? ­»­5Liiit£7m/s UJ —♦— SL5S5m/s —A— SL *j*t3m/s ­»­f*l"Sl.5m/s ? LU '0.1 1 10 ^ 0 0.2 0.4 Time (h) WSSiSS (m/s)

Fig. 10 Results of wind tunnel experiments, left: Time dependencies of resuspension rate, right: Friction velocity dependencies.

145 JAERI­Conf 99­001

2. 2 mtvm. mzttmLtz&?tf&®Mm\zm \zmMbm&mmvm&bLT^SSW^, &%wzmtz ®\z, &Kxl!t«[IC*­5. ^ttl997^©12^4~60 (y y 1) £9­12 0 (*5>2) c7)2li]fTofco £<0l$»lfT •­•>£©«, Sif® U S^v^A^M mto* znbvm^mmzMrutzo nmmttKDxyy'v yyxx yyyyyyb-tfm^zbzmmLtzo (i) nmvm%. Hg. lnc^nwtt­feHs­s­r. Ua^yty^i*ifcy7>^­ :*­­£ttV>fc. ^ntt»^Ttta*<*­5/i:*S[:f:*»*fC«fc0ft*3­fr s®a^jpo^­5>^­*ar;siiiicft«fLfc8[

No. 12 No.2

No.ll O 3*5B Na3 «^­#­tt?t{*r*g­ttfcMH* No.10 No.4

No5

Na8 No.6 No.7 Fig. 11 Schematic diagram of field experiment. Grasses were placed in shaded area.

m®Mmiz\z%%m%(nmfezff-D&. $?' <±K:fc*«fc3K:»5£L, m»m&£* mf&WxkVMfeZft-itz. <&L£©teH#ISSnTV­> z><7>xiEmb\xnxtx^tiy m%.fa%L7°U>^i!fM«, S*ttl~2. 5I$|HJ, *ratt^^*^ffl*T**fr­3fc. 1^>7°'J >

f««*otf»tt, xyxvyxmmbmmft^Rrt&feftttzm^xmy znz%.>mm s&o\zLtzb

146­ JAERI­Conf 99­001

(2) te*

Fi&m'gg»l|£­S££­S"r. ­#±^H?Htt*0^rMSiiT, •*nv>fcB&ffc£­­*KLTH* ££##;&•**. ­t©T^ieW«l*ek'5aiici:*«{iiSoWfM«ji*^T. dn­bBg­ftS^L TVi*. tel'i&g, S& ±^B^T*, 83*7­5 y:?* Si*?­**, nn^­bBSftS^LTVi 5,

a­7­©Hffi»¥£g­tffiM&ft©­r­$©J­t& (itt/^'Ji/tftti») 2.E­06 — lJa.­t7yt^>f,A(7) — S^lft^ (resuspension rate) T

1.E­06

m 1 ft £ J + 0E+00 h A ­W—4 ­ 4 5 6 7 8 day 9 10 11 12 13 *3 g^ffi Ia a d o#¥$) — "*o 0 A,>j «10 * 8­ 1 \ A k VA WM ■a VJ** > HF 4i\ •i o v^ rU i ° ======«======«======^=^======^= 0.15 |—Mat SiSSg doflo — I JLH |j

# 0.05 L M •" J^ lr l1 3 \ jun , Jft. *-AV L>iy J 20 fl­ts as . Prv/ 0 \ v v/ UJ* pn vw

100 ­f»3«« Sg (10#¥*3)­q 8 80 3.79 hum £ 60 tfi «S ^V 4JI !5 40 V A 1.71 hum V A ,J* \. | 20 *" j r 0.45 hum ^L* V ^ v\ ■= 0 i,. J. i

~ 600 ti O0#¥$)—| r —j—***£XBI / 1400 ri |200 / \ /• \ I r \ / ^ /A \ 5 ° »AMT HSMI—.—...*.­» /<«yu 120 JtEia « JKiS £• > w A U^ 7TJ • ­ 80 ■ CM ^ i / i .E 40 4 \ ) ^tr~]1,. ­. / \ i J J 5 o r"*s <**~~ nJ >w •v %i p V Mi x­40 w V 4t 5 6 7 8 day 9 10 11 12 13

Fig. 12 Results of the field experiments.

­ 147­ JAERI­Conf 99­001

mmmmtznb ttf, afiTtt­^©ajST^»T*s**fc»#»jig^­­^cbLT^aET#***, » n T a­i n# w © •* >:/u yymmvmizmfa, a &*<«* *.?:*:# < £®JL, ­ ^oilSSSttfHn/j^. »#te;r©«fc-3fc •toDmoD^^s^j^stn « & ^ © £ a«, s ?HE « © «-&a s © ^ » te * T •» d^ 5 «t -5 ICJ* «f s s © 4 -* {c jt w -r s fc a, $SH> a & © S2 ^ ^* * -* < & s. -L-ct^oi^&tiriii^ (u*eff) ^^iu ^©-y->:/u >-y«im©#*jis©jiSch L&. U*eff = (S U*(t):/u >^nm £T©Eltfll7lt!(^yU>^SfcyD<7 hLfcfe©T, ^Htt^n*-® i$m\zLrzb(Dx$)Z>. ztifrbitfrz>Az)\z, AZfrizmtJimw^tDA^mzmmmmbAz^ mtz&ztfi* Mfr<%zbA2txWMmmmm\zbmmLmnmzxz^m£>b&Zo ^zxn mmmbm&yyyyztom&z^'DAT\Z, M&tb, wmxyy yytf-?ixyxwiLknz. m-m&yyyyytf±z^£z\zm m&wfrz^m&tfi&zw* zomtmhmmmmm^^m^zm^x^o mz&&zmim.:?-&WL ffiL&­€­©B©B*©^*£­*­f. £ttbtf$(^L£tt<§©££T&0, mLL^X^ttmz&itzrt, ztihBmmo Z

nrttR*tir«i*»ai* •rarwa*"*:­­???* H««*tJl« ml 4B

run 2 SB —■—run 2 10B —.—run 2 11 B i "\\

—7^^

=*D.OO 0.0S 0.10 0.1S "-HOCO -50.0 0.0 50.0 1000 U*efr(m/«> H (W/m2) w-RiR*t*a*«as nmMkMM&M*. H'ftiikv'iaac -"-H«v rj ^ E

K '1 %i l .e- s """LI ! \. s Lli ll I I —o«^£: ■^-Z IZIXI mi??' 30.0 5.0 10.0 15.0 20.0 temperature ("C)

Fig 13 Resuspension rate with effective friction velocity, sensible heat flux, relative humidity and temperature.

148 JAERI­Conf 99­001

Fig u\zmWibmmmnz. fimvmtmm tB zibtiz. bo iz)\mmfa\z*\Lb2[z.btiz>rf, a­>fco,***7y*iB 1**0, ±M*^©*•»©»•%tBIW**Vit«a*#>lSt, ^M©S^S^i^nH^T©S^7*5^ ^©»^&^b^­­hX©TO[~ifi^^^ £0T:itt5«*>fcOiftV>

sa$SfcSa>fl#raiEtt mmftmtitwmm&s. 2

o I LU

field ex. I

runl 4B runl 5B ■a u* run2 9B run2 10B run2 11 B o y 2­3 h 3­5 h

5­7 h 2

field ex. wind tunnel ex.

"0.01 0.1 1 10 time (h) U*eff, U* (m/s)

Fig. 14 Results of the wind tunnel and filed experiment

2. 3 £*>•=> ©*!»©££:«& araffct^yiiifr b^ b©^^wfimicK­bsssw^tR*^*^ £= c z \Z\Z9RZfc­^o rz&, £©** / tf­t LT©^tfeiM^T* o, z^x^ Sfe©

149 ­ JAERI-Conf 99-001

(1) NicholsonJCW., 1994, J. Aerosol ScL, 25,743-744. (2) GargeriLK., 1994: Air concentrations of radio nuclides in the vicinity of Chernobyl and the effects of resuspension, J. Aerosol ScL, 25,745-753. (3) Hollander.W., 1994: Resuspension factors of 137Cs in Hannover after the Chernobyl accident, J. Aerosol ScL, 25, 789-792. (4) GargeriLK., RCHoffman and KM.Thiessen, 1997: Uncertainty of the long-term resuspension factor, Atmos. Envim, 31,1647-1656. (5) Shao,Y., MKRaupach and Ji\Leys, 1996: A model for predicting Aeolian sand drift and dust entrainment on scales from paddock region, Aust J.Soil Res., 34,309-42 (6) Shao,Y., M.R.Raupach and PAJindlater, 1993: Effect of saltation bombardment on the entrainment of dust by wind. J. Geophys. Res., 98,12719-12726. (7) Malcom,LP. and MRJlaupach, 1991:Measurements in an settling tube of the terminal velocity distribution of soil material,/. Geophys. Res., 96,15275-15286. (8) Greeley Jt and JD.Iversen, 1985: Wind as a geological process on earth. Venus and Titan, Cambridge University Press(Carnbridge). (9) BagnoldJLA, 1941:27ie physics of sand and desert dunes., Chapmanand Hall(London). (10) OwenJ.E, 1964:Saltation of uniform grains in air, J. Fluid Meek, 20, 225-242 (11) Louis'JJ., MTiedtke and LF.Geleyn, 1981i4 short history ofthe operational PBL-parameterization at ECMWF. Workshop on Planetary Boundary Layer Parameterization 25-27 Nov. 1981.59-71. (12) Mellor,G.L. and T.Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers, /. Atmos. ScL, 31,1791-1806. (13) ChadwickJR-C. and ACChamberlain, 1970: Field loss of radio nuclides from grass., Atmos. Environ., 4, 51-56. (14) Chambeiiain,AC., 1970: Interception and retention of radioactive aerosols by vegetation, Atmos. Environ., 4, 57-78. (15) AylorllE., 1976: Resuspension of particles from plant surfaces by wind, Atmosphere-surface exchange of particulate and gaseous pollutants, ERDA (16) Taylor Jr.i\G., PD.Parr and FJ3all, 1980: Interception and retention of simulated cooling tower drift by vegetation., Atmos. Environ., 14,19-25. (17) Garland, 1979: Resuspension of particulate matter from grass and soil, AERE-R9452, HMSO, London. (18) GarlandJA, 1983: Some recent studies of the resuspension of deposit material from soil and grass, Precipitation Scavenging, Dry Deposition, and Resuspension, volume 2. (19) Nicholson JCW., 1993: Wind tunnel experiments on the resuspension of particulate material, Atmos. Envim., 27A, 181-188 (20) GiessJ\, AJJLGoddani G.Shaw and DAllen, 1994: Resuspension of monodisperse particles from short grass swards: A wind tunnel study, J. Aerosol ScL, 25, 843-857.

- 150- IIIIIIIIIIIIIIIII1IIIUIIIIIIIIIIIIIIIIIIIIIIIIIIII JAERI-Conf 99-001 JP9950135

13. 7^mm"ezr)i^m^t h u ^ AM^CD^

ihm&m. *#mm

myqzttx&^mxtDm. 7kRux, ±m3#\t. m^x * im.#&xm(D%ttfrt>&tfL-znz>. x^t±m\x m#&zt7kw%3.\z&y)i&$2tix^z. mx.\x mftnxv*z>tf. mm*ffi ^?L xb

Development of Water Circulation Model and Application to Tritium Diffusion

Hiromi YAMAZAWA and Haruyasu NAGAI Department of Environmental Safety Research, Japan Atomic Energy Research Institute

A numerical model of the ground surface with vegetation is being developed to dynamically model circulation of heat, water and other materials. At present, coding has been done for the movement of air and water, which are media of material transfer. The atmospheric part of the model consists of momentum equations, a conservation equation for heat and a turbulence closure model. The soil part consists of conservation equations for liquid water, water vapor and heat. The both parts are connected with the ground surface heat and water budget equations. Although the vegetation has no heat capacity, the model considers formation and evaporation of liquid water on leaves, transpiration from stomata and shielding of solar and atmospheric radiations. Since this model describes the physical processes at the ground surface, it is not directly applicable to assessment for circulation of certain material. However, the model can be applied to ground surface heat and water budget analyses, and to atmospheric models as a surface sub-model. As shown in the application to an HTO transfer simulation, the model can also be used as a framework which a material transfer sub• model is built in.

Keyword: Water Circulation, Atmosphere-Soil-Vegetation System, Tritium Diffusion, Numerical Model.

- 151- JAERI-Conf 99-001 i. ^xxm^(D^mtm^^^

¥Kfo\ZAyX HTO C^JftSnS. A0 '&yx, hvxvxtDmm^mz^xxitxzfz&izix x^-mtn- ±mvn&% m%mm&%) xafrmwwty'frtf&m£•&%. ££. xox&oimm. vomm m, mmw) , x^mykmw, u^m%fiymfc*t>\z\$Qjmm. • %M(Dm&*faxo $*&&T©;*©ft-*ra;ffi#T«&Tfc5. STg^MTT-tfzktflift, ffitt, latt©HfflT #£t£. sfc K7K*, MM^©M^^W^@, ^©ast, j&saig, mmmmwkfo^m mm, ±m^mm, vmm^mM^^mmtA^cDmt^xMyx^^o zb\z, ^<©7K©SJ# tf «{££#? £:#>, ^©X^;i/^-MtLTBW^^MK^^S^^^iiJ^WcL, fi©i(j-* feiffiTt^^. ztib(Dmmtfxztmm-Qmyy--xx%Mxz>ztt, mmzfamk* n^z£%mm*zt>\zim\z\yx^z>. m^mmm.x(Dmmm7^^^mwmmmm(Dtz^(D^m^7Xu-x, mzmnnm • w%. tf, ti©«si-3-(D-»»-£!S<'Stts. nentr-^ Ztt, WM&0$>Zfflftt:£'£mm7Xn~-A(D>&mmm<, Ati\z3x$cD%m^m^7bnz> ^#T$>&„ ^^©HmM^^aiw^TSSt^ctf, vmmw$}$&£Q\zffl&x$>z. *# btf, ntfti ©$##£<, -tai4©ii&v^M£-&&©fcig«i8©-t*r;wtz>t%xz>. *m$tx\$, n^^x(Dmmmm\z-D^x, xzzmvumx^xxoiwm&zm^y, mm n\zz>^x\$&mttofc%to£mm\z£zm&%i&fr&tsz\£\z&r). mn-xom^mxm^tn wxzzA&vnftxcDmmm^mx^xxzBmx ->. d©gwT, ^M-W^-±«« ^^^©TK, &, ii®?*, R^©te©!«iltiM©^Ji!j£gTM^x^i/ SOLVEG ©ffi%* itJ6T#fc 2K ^xxxm^^n^A ®mtft£rz\$M&ftmxm\L2tirzb zt^m^f-x^tytz.

2. ^XAfa® ^XX£ffl^£o foT, SOLVEG IttM^^tf^tDi^I ^y^xil/tLTWtSfiJ^m/itttfcC, ^Sli-rSct^l'^^-hLTfc-SEfflT*-**. fcrfc-hT §^f^X^-;l/tf, ±M*X\mmX$k 10cm ^UmISfflffift±l, ^•-PTKMil-tJfS: £tfJgM©^ffl (10 m (DX-X-) Tfc£. PHYSIC tf, ±^U£#JS (l km ©*-•?'-) £ fctefcfSfeB (10 km©*--?--) ^tit4. -ETJMI ^M^tfa^jc, MMOTtflrj rS l ^7c©il»j*, m, TK^M, $>**^©&# C&SS-ifcifc) 7^Si^£, t»T©7 7 7 ^x©a^w^^gtiR^its¥^b«^$n§o i ^7c©g^tf, 3 xx:

- 152 - JAERI­Conf 99­001

-i&%&%$#>z£o\z (IXT&JIZ) BBesn, *tfM#tLTtt 3 xxtbts.*. mmzw. %m%¥>77£*>b\z^XxmU$:i&&XloV, X(D^X\ZA5X3T7\Z&'&A®W. 1 "XittiTio

WS. tT­*;^g^tfM#&(I<£oT#K„ l^mii*»ttft^WIBC«J;oTS^5^, il^tf^ 8>A^bl0#SaT&S. BH7^­JHt H£{b&>b&*¥!£{££T£*t*fe£T5.

2. 1 ffi^H^ct^gitH^m ^T©^S*©^^^^RD?­^©[)#rrfl^i'L:$i¥fffiT^;Ex^T$)^o ffi£«±M©M$£r, &M, fig, ItS, W7K£r* (H7KM) HffiM, 3tI«#:7K£r* CinbH|lii­r­S*l*ir^©^ii@i:LT^T***­r­S.

M?L> b ©^m(±«^ b ©7K©QftVi±tf) *®7jc$ftfr> b ©jll­SgRifl&ilgl;: £­5g®7K?g^j£(7fc£^£&)

»»%■£ • MM, »7KM®;&»7j<,;:££«ffi 7k»bO^

mw-mzxmiHxn.m(Dmm • «£$

±f&mi&> RISAM^. (») 7*5^^^*121 ^m^TK^wffi^tf^­o­htllftwKiR • urn.

x^^mwMRiswMzx^mm^, nMMmxxx^-^m^

uxoommn^mz, mmm-x^momm. ^mnjsasmmm^m. mmmzAzu^ m, 7K^m, tfcfc&mSfott

2. 2 ±91

cnbtiPiiT?>±^*(7)t)IIiM^cbLT^T^#itT^o

153 ­ JAERI-Conf 99-001

mZ£Z&ft

i£gffiT©Btt&^B»W©®:iK, M#± ttfJbCB»W©^)

ffi&^^^ffiLfe^lftj^tt-IR^Jifeft^S-rs. i^ffl.:tf±li©i$fn#7K¥£a*7c7J<# O&fflfrftW&ft.'t*> -1 £#T-* s#, nteSffiT©sKai(7jc¥^iRi©7 7^TO«us©tmfexz>(Dfimmmx$>?>yo z\n\z&frm\z&zw&(§fiy m^mz\t, zbizm&^zsmk* ^XAfa^XW-mfWXtZ>XylZ^XXCDm^ZMsbX^Z A PHYSIC Ttf, A^0WW}X git, &##£. -M^n-^-^T-vk ^w^fccto, mm, u&, u^mmmmm, x^m M, BMmzmnxz, mm\t%v&-?z>.

Prognosis Horizontal wind components Potential temperature Turbulence kinetic energy Turbulence length scale Diagnosis Vertical wind Static pressure

Prognosis Specific humidity Cloud water (solid/liquid) Precipitation (solid/liquid)

Ground surface Heat budget Water budget Soil layer Water surface temp. Heat conduction constant with time, but Water transport seasonally and spatially variable

Fig. 1 :exx

154 JAERI-Conf 99-001

^n-xm-m^^^^mm^XA

7Kfe-m

ft&. M& Hi*

l®7k»K£xt

±fjfr%tt7k ±m*w%

±\f

Fig. 2 Tkmm^xx SOLVEG vtg&m

3. =£XA

(i) ±*#-tt (&&#$, fiaa^*^, ^fisfls*^* o -*s&»-t#gt© 12 m (D±m\z^^x\t^,m^xbnxh^ SK ±m^(D7^^m&ui^^um\zmym^\z\A mtz\z%&x>Aummz*wfexz>>&m^z>, (2) ±»©^M£in:: n-A, ^RnmmznyxnbntzmwM^Au 12 a©±*tc^ TtefcTffl^WS 6»» ±*^*SiPi^e«©S«»Ji-&fCtt'»»L^V^»T*S^, ± *©i£«i&g*ra)ifr§*-&«, &mz&%mmfcfen§>v%mwwx&z>. (3) «£©&fa#M*gf« (ISiSi*££M) Rtf-HtfUfiSi : ffp&t^Ttf, {@*©*f^ •Sttft^-rs^S^ftS. ^#HoViTttBi+R^±*7jc*a**©RI»:tLTI9:£3nT t^. cnbtfP$7k^B#f©i&Blf, M^K:I*#T3^, !?fc«Ttf $#*«», 7jciK ^T«K**R^±«i**a**fc

- 155 - JAERI­Conf 99­001

4. mmm 4. i w.A$x%.x--yxb(D7k>m§i3iMffi SOLVEG ©AM©A^So­A»tf!±ai*W*

7^^x^Mbti§„ $ifz, 7 aa^tf, ^s^b©^%*M^7cs6ti, $g*^b©ig*&7]c# mxumzxm\zm^, x©^*f^^SJH4n^^Ttf, 800 S3& 600 _ ftJR$ X 3 E 400 (0 r'l a) •5 X 200 ­4+­ "\ ­. , J 0 ­^ i V ­200 15 X ■3 ^. 10 CO CO "O 5 ca E E 0 bo ­5 ca £ ­10 ­15 Day Fig.3 ifeh!»**r*­^'£fflV^cife^ffiT©7jc­llftiR^©ti­^J (9 /I 4 B^b© 1 jkiw TK^tf, i^^5mmST©l(:^^TT$0, ^©^J­f^tf^©Hft©

­ 156 JAERI-Conf 99-001

4. 2 mo (DAm^faWLti&^iWXboiM^v^XXik 7kmm:£Xx$:±m*mo&mzmmLfzo ttmz$tw£m\:mmx$>z. HTO tfft^w \z\zfrtmvx$>zrzisb, i&axtmtwm, itm%.m\z^:xx{kxzz>0 ^xxxmxzA M*©TfcfcJ;Zf HTO (D^MXU^(DmmtUA(D£&K)X$)Z>o m^mm. i xxim^xm^. &m§mw. i ^ra^sst HTO IBB i xx^mMMxn^ (xmmw-7^ HTO • •&«> HTO &rt i xxMmxmjX (±m&^ HTO : w®) ±«7jc* HTO (C^V^Ttf«#:7K©^i!jtf¥^^Sit^J:^^f(t^T&m^#^Lfco ±«^^ *©HTOtf#Tra©^£#JiL7io Sfc, ±**T©Mffl-^ffi^^^#ltLfe„ c:nb©*Tmosv^*iiLVi©tt, i) x&mAmxb(DM%&jyX2) ^t©^tfe§. #fett^±**T©-&{Mc#b©7jX©&gg£6[kg mV]*

4=—k,0;)-d

e = b p* p„_

c a 3 ZZX. patf^M©M, pwtf7K©^S, rstf±ilMS, %>vtf±^7K l HTO#S[Bqm- water], XjZAmQfl HTO M[Bq m-3air]TS^)o T&fr^, ±^ft,CJ£T£5M©Mtf-*c©Mg

T©fi&ftJt®^„((r,)T*0, ±«l*ltffl^(h©'ll^ijie©KI(j^(h^oTV^. ^©Kr, tf, ttfg^7]c>£©fflS-T&0, SB8W^*Hli-S^* -x, AMx&mbxt, Am^(D7m^A^x^mmzbxw^xx\ mttxxz 8!fffl©M± Itl^W. HTO ,^^T&|R]$©i$<9^T&£;^, 7jC©^5gt,iaSlTftS. V£yX, At HTO ©fij-ttt^TL-bl^—Ttt^CVi. tingrST©AMt©^^tf, mw-xm^w%xwttnxxzxM%xz>yyyyytm^mx xbfifcx&mx&yyyyyvmtf, xmzfax? y y y y y tmy^ t^^mmoi^zm V>TST. zzxm%ttmyrzmwt, x^mx^KDm^x&^m^^^^, ^©ft-^m m (7mM% tz« HTO Km wmzmrtz.

4. 3 HTOl£ff©ffr^!r5l! IAEA £ffi© BIOMASS 7n vx7 h© v± U A 2 tfcfLT, ±fB©*-E*r;i'£iiJlLfc. |W1^ ±U^©«gtfiiCF©££<3T&£o ®tfj>jf n-A±iiMffi©iteT lm £ 1X107 Bq/m3© HTO ^JftT*##ft-f 5. itT TK^fci^^^I^tf^ftL^V^ Sfc, AM©HT0 7^tf&l^T£o 9 2 ®5FteftiS7jc#»^©±*#ttf'M"r'SRI»7^, HTO ©#TM$$: (IXIO- m /s) ,

- 157- i m 3 r> m 1 55 0i £i rv bf $ ­a­ 3 & ri » ri ^ 3 ± rv * hr & in ^ f> ^ 3 E!{!i ' 3 o w J^ 3 ft rv o HP! W 4 ® © m 3 m ­a­ r ■ ^a ^ m W ­2; HI Concentration (Bq/m3 water) ­a­ 5^­ Iri SO ^ m 0"' in * ra 5+ o5' 3 3 M >5 ^ r+ ft iffi >t i*. # a to M Uft ft •P tn am ' r o ? ^ * » 5+ + + + + + X ­a­ ­7T 3 FT St 3 3W o o o o <­ ^a rn r> ­3­ ­B­ IS ' o 4^ ON 3 M 3 Ao ­J m X Q H'2 ra rv n> 0< fir" 0"' it r ^ >t 3 § Si M o o rr f> 3 ^a $1 f^f H 3 rv n Ml w Si r< ll s % ' Hi 0i g V S £4 SM­ o M *^ or Si 5* r rv rffl H # X HI r\ L a 55 \± ISl <­ S* £ s w­ m •x. Q § rv ­a­ X pf 55 ' 4 X ' rv 3 $li ­ is •* £■ i H r' a* ­a­ f » sr rv H 3 ^ S HI W> I ■ffr S «• e>i m m r ^ & 3 0"' t^ ^ ^r <­ 2 5% 1 Q n X « 55 5+ m e>i in /\ o 4^. r^ # Q. ■4T o 00 X r* a­ SI n 55 Of Ln S si ' ­fl­ X 3 3 M X m r> ° o Hi ^ » an 3 3 8r 4^ w 55 3 0 r a m X r ■ 3 o * H I o r' ri ^ i—' ft <­ o ft ■—' m x 3 m ft -9T c5 <~n r' f*" ri S5 x X r <-n 94­ S f^ 0< ■ En m vZ". So ri w 0> M ­tfr ' Hi # ­ S* 1 at xt 5+ h- & IS ^4 ­a­ iffi X o f ' r' ± 0"' w ^ m m ^. • e>i o to Ci 4 rv X \ 3 i> e>i ­ 3 X *jl X ° 3 C3 H ­2: o r H X H oo m r O l^ 3 H ­a­ }» 4Jt bf 3 ri 5^­ W ffl­ ' m & 3 w 3 ­^ 4 m S ^ 5? X r^' or aw o ri ­T| 0i 3 VJ­' a r 3 3 9ff 3 A o or ■ft ^m n+ IS (^ n> 4Tn ntt­ m Mi rOH r\ 3 ts 1 ­ 3 O­i x m ­a­ il HI ­a­ 0 r^ ­a­ r­v 0 g|l 55 ­a­ Wt F 3 r r> fS o M 3 Hi X F 0 3 SB 8* H H ri 5 s O O f' ^ ­ft 3 ' "ft 3 r ^ 55 3 ° nn e>i iffi r ^ m 3 r 3 # gii H en H $ «■ M, n 3 $r # $r fft £5­ a ih » 0* ^ Concentration (Bq/m3 water) Water mass flux (kg/m2/h) 0­ 3 0 X |LTr *B ^ t/! — H­ • a r> >i tfV •W rH H 2t r* B Si 13 O —I ° o o s m io i* 13 ­B­ oo *» DO ra 9+ Si "*P niui T3>1 ^ £5­ Sr tt ' V e>j 4 $2 94­ 4$ w 5*3 V sr a*' r r> •» ' tf r> j% $ 3 M #r^S­ o m o m r> rv S n> 35 n> 0* ° .4 » n £ 3 & •34 0 • r+n 2f W vX H » H > 3 r* •511 Pf rW 3 a m % r rH * & *x 2 o » n 55 r> Si ri ESS o — o 3 to ^ >s o Pr •x" >r 3fc o # & di­ 3 e>j S =n Mi^* *­r i» S # es * flr « ft *h ** IV P ^ * ^pr ft Q. ,^ r+ X 3 rr­ n X Wn j8f & tND ^^ gh ^^ 3 n> 3 3 %$ * 3 ^­ Mi o nift * M (^ ­^ U ^ o 3# ffi ]•& £ a- iffi iffl & rrl ^ $ O tt & riH m HD ft IS M Si M ; 3 3 ffif H V M 3 * $m 0 as St ja ^ ^35 E& 33 ft: e> f; m HI n ri 9+ rv » ^^ A H §& # ^ m * 0*'O JAERI­Conf 99­001

&mtw, ^mnbW^^i^±^<^^^m^,(Dmm^iEyzttfn!mx&K>, ^■:tXAxhmzt^m^mux^m\zn^ TV^5. ­?­©£&, ­fi:i©cfc5&^­x%£«T££, ±!E©cfc5&&7n±X;kcfc£M0^ ­^©Ki4©fW?\ II^MtC^enfc^Jig^­rJ^il^S^^^Wct^^^ST?)©^^

o)\hm&H, xm %■ A^-Am-mAm^^x

­ 160 ­ iiiiniiininiiiiiiiiiiinii JAERI-Conf 99-001 JP9950136

%mmmA ^m^x jum % B*w,xAW3m mm^±m^M

mxyjM&xbAntpizttrtiiztiZ) bvxyxiiii%^ — K ETDOSE SrM-^tTfcSo ETDOSE teHT RV HTO HTO ^(Dmit, ±mxbx%^

; mn £X7^uxnXyj* BIOMASS (Biosphere Modelling and ASSessment mdhad)\/* xim&ft0

DEVELOPMENT OF AN ENVIRONMENTAL TRITIUM MODEL; ETDOSE

ANDOH Mariko, TAKAHASHI Tomoyuki and AMANO Hikaru Department of Environmental Safety Research, JAERI

ETDOSE is a simple computer code to calculate atmospheric distribution patterns of tritium for an acute and a chronic release of HT and HTO. This code calculates tritium concentrations in air, soil, plant free water and OBT, and estimates dose impact by inhalation of air and ingestion of food. Participation in IAEA's model validation program BIOMASS has been done using this code for BIOMASS Scenario l. This paper shows the outline of ETDOSE and preliminary results of model comparison in BIOMASS program.

Keyword : Tritium, Environmental transfer model, ETDOSE, Model comparison, BIOMASS

- 161 - JAERI­Conf 99­001

1. \zzib\z &m&ffl%(Dmm\zmy m&tLxm^t>tiz b v xy ^0 bvxy^tTkmvm&ftxhv, 7^(Dm^7hmbyxix%m%)%?iz®£\zmfr&$\ti, -kWTgm&myxxmz&Mtstizzbxxz, b y ^7^,i#*(HT)t7j<(iiTO), #mm(OBT)(Dxti^tigxz0 z T V ^5 0 H:iff|#j\Z&¥■% m^^R^^^nt^^(Dmx\zMitx^^^- Y(D^^^fbmyx^^>x, mz, ¥&iii£f$© mmRt*wtnwz^^x&ffi&mibx^z>a Fig. K^ETDOSET&OTV^ at­** b v Ay^(D&ft&v&iz-o^^x^Ae &&&mft*mtt%\ft\z£>ottwzijrm£tiz bVAy^vXk^m-im b HTO XAMftXhZ), 1&ti5£fttzbVAyj±i-i±m^^© HTO HT ©S&W, «^{­ «t Z>*A%Lb%£ '//////////////y////////y//y/, v/////////////y///////y///y/////, */////////////. /&(;*: £5 OBT © m&. • Mit ££fc£*£*# Fig i s^4>h'j^7A^fT©a^ia S> **­££•**£

#?f±50

2. =3—K©«S 2­1 fWSg

ETDOSE \mmmft*bVAyxmmbmf<&M;&mffiAz>zbxxzz>a xtix'nx^- xurx^Ao ftmM&*bVAyj±&m: ' ffit©^ £ ©^^^ HT S.U­ HTO M(Bq/m3)

• ffit©i^ $ HTO **(Bq/kg­H20) I • ±^7K^4 HTOiSS (Bq/kg­H20)

•W&fcfcttSgfczK^HTO** (Bq/kg­H20)

• TOt^&tf S^&l^ f­ U ^F­MOBT)** (Bq/kg­H20 ^ft) • ±WMU^(D HTO 77777 (Bq/m2/y)

162 JAERI­Conf 99­001

•!ftAte:«fc5fttf

2­2 ^^TVI­

ETDOSEx\z±ts.wik*ir/\'byxuy ^xiv-^x^femLTV^\ %b%xmz£z>

77^©jft*^*^%i;b, jES^^T^­b­r­^^w­err­ettr'riSrffisw^ xuy^Xiv-K

•=E­T^J iP¥^0 r©^'7777^­A^x7^^ov^T(itT­^#^iS^^:*rti^­1'X(D^ yVa l fe^lS«^ft»±5^rB ]H^y^^^T'tT­»LTV^^0 loiolt *¥77fr©M5Wr7^fc5

^SrtT^­­fh^tL^>i:{g^LTVN50 r©*f;^ritfi ^nW-m^X7V\ b%ttlj%0 &M¥$)*XMz^^x\-i, mmmy v^^mbmmmft&ozL^oir-ttm&mvixzzzo

KftoTV­So ^T^;ft­*e;ft©^­r>^ov^5££^±0 2"\ 1) tf^^­A^TVl^&STJft, 7K¥77^©f^77^jE^^1r­(* + *) T *<*.**) = exp 2 exp­ •exp 2 (1) 27lOyOzU 2°> J 2o\ 2az rr­e, X(x,y,z) i&£(x,y,z),£io.1­5 hyf*7A(Dj»* [Bq/m3] Q hyf­7^©^Wii* [Bq/s] u ¥#J&J£ [m/s] 7K5pSt>tSiE77fri]©iiS5>;fr:©J£^19©/>7^'­^ [m] h mzhtkttimz [m] x,y,z ^ti^tu T'yi/'­AoaTEi, aT77[S]^7K^^«^^M^±©77i^ *>bmfrbb

2) ■Effl^^"^'­^^^^*, *¥*lRlf­*)5­ft«rtT­«*5>* y7i^­A©7^^^f^©^*^1rT^^77^(C^­'fb^tL5i:{g^±5i:, (1)5£{2#­.© ± 3 1­fWRS­

Zi£4f d£±^ X(x, >>,*): CXP 2 + exp (2) 27tx%2nazu _ 7^ 2at

<, \^tzxmmm^zn:^ytzmnmm^titz bvxyx^z^^xhftMxm^jiiiti^^b^

Ktfs*>5„ ­L­­­C', ETDOSE Ttt, HT, HTO if *>£>©$ tH ©*!­£* ^t, S^^ftS­ffc^M:

HTO Tfc£>£{££ LTV ^c Sfc, ±m\z&mLtzbV??J*ft±mnWrmZtlZb{R'feLX^ 5, ±*{3i*5fc3t­r5 hyf­7­M2±i$M©±^ MJf^A­S^jcitifjgSSr^ltSrt­C* ibbtiZo WLm&xoHTommit, HTO^W©#^, mmMXbw.MytzmoizMAxm±m

- 163 ­ JAERI-Conf 99-001

(D£X(DMmztf:%&fti&m£titzmo(o^zto7tZ)ZbxirW£ti&o m j&mnm&iA A-0 %tz, mfcmy yy^&Ru, mmn &

2,Fig.3(C^±0 a) m?£imyyy*-&

n=N m=i C«(».y) = K*(>J) + £ Y,avsA(m,n)T(i -m,j-n+N/2) (3) n=0 m=0

3 C^(ij) w&xnx^jxp h y x y j±mm [Bq/m ] 3 ^(U) m.Wl^X(Dm.^X7U—J*\Z£ 5 HTO Mm [Bq/m ] 3 A(ij) &/ yy^

a : S&ffi^ ( = 1) v :HT^yt(iHTO(7)iffi^ffi^c7)it*it^ (m/s) s : y yy=L

*(i, j)

l;ffl£H-fett5Hro*»gr: = aifliJsrassiAi e

C'aw=X'aw + lf(*A,Q)vg(l - x,r,l)2min(x,/ - *)tan-rfr (4)

min(x,l-x) :x^l/2 :min(;c,/-.x)-=.x x>l/2 : min(;t,/-*)=/-*

164- JAERI-Conf 99-001

-h1 Ax,h,Q) = j= 2 exp-—j 2nx42nau 2ai

g(l- x,z,l) = — -j== 2exp—7 2rc(l - xyil7iazu 2

2min(x,l-x)iarx(6>l2)

Fig.3 &mm#mz£zwtirmxp b vxyj^mmx'o, ±m7\x>xp HTO mm, mm&& ** HTO mm, mm^m^^m b v xy&mmtmnxz z>0 ^fi^fKowm^y'^^uT^^ -To

1) ±m* ftP HTO mm (Bqfcg-H20) C — nC (5)

a : spflMKffifc-fcSft Zm^P HTO/H20 (DtSfatp HTO/H20 \Zj$1rZ>ik (= l.l) (-) ci: mm&iztett zx^Tkfttp mo mm (Bq/kg-H2o)

2) TO g ft * <£ HTO 28^ (Bq/kg-H20) C^^flEC^ + a-^X^, (6) E : mnmrn (-) C^ : ^rSrii^&ttS^TJ^^HTOM (Bq/kg-H20)

3) w»**rttwt*a-s! b y x y MOBT)mm (Bq/kg-H2o ^*) CQBT - RoBfCpw (7)

RoiiB T 1*3 ft 5 OBT/HTO CO Jt (-)

2-4 SfKili-fWe-T^ ^«

CD^-7VI^;£-^±0 l) ®A.-£5rt«lf<$4M^x>

HT ©KAl- //r = DF,mHTR^HT (8)

HTO ©K A^ w„,„r = DFINHMT0RBClHT0 (9) DFBffyrr.-HrroKAl-Ba-rSiftifii*: (Sv/Bq)

- 165 - JAERI­Conf 99­001

DFINH,HTO : HTO ©KAKlH^SilMHRIfc (Sv/Bq) RB : n%m (m3/y) 3 ClHT: ftm&M&\Zt3i7ZJZ%.'pmm8t (Bq/m ) Cljno ■ &M&M£\ZA>rtZA^Ltp HTO mm (Bq/m3) 2) &®(Dmmz£z>ftum$)&&7k PHTO(Dmmz£Z>m-£/JVG,05r = DFimmTFKOBTRPmTQCOBT (11)

DFMG,HTo:HTO©SP^^^H±§i^ft#,ic (Sv/Bq)

DF,NG,OBT : OBT ©i8nSEfc:BH"5ift*flM»[ (Sv/Bq) I 1 Fr,pw: *»Sl&l^{­­fcft5««BS** t HTO©»#* (­) FR,OBT: ««B«®l*l­S3fj*5««BIf,OBTc7)gJ#i*S (­)

RP,pw: }£$)•£§ ft TfcMrt (kg­H20/kg­wet)

RP.OBT: fe®^m&&mfcmftfett (kg­H20^£/kg­wet) Q : Mft*SrtMfc©*¥IWfcEJI (kg­wet/y)

3. BIOMASS 1^53­ Ktftffi ETDOSE (Dfemb yxmmmAtimm(iAEA)m®i*:X/i>&mxv xyx BIOMASS (BlOsphere Modelling and ASSessment methods) (D

3­1 b^xyxy-rvAtDmw bVXyxy-*yXX/v- XX\X *XMz£%fefeig.m±<&A?>yAV Atf2^, * XMz£zmfei$;bmmm&i£mA?>yAVAtf2^mtii£hx^^0 <$■&, ­tf/nasi^ I &b%m&&it&t-Zi'-rV*\z<>^X\Zi*b\z I ojDfc>5 f'J&­)S*>50 *#^­5^7=V^fiE^ I fflW—>±y;"M,± HT^7c:ltHTO(D±M4 ­^cO^'t^trJ(D^±y^­Tfc50 ;: <7»± y ;*­,:: oV^T ETDOSE ^fflV^T^|ffL7c0 ft£>, yAV X2 tt**T*?5»iO'>^ U ^Tfc5c '>± U tf 3 «^±^©f­3­^yA­w%0f©^^^y ^^x­^^s^L/c^m^w, ^±y^­4«P

^± y tf1 fi HT *­tl* HTO ©ii^^W^lg^ LTV*5„ H^ffirfi $ 60m ©* * y * ^b$ W^ lg­tritium/y T HT £fcte HTO &&M£tlitm&mmxhz>0 ffi©AMitLx, ¥^)iffe*fss, ^wamm, mft, mmm, at*

&#, HT&rjHTOcDft­jfiljg, p$jpj|x P*^l»*ffi»'^*d^*tF>nTV^50 fWSBtt. *fc TK^HTO^ (1.5m ft £) , ±i$7k#4­HTOM, fitfeg ftTK* HTO&^&U­OBTfcS, ±*8ESP­^© HTO 7 7 y Z?,, ifeTTK^ HTO **T*>5o Z

­ 166­ JAERI­Conf 99­001

10v

>0..­­­­­o­­­o­­o­­0­<> o­oe­4>

i

cr

10 ­i m o •B­

4< 10" 100 1000 10 HkMM.frb

3­2 MiKf**:^*

BIOMASS yAVAl l­OV^T, ETDOSE <7)#fr3rf 7f&Tfi?#f L:fcigf|l& Fig. 4 l^±0 #**r J i Mz£Qmz&¥50 tfyxzf/i<-J** fM*m&i y1A%falzjE m#ttzyx&v, mT(D*&(Dmmtfmhm;£T7^xhztzib, awt®*?&&*)*> mmt^

Fig. 5, Fig. 6 iJlflfc© BIOMASS iftinffllH b Jfcft Ufc^^:^^±0 ETDOSE ttfi»lTO*­fc7*Vl'©­$ MBS^yv'iffilC.tiJ^W­Sr'fTofco Fig. S^HTOfttrJ^FW^^TK^+HTOaSTfcD, Fig.6

# HT &trJB#©*^7k#+ HTO &$:Tfc30 HTO ftffill*©:*:^*^* HTO mm\Z^\^X\i& «BB©ife*■iSov*TV*5e ­ftH\ HT0^W^©a^©^<^^(^'^il:^<7)77^­A<7)^­^^J;5 sb© T­feD, HT»W^ttSttW©^©#­^Tfc5­t»­e*)5o ^fcfr^M©7>*­A©fl­j|tttt;*f yy,X7U~M.^T7^\S:mm^Xi3^, &mM%&£.Kitb%z.biri : 50 &&, &WM, r­}xF)©tfF)O#c*0JiSH{­ov^%*SrtTo TV*5o Fig.5,Fig.6,­*5V^T, Jaeri £ *3* $­ft/TV "* 5 ©flS ETDOSE (D^^Xh V , HT^trJ(7)ife gxtemommxvm^mbte^x^^o r^ov^T, TOw$w,­ri±5{££^it^mH TfcSr. t^#^"biX?)o ^&© ETDOSE Ttt±*^t5tifU­t h y f­7 Afil^BfW.­*^^!? tkmztizbUJriLx^^o zti^mmm^^i^zm^^>bu^x^m^(DmMMX(Dis:^p mm%M%fAZ>Xib(D=i- K&K&jtfcTV­So Fig. 7 {^S»lii»IIRl{­iBB't5iK^oll'R©«L'fel2l

Sr, Fig.8^S»WfflM*«^fc»*^Off»W{­#­^^5*S«©»v^­Sr'^*t­<) Po;£©iK£K::j3V*T, mymmx(DbvAyx0fc%mbm&mteiffflb^yi<\ t

­ 167 ­ JAERI­Conf 99­001

Scenario 1.3: HTO Release ­ HTO Concenlration in Air Humidity

I OOE+03 T

♦,­r^rti £ 100E+02

1 OOE+01 • ■

100E+00 H 01 10 Diitanca (rom Source (km) P Primary Deposition S Secondary Re­emission W Wet Deposiiion D Dry Deposition

­M—CEA/OASEIP+S.W) RFNCVNIIEF (W) IFINHH (P+S.D) ­•— AECL(W) -o— Belot IP, W| F*K (W| ­ ZSR (See text) ­•— Jaen (P+S.W+D) ­o— Jaeri (P+S.D)) ­Studsvik(P+S.W) BEAKIP.D) ­»—AN0RA(P,W)

Fig.5 &mW\ZM7ZWm%% (HTO^ttJ­^^TK^^HTOlS)

Scenerio 1.3: HT Release ­ HTO Concentration in Air Humidity

1 00E+02 T

1 OOE+01 ■ •

to

S I OOE+00 • ■

1 OOE­01 ■ •

1 00E­02 01 1

Distance from Source (km)

­tv—Belot RFNCVNIIEF IFINHH •FzK ­ZSR

­■—Jaen BEAK ­AECL ­ CEA/0ASE

Fig.6 &mmz&»zmbti&

­ 168 ­ JAERI­Conf 99­001

XL, ntkM\zte-rzmmK s&w ntkm* b v A<7J».m % t ytzm$ tfy-mmzmz & bi&.i£L-fc.m&\z\* «tt)j£<^5fc«), mtwmhtzv^tz * bVA'7Jx

IN LT«aj^^iuart­5 HTO ©i­as­fct K UTOCDWWutti if. <^5«r«l?tt*s*fc5o mi*­t?c7)Jfiffi*d* B#ffi b

Fig.7 S&W^F­g(­SI±§{S^c7)^^(Z)«^[I|

4. ­^©HUH SJfeffl­Js I­ y ­3­r7 i>roft*­$ro^jg£ 51 Lfcil­g­ h y ^y J*

ETDOSE © MH £ffo T V *• 5 0

1) BIOMASS \z£& a — KflfegE 8ctt.jS ETDOSE ^^^fMjS&trJI­*f^Lfc f¥ffi^7^£m^&^, s»ttj*os H y *?•■ *+

irc7)^^c7)^^^fp«±^0 £fc% ## ^c7)^7;>^OV^Tc7)|t#^*fe> Fig. 8 ntkMKtt-rzi j* ^©3; V^*ilS* £«!?©«£ 5 ft •»PSr&«­t­^»­ov^T$ bX&mA

2) = —KcT^H! AXJjm&ffimk, t>fr9J$*t\<^~x.T;\'

rM£^£LTV^0

169 IIIIIIIIIIIII1IIIIIIIIII1IIIIIUIIIIIIIIIIIIIIIIIIII JP9950137 JAERI-Conf 99-001

&H m.%. sa %), xm «, mw, n& mm&*M ? )i>m%®M ^^SSB mi%.mk

ry^xyx-99, 3*>#-i29, *Xy~yx-23i^z0 L^U ZthbW&Kr-?£ mzwiimm^mmAh z b \mm.xh^tzQ zzx, *£i7yffimz£&&xmmmmiihmmfcm&zm%L, ±mRvimyDmzwz t3i72>mm.i"^x#vrLtzo %

tfz, mimm^s^yy-?im?%<7)&M^

Study on Transfer Behavior of Radionuclides from Soil to Plants

Shigemitsu MORITA, Hitoshi WATANABE, Hiromi KATAGIRI and Kunihiko SHINOHARA

Environmental Protection Section, Environment and Safety Division, Japan Nuclear Cycle Development Institute (JNC)

ABSTRACT Technetium-99 (Tc-99) ,Iodine-129 (1-129) and Neptunium-237 (Np-237) are important radionuclides for environmental assessment around nuclear fuel cycle facilities, because these have long half-life and relatively high mobility in the environment. Therefore, We have studied on determination method, distribution and behavior of such a long-lived radionuclides in surface soil environment. A new analytical technique using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Microwave Induced Plasma Mass Spectrometry (MIP-MS) were applied to the determination of long-lived radionuclides in environmental samples. The sensitivity of ICP-MS method was 10 to 100,000 times higher, and the counting time was 100 to 100,000 times shorter than the conventional radioanalytical methods. The depth profiles showed that more than 90% of Tc-99, 1-129, Np-237and Pu-239,240 were retained in the surface layer, up to 10cm in depth, which contained much amount of organic

- 170- JAERI-Conf 99-001 materials. The result suggests that content of organic materials in soil is related to adsorption of these nuclides on to soil.

Keyword: Long-lived Radionuclides, Mass Spectrometry, Aging effect, Adsorption to Soil, Transfer Factor

1. liD&c: fmikto%w%&ft {%%~ mx mn, mtxm (zMfcxtzmmzmm^r^^m^z ^tzoxit, zx, m+\mmx&mmmfa*mx&fr^mz^m^^xmrnx&&m

LXL, Tc-99,1-129, NV-23i^(D&Anmmt(DAmn^RmmmM

2. mdfo'g 2.1 mmfefcrnfeom^ ZfltX\ ICP-MS ^fflV^CrftSj^TEM ft* Wi^L, Tc-99, Np-237^<7) 7-f-^K 7*-^ *m%yx£tz0 LXL, \-l29\z^\^X\tyXX^ii7,XhhTi^rfy(DX^Wfaif7^v 9 Xyyy V\£-9

*rx<Liytzito^ ICP-MSTiiijjgt^,£ blifflireabo/:0 ; 0 •f;:*c, 7°7X-7^x(;g^ !rfflv^-7^i7n^#A7 7X-7Kg^^f^M(MlP-MS)m: *£S:£Kov->T&ftLfco f£M@£WTK75±o a) Sfl^&ft^-fcft ; ppq^pptl^^tMI^MJU 7EM±^» ^^^iljjg^ff (ZOV^T &ffrLfco

c)^Kfl.^7ea; mmm, xmm^LXMip-Ms^bvt^mx^i>A'\±Aikmtft¥cm

2.2 ;t/f UAVKftfflJi 0*#^T^^L^^l±m^^g^Mffi^ltft^l*7ESL, ilfg7kLf[£ML£o

- 171 - JAERI­Conf 99­001

ttz, mm50cmtx=iTmzAm^uw,y. Tc­99,1­129,Pu­239,240,Np­237^<7>#&ii::fr tizm&Ltzo

2.3 ±Mteft£mmmm£

2.4 hb­lT­irtia ttz, #< (vmum'mmxfeihmvnh<%&i>zbxb, mmtxu w, L tz%maxR mmm.\Am7% * m v­> T±mxb

2.5 WiTJ^yy-fKDWM- Tc­99ti, ­^<7){ftj£­*mt/<7)'JMSxltT&£ Jl V 7 A t||fRLTV»5tfe, ffi^ttl*|­^ffi

BX$ti­^±v^=­btiTV^0 ­Hl^, h l/­*^&tf>i|&££Slc&fT#&£gaJl­* t2.5 xiZb £#^£tiTi>£0

­?■ £ T\ ^ISiiAKft £ ##f L, ^ 7 ­r ­ ;i> K \z & J7 * &fi*#& £ i* # L tz 0

3. I£JH£#^ 3.1 m*mmm(Dmmmmi£:£(Dm3£

3.1.1 sij^^niziiT^^rnt Table 1 Operating conditions of MIP­MS

*7*-*K&ixm.vctz>o MM Microwave power (kW) 1.3 Wi&WLil-127:200ppm, 1­129:1.4mBq/ml) £ ffl Detector power (kV) ­3.5 JiTable 1 H^­f t £ ») K&^Lfco Mass range (m/z) 127, 129 : &&\ >I(7)^f4 T^­i3lt^I­129<7)^tiiT Dwell time (ms) 5 IMfi^tlf L£ t £ ^0.05mBq/mlT&o /:„ Waiting time (ms) 10

L^L, 1­127 <7)?tS^^J50~200ppmH Sweep times (times) 6000 mt £xfzmmmi £« L^*s$, «* &129tf>­®&K­£tf>#J£Tf2#ri*£& c: t Wating time ©10ms tffrfrotZo iot, ^M#^7£M±^iI Wating time Dwell time ©10ms Dwell time U ­5­'7)­Sm­blB]­t'7)l­l27'rir^tf^m^?i$ ©5ms ©5ms XlOtimes ^T^tiilHI^­f £ (7f'j77X^77 127 128 129 m/z f­ > ­7 $­£*) tt-^Xh2>z\b XXIWLtio Sweep 6,000 times Fig. 1 i:i­129^M^^<7)I­127(7)f^#^7^±o

­ 172 ­ JAERI-Conf 99-001

3.1.2 ^m-mmm 3 ym mm\ixtAXz #>, mmmx bMX7 ;v a >J TESfflai 1"* - b ti fflil T&£0 £fc, 77n7^§^)Si> C £#$#iaiOJi£\ Mm(i^tz$>, W%W^A\-l29^:^km U AhZb\tX^^0 my%mt&mmRTffrn. • isscov 0 0.5 1 1.5 2 T^itL^^, S^-c*?|& £-££&{; Concentration of 1-129 (mBq/ml) iStt^Tffl*L, ft«(;7k$Hfcx H/: Fig. 1 Calibration curves of 1-129 (Matrix effects of I-127) X)V7 >*=- y X(TMr\H)\Z;<%mZXZ> z Sample b\zi n, -7b i)yy£®m&ZbtffoXitZo Ash in electric furnace(1000°C) Fig. 2[Z fflf& Ltzfrm* A~X ZTFAO I Trap w ith charcoal %&, *fcm&(Dfrmwmi*%i6o~%o I 96, &ffl r(lJB(i^/1.5X10-4Bq/g,dry, Ii »? Ash in electric furnace(550°C) I -&LiIiJ£ffi&(iio%&TT*& 19„ #3b£i8!l Trap with charcoal 7£ftT*)^i:#X.lbtL^o I Leach with NaOH I 3.1.3 mmwMfe Pd coprecipitation I ^xm^ny^^x, Mip-Msft/5.tf*tt Ash in electric furnace(550°C) AlrXMitftmm \z X 19 S* £ ft o £ o I £ t\ ?l7£T§?S*<7)I-127c7)/t g^iBlj g L Dissolve with TMAH J 7 I faM. ^tt^-ttMjt:^WftT92ppmT* o Measurement by MIP-MS 7^c7)tc^L, MIP-MSftT(±93ppmi:tira Fig. 2 Scheme of analysis method for 1-129 Table 2 Comparison analysis of 1-127,129 iot, I-127?lft£93ppm(;fIS£L£ in soil samples 1-127 1-129 sample No. Method 1-1 i9wm && K£*) &A& zitfcu % (ppm) (Xl(r4Bq/g)

Sample-1 MIP-MS 93 2.4 -Z-0&*-*, MlP-MSft \z I £ 7£l:M*fi NAA 92 2.3 4 2.4X 10 Bq/g,dryT& -9 , ^i^Mlt^/r Sample-2 MIP-MS 1.9 ft^ «fc ^7EMlri^T^^2.3X 104Bq/g,dry b NAA 82 1.9 &.<—IfcLfco lfi^^Table2^7^±o

Table 3 Concentration levels of radionuclides 3.2 )!Jf U^JUcDfflii in surface soils v. ,-. , . Range of concentration mmAmAv&xmfflmmm

173 JAERI­Conf 99­001

m.\x-hnitbbtitzQ 3 T^Ammwnmt^vxg. 3 \z^x0 ^AfKomtb ts^mmz-uAtmrnx E 10cm£ XM \Z^fo(D90%UAtfm$£ fl o ■3 Q. X^Zb v> ­9 %t$k-hn%btitza a 30

Tc­99l±­«{:grl*fbfi«J#H^T{±Tc04 t

Concentrations (Bq/kg,dry)

Fig. 3 Depth profiles of long­lived iCKtl. *>o a) ­g® t:­£ i ­na -%ma b WI * Jt^Wtt^t ^1?!^ t c7)^^{:o v^Tfi^L fcjfclfK M^®t^^ttK^?t«tc7)rB^;^v^S^^i*^fgi6^ti^o £<7>*r5:Wb, ? Tc­997Xl7Np­237c7)±^^l^(7)^^l:(igl±a^li^^­f^^^t/7i ^^­LTV^C b 3.4 Mx—•J­tflg* 3.4.1 m^mmffitt nfe^#±CTc­95m^^nL, iBXbnoBm&WLtxk, FigAK^-mmx [fcrnm],

Soil samples

Distilled water—* (Water soluble form J I MgCl2 solution ­* (Adsorbed form) I , , Ammonium acetate solution —"*► (Peculiar adsorbed form )

Hydroxylammonium chloride + Acetic acid—* (Fe.Mn­oxide combined form)

Hydrogen peroxide + A mmoniu m acetate solution —"*► (Organic matter combined form

Hydrofluoric acid—* (Crystal structural formj

Fig. 4 Scheme of separation method for combined form to soil

­ 174­ JAERI­Conf 99­001

X(D^^, Fig. 5H7^± X\l \Z, Tc­95m Q Water soluble □ Adsorbed £ m m L tz m%. i±7%mmx ®M m b^^tz D P Adsorbed D] Fe,Mn­oxi B Organic matter ■ Crystal v y Am Pal) x& < ft £ £ my %k ■ -7 y x y mem &&m x^m. m b^^tzway ? \z< v^5h5 ifttnLT< ZZbXhX^tz0 x^x, mmmmm^x)vx&mx hfX%mIkX^ft t*$m-&W:Xhz>i>(nb%7Lbtiz>o depending on aging period

3.4.2 ^mmmm^ ^fe##±^Tc­95m7ir/Cs­137£«L, 1 B Xb 120B K#ft L tz\&, 3fuft*tTML 4 7c^M7K(pH=5.5)75.r/tiMmi4M7K(i0­ M HN03)£­» L, AM%2AlzUWZtiX^Z>m&

100 ­€­<7)|£JrK Fig. 6lC^1­ ­JW­^­S < &£ i;(*v^ ±&& ± t; « $ ft* S!l­&75^ < & o T < 4 b v> I nmmmbiitzo ttz, mifrbmm-'&mjKbxit, ^ 40 60 80 100 120 Aging period (day) •?ti mi & 20%g SrtttM* <7)^75?^aj WHS Fig. 6 Variation of remaining rate of Tc­95m depending on aging period and eluate 3.5 wnj^yy-y-oMm 3.5.1 WiT%^(DU% A^mAbmmmA*n-m&xmn\zuw,y, AKxtimmA(nTc-99,Np­237, Pu­239,240ri«£?£:■:L£o Am$k, ±&t$#*0«J£Ji£*T§fc«>0 0, tmmAA

<7)?lJt(iPu­239,240^^(i^fiiTPl1i^TT^ o tz0 xzx, Tc­99s.r/NP­237nov>T(i, xmrnAA^mmbmm^^x mmx b, : ZA, Pn-239,240{Z^^XltAmRV'MmmAAmmXbm fmi^n-^LAo ig&fcTable 4C75to Np­237/ir/Pu­239,240HOV>T(ii§it:|R^^tLTV^ h \s - Vr %%LtzX, Tc­99<7)^r^|­iB!E#^1fi<7)l/10075^1/25,000©JP|T*o^o itLtTH­HiSfeLTi^bU—9­|ftSt*S*75^, Tc­99ti«tlii£«7TML£*K 4tifi i;«­7C$tLSii:t;«t *)MTK^T(;£?§& LH< < &£ fcv^iglWI ^tiTi^o feT, »«*tpT(i, W^­WRT^­ft^M ("nTI^J) T^^TK^Is^lS^lsWffl^Ti^­ v > ?*M CJ:»)n<44iti:J:i), r­ y-XVm^m^Mz %ft LtzWiimk X *)

- 175 ­ JAERI-Conf 99-001

*> 7 4 ~)i vx- 9 imzM-ta, Lxmim&xtfxz <%z>i>(vb%ibtiz>0

Table 4 Transfer factors of radionuclides from soil to agricultural products Table 5 Transfer factors of leafy vegetables

Transfer factor (-) Transfer factor (-) Laboratory Tc-99 Np-237 Pu-239,240 Tc-99 Np-237 Pu-239,240

1 3 Agricultural soils , , ,_.,,.. i USNRC*1 2.5X10- 2.5X10" (Bq/kg,dry) 2.0X ifj-1 4.0X10-3 1.7X10"1

3 4 L y l6S 4 USDOE*2 5.0X10 2.5X10" 2.2X10" TB qSS 40X10- 8.0X10-6 2.0X10-5

IAEA*3 5.0 4.0X10"2 5.0X10"4 Transfer factors 3 3 4 (-) 2.0X10" 2.0X10" 1.2X10" * 1 :US N RC Regulatory G uide *2:USDOE/TIC-11468,31 *3:IAEA Safety Series No.57

3.5.2 Wftft&

s. (ft$mm) im5-Lx^z>i>b%z. 10- io-: bKhtzfr, fttimmzmwzRizxwm Jf£*JiFig. XZJA off 102 10- tivi:, AmopHtfAg-AZbftmm y 6 7 &±H-L, Kn\zWHmi\X^XA^ b^ pH of soils y1fe%:i)mbtltz0 Fig. 7 Relation between soils pH and kd, Tf A- \k, WAimk\zWM*R\tA\ \z~o i : t ^xWft tWtoZ> f fcxh%>0

4. tbtb \)nm^mi^mxz^xmmmm(o^m&Kismim^A^zb{zx^), yj-^vr- >?*mz Lfzmm*^««izmt-r&zbx^xotza 3)h y-xn.m^*7%\zn&Ltz7^y y ~9by A~)\< b'r-9*mzg.&Ltzs*7* ~ 9b*&Mctz>b^ mmtmm, ^mmmmitmbx^^mmMmomxizit, b y-x%m.^%^^^mz%\^Ltzm77^y y - 9 ^m^xzx x%ncnm^ x ^Am\z ?mxx&i>0 ZA, w&^(Dmmxmiwx\zfayi,im%mmmm, imm&mmztt%Lbt&mizmmmy 4 -)i> vr- 9 imzg-m LtzWX^yy - 9 fcfij/fl LtzXX^^

- 176 - JAERI-Conf 99-001

(1) U.S. Nuclear Regulatory Commission, Reguratory Guide 1.109 (2) mm, myK, mmy^m^^yxx^^M^mmn^^xznmm^A^xmmmm^ m

- 177 - Illllllllllllll JAERI­Conf 99­001 JP9950138 1 e. wtm^n&immiimmakvmi

mm-

LT, ■Di^hu-v-mzm^x, mto\z&zmsn^mL*^\ziifrr)fflt&vx2iz. *(D~ zi^yAm^x®bntzmmwm.\mm\zA o­**^e>n, iioigHfcws^fc­tsfcai;:,

±^^<^fffiafc**t­jac^V'»TSij*\zj£&rz. $b\zhu-*r^img{t&

Evaluation of Absorption of Radionuclides via Roots of Plants at Different Growth Stages

Shizuko Ambe The Institute of Physical and Chemical Research (RIKEN)

For the environmental risk assessment of radionuclides and toxic elements which were released by nuclear power plants and factories, the absorption of trace elements by plants has been studied by a multitracer technique. The selective absorption coefficient, which is a parameter of an uptake model of radionuclides by plants, was determined for various radionuclides. The selective absorption coefficients of some elements varied greatly in experimental runs. Therefore, the selective absorption coefficients of radionuclides by komatsuna at different growth stages were determined. Moreover, the soil­to­plant transfer of radionuclides in komatsuna at different growth stages was studied. Extraction of the radionuclides from the soil was carried out in order to study the correlation between the transfer factor and the aging effect of the radionuclides in soil. The effect of soil acidity on the absorption of radionuclides in soybean and tomato was studied using the plants at different growth stages.

Keyword: Komatsuna, Soybean, Tomato, Root absorption, Growth stage, Selective absorption coefficient, Transfer factor, Multitracer

­ 178 ­ JAERI­Conf 99­001

1. HUJ&fc tmjtr)m 5fc£L­T**fc. M4> a^U>^+l­­r^DHD>^ffl^T^^i*^rSx^;i/^­c7)t*­ATfii^

*&ffi$:M5£i'rzo l5) Lin^criM/—17—­^ ■7;i/­? h U—V—btiiZiLtzo -?AX b V—17— fcffiVi*

sisiTii&MttM^igM^

L!c7)^HZW bfr(If STz®\z, M«^^WaBoa^**S^!RJR­»»c^R«­r*»*W'TBi]4fc3fc«>fc. SS^hU­^*­0±aiA^O«ftil*0««rSft**«). #TT«O7) PSragfttaWilfca^fc. BJM4ffi©|igg.iHiIL­T. »tt±**««l*Ott»tt««0!RJRt£

u) o«fc­5Ji­»»*Rirr^*4 *^­i'x­fe«fc^h­7hfco^TfijE'SaB*ji­3T«^fc.

2. £* 2. 1 ^H** h l/­***H$«L®fflS

aw,J>^­t7­^^DHD>TipML^riix^;i/^­c7)^m> &m, mm

;i/­? H y—v—7ammzMMi

2. 2 :8ft!RJK­»SC*3fc«>3iaft mUAK) 17, 24, 30 0fflW^L^3­7^±^­7;i/­?M/—t7—^*^tr«*^ (W&x7iy^®m7t 23°CT14, 20, 26, 34 0W)£LT7c„ 2. 4 ±*fo>S"*?;H*;M'—17— (Dmm McLaren £ Crawford (D^&l;:^ l6) lg (D1AX M/­+r­ £}g­i%L7c±#Mc 10 cm3 © 0.05 mol dm"3 CaCl,^*JnA£»T­Bl^£3Ufc. l^£3ft*8&#ll*fTK ­£*o7)±zi#.$ &77*:?*/!?&&\zmLL* t&&yrzm, fl>-?mw%

-?bT FACOM M1800 U >tTa­^­T$)­5V^J:SPECanar94 3­K£fflv>T NEC PC­98 TfTo7c„

3. %%:bZ& 3. 1 gftM«n) g&® TO&te&Ba \z A

A = STC0

A: mW-?AX h V—V-%&foX&1*mmWzWNLL1t b U—9—0*, S : j T-.mmm, ^:^)VXbV-V-^mW<»bV-V-o 0tJ£LTRb£ek^Sr

0mbm\z^\7^mnm^^Mb^mmmm(Dm^^m^^x^:yrzh(D^m 1 n­^­r. $*$

nii^^©'K#^^;&x^©/i­5^­^­iLTs ^fT­^fc^ft^­rscT^f­^iLOsri^^­r.

TJVii U RZS7A% U ±STC*£W® Re *TO^<07C*HO^TM^fc*«. £<(Dm&mm mfDmmtf&KfczbmR&WMteH'X-fzfiy #&:x&tz\t\zmMx:&^i£. mz&mTt mx&Zm, ln\ZZ7^X\Z, m&&mQ&?\Z£\*ZZ>%ifi*$

0) o "­­0­.. ° O roots o c o '•eg­ LO F o Oleaves IA * ^^L ' ' ro 0) o roots <©"■■ > 04 0807 o y = 0.582x­°8 y = 0.280X­ .0) 0) 0.1 ■ i i— LO 0.1 1.0 0.1 1.0

Electrical conductivity (mS/cm) Electrical conductivity (mS/cm)

Fig. 1. Logarithmic plots of the selective absorption coefficients of Rb and Sr for leaves and roots as a function of logarithm of the electrical conductivity of nutrient solutions.

­ 180 JAERI­Conf 99­001

zsbb^A.bn^. * £Tj£ft©­£ftS3^4.y:­h£fflv*Tj£&g^ ^(Dl&^m 2l:^t. 0©X*5­A­tt6<0©fiOSf0ffiipiilllf*S. 17 Bt 24 0f­JLfc37yt©i TriT­^TcD^^cDS^KiK^^^MttMb­n^ 1/^^,30 BW^LrcD­7^±(D^ls:^t­j­­5 Mn. Zn (Dg^^JK^I&tt 17 0Zbb%7L&1yit:Z>b, Mn. Zn ®S^!16'R­»«Ctt«[iH©fi&^H­ft#bT^ 5tl^5. Be. Co. Se. Rb. Sr, Tc -f\Z\£ fSlLT&3o ^^^^SMn©ii^P^'K^^tt30 BW^Lrc^T^^lsl^^T^^/h^^^ <£

12 17DAYS c D 17DAYS I I CO '1—' 'i——i—I, rnnMi' 'i**' *i"*' i r—i—~r , ft IJZCM M Ll Be Mn Co Zn As Se Rb Sr Y Zr Tc Ru Co Zn As Se Rb Sr Y Zr Tc Ru Be Mn Element Element

Fig. 2. Effect of growth stages of komatsuna plants on the selective absorption coefficients for leaves and roots 17, 24, and 30 days after sowing.

3. 2 &fT&& i ©tflsfrossMi­tiTfcs. Rb (Dm7*&mz Ai$nmbbh\z 1.9 •$>■=> 1.31:. TC ra­so­^­B, n C,Cs ,si 0.016 fr?> 0.0065 [zWPXsX^Z, Na (1.3), Co (0.03), Se (0.06), Sr (0.28)(D^ \7%mzmt-fcxmmmt\z^zu\,\ Mn \zmz, mmz±$wy ^ff­»»*« o.n *^ 0.25 Hli±LT^­5„ Zn (D&fr^&te 14 RlfJ$.\s1tZT?y7'brc7vc46TfeSo ffifcfcHTtt, m\z^^x^bnrzAy^W€^M(D±^^m^^^\zm^btiti.^0 m4\ZMB1?f$LtzZl^yA::<»:£ LOT. Tc Tftti!:©it** 10 i#fc»T^:#<, Tc*Wg^6^\

181 JAERI­Conf 99­001

c.yj T \J.\JCVJ- Cs t Rb T 1.5­ T 0.015­ ■ ♦ ■T T I X o ■ 1 X o T INa CO ■ CD I.OH 1 0.010­ a> c to ca c T ca ■ 0.5­ 0.005 ­ 1 Sr • • • •

0.0­ i 1 0.000­ ! 1 i i 1 10 15 20 25 30 35 10 15 20 25 30 35

O

0­ i 1 1 0.0­ i 1 ­, 10 15 20 25 30 35 10 15 20 25 30 35 Days after sowing Days after sowing

Fig. 3. Time dependence of the transfer factors of radionuclides obtained for komatsuna leaves. If error bars are not shown, then standard deviation are within symbols.

0 0.5 1 1.5 Transfer factor for root

Fig. 4. Correlation between the transfer factors for leaves and roots of 33 day­cultured komatsuna.

­ 182 ­ JAERI­Conf 99­001

3. 3 ±m^b^AXby-X~(Dmiiii) 3 m5\Z-?)Whl"-U—&±mizm&LXfr*>2, 9, 15, 22, 37 0&WO.O5 mo 1 dm­ CaCl2 mmzAzm*(D7cm(D±mftbmiii2nrzm'a£jr;-ro zn \t 2 oTimKWiiiv^m^^^ Lttifi, 9 Bia»e«­£®tenirFLfc. Rh \m2mmmz-fe\zfr?rz. mo7tm\z 37 0 mtymi-feommmz^ymm^im&bntefr^rzo znAQ®M-zntz®ft&®.mmmt\zAz>h

120 T 100 T Tc T 6 w^\X B T ± T\ Mn _ ^^= 80 o X ­ 60

Fig. 5. Percentage extraction of radionuclides from soil as a function of time. If error bars are not shown, then standard deviations are within symbols.

3. 4 yAX&Aztb^b0ifr&&&m±m w ommu) »tt±»(pH4)£ffi#®±»(pH6)TM5, 30, 45, 60 0£^L£^X©a'5^SVJ*«, 45. 60 BtftW»IW***fi<^StLfc*«Vi»tt±*^e>0 Bt0&#*t;*:£tUT#ffi­fS Se 7?tt pH6 ©±**­»e©*3WR

> H^­t>t­ j:?)7f:^c7)±«^c7)tSif^fi PH •ag«7?tt/h^Vi*^ pH *«ifiKfc5K:L­fcj&«V>!R WttJfcfcTS. £Z.7>ifi* tti/7-*>\Z&vYLW$Xft\t*Wt**m'tifi* pHtfflKfc*

±*­N©!ft«£<, ffi­**>TJWtt^©M**&4>&<. ttSttt«F»o»JRfcfcVJ­rs±* pH o»»* «^5;tHT?**ft^*3fc.

­ 183 JAERI-Conf 99-001

10.0

15 30 45 60 15 30 45 60 15 30 45 60 15 30 45 60 Time/day Fig. 6. The effect of soil acidity on the uptake of radionuclides by soybean plants.

4. SUZTfc

Bm7kmLtzLtzzT7yxx\zm,zntezcD&mjzmn&mz&if&mzim'tzifi. mv£< tz*)±mx^^Lfzzi-7 yy-omx-tenh, cs >Lttifi. Mn irfrx tt»S**itJtaA*«ai$nfc. Na, Co, Zn, Se, Sr ©^ff-»»tt*tW»!Wt«t•B1"e«-^T* ytz. X^X

184 - JAERI-Conf 99-001

(1) Ambe, S., Ohkubo, Y., Kobayashi, Y., Iwamoto, M., Maeda, H., and M. Yanokura: Multitracer study on transport and distribution of metal ions in plants, J. Radioanal. Nucl. Chem., 195,305-313,(1995). (2) Shinonaga, T., Ambe, S., Enomoto, S., Maeda, H., Iwamoto, M., Watanabe, T., and I. Yamaguchi: Multitracer study of various elements in atmosphere-plant system, J. Radioanal. Nucl. Chem., 212,163-172, (19%). (3) Ban-nai, T., Muramatsu, Y., Yoshida, S., Uchida, S., Shibata, S., Ambe, S., Ambe, F., and A. Suzuki: Multitracer studies on the accumulation of radionuclides in mushrooms, J. Radiat. Res., 38, 213-218, (1997). (4) Gouthu, S., Arie, T., Ambe, S., and I. Yamaguchi: Screening of plant species for comparative uptake abilities of radioactive Co, Rb, Sr, and Cs from soil, J. Radioanal. Nucl. Chem., 222, 247-251, (1997). (5) Shinonaga, T. and S. Ambe: Multitracer study on absorption of radionuclides in atmosphere-plant model system, Water, Air, and Soil Pollut., 101,93-103, (1998). (6) Shinonaga, T., Ambe, S., and I. Yamaguchi: Uptake rate of trace elements by soybean plants, J. Radioanal. Nucl. Chem., 236, 133-137, (1998). (7) Ozaki, T., Enomoto, S., Minai, Y., Ambe, S., Ambe, F., and Y. Makide: Influence of aluminum on the uptake of various cations from a solution into carrots. J. Radioanal. Nucl. Chem., 235, 285-289, (1998). (8) Ambe, S., Ozaki, T., Enomoto, S., and T. Shinonaga: Multitracer study on the soil-to- plant transfer of radionuclides in komatsuna at different growth stages, Environ. Technol., in press. (9) Shinonaga, T., Prohl, G., Miiller, H. and S. Ambe: Experimentally determined mobility of trace elements in soybean plants, Sci. Total Environ, in press. (10) Shinonaga, T., Ambe, S. and I. Yamguchi: Uptake and distribution of trace elements in maturing soybean, Biological Trace Element Research, in press. (11) Ambe, S., Shinonaga, T., Ozaki, T., Enomoto, S., Yasuda, H., and S. Uchida: Ion competition effects on the selective absorption of radionuclides by komatsuna {Brassica rapa var. perviridis), Environ. Exp. Botany, in press. (12) Gouthu, S., Weginwar, R., Arie, T., Ambe, S., Ozaki, T., Enomoto, S., Ambe, F., and I. Yamaguchi: Subcellular distribution and translocation of radionuclides in plants, Environ. Toxicol. Chem., in press. (13) Shinonaga, T. and S. Ambe: Trace elements in reproductive organs and other organs of trumpet lily, submitted to Environ. Exp. Botany. (14) Wang, H.F., Ambe, S., Takematsu, N., and F. Ambe: Impact of soil acidity on the uptake of trace elements by soybean and tomato, in preparation. (15) Ambe, S., Chen, S.Y., Ohkubo, Y.. Kobayashi, Y., Maeda, H., Iwamoto, M., Yanokura, M., Takematsu, N., and F. Ambe: "Multitracer" A new tracer technique — Its principle, features, and application, J. Radioanal. Nucl. Chem., 195,297-303, (1995). (16) McLaren, R.G. and D.V. Crawford: Studies on soil copper. I. The fractionation of copper in soils, J. Soil Sci., 24, 172-181. (1973). (17) Yasuda, H. and Y. Inoue: Behavior of zinc in soil-plant system (II) —Estimation of transfer factor—, Hokenhutsuri, 29, 295-303, (1992). (18) Yasuda, H.: Electrical conductivity used for evaluation of competing ion effects on radionuclide uptake by plant roots. Environ. Technol., 16, 197-200, (1995).

- 185 - JAERI-Conf 99-001 JP9950139

17. ±m*bmto • ±m^

byxyxtDmmtpxtD&n^mzm^, mtM7kmmzbtfx%tz0 ^m^m^^^T^^pm^mm \x mm*M:&\zxz&\^±hzh(D(Dtettimi&Wim*x\zA%.Ltz0 mzmx^^xnmbm h±% <, m

DEPOSITION OF HEAVY WATER VAPOR FROM AIR TO PLANT AND SOIL

ANDOH Mariko, AMANO Hikaru, ICHIMASA Michiko*, ICHIMASA Yusuke* Department of Environmental Safety Research, JAERI * Ibaraki University

When tritium is released into the atmosphere, plants play an important role in processes of tritium transfer in the environment. However, available data is limited because the uptake of tritium into a plant is affected by many factors such as plant growth, humidity, solar radiation, stomatal condition - all of which vary in daily and seasonal cycles. Deuterium, a stable isotope of tritium, was released as a tracer of tritium in the form of D2O vapor in a greenhouse to study the transfer of tritium from air to plants and soils. The deposition rate of D2O from the air to plant leaves was measured in a daytime and in a nighttime, and the results were compared. After D2O release stopped, decline of D2O concentrations in plant free water was measured.

Keyword : Tritium, Deuterium, Release experiment, Deposition, Plant, Soil

- 186- JAERI-Conf 99-001

1. f2LJ6(^ \m&mmAx&zmm-&px)*m#>x&m(Dbvxyxxxtmnbyxi&rn£tiz0 mm &m&fo®}(Dmj3'\zA%y<\ xcotz^, mM^cob^xyxcowymm^x^v^x^. yy, mwxxvmxbx%^co7kcom^^h=5xh%t>b-r, £& {zX^>m^LCDm^itA^^ZbX^btiX^^0 Acotzft, $.mzXZ> HTO (DmXb(D$X0& t ^OV^T, m*tmn&i ¥hbxx-y&m§yx\&mxhza bvxyx%& mytz^^mm\izfi^xhnt>fix^^x\ mv%com&tz)b\z, bv AyXZmm&*Xlfr&irZ> Z b\ZB*X\Z^*lMXfoZ>tzib, A(D%j£mii.fcXhZ>m7k&iX frvxm^x, mtbx

2. mixm 2.1 mfctttmmmnwtw

mmnRifcA^ffift \zmm LX t*~-7WNr> *-*•-? 1995 ¥xb 1997 ¥comx 3 ®nt>*iit0 t 3 3 A1yA'ft(Dm%lCD&i r-$: Table 1 XTFA* $}¥m\i$) 12.8m , 2^BXb\H%CO 24.6m CO\?~—

7v^yy,^mm.y, tmm\i24mm, 2^Bxb\i42&f?mMmzm&ytz0 m^m^nt* ~~7w^yx\z^tetfbtitzx®ftxm7k*AfttzM%mm!$zm%,ztfc^ zmx;ytzft&Q%bm&Lx¥~~7w^yxft\zmy&t?zbxxyi&iti£titza nuco-^.% \zy7y*m"x%twy, &%it0 2^Bum*nRcom& XhZtztb, ¥~-7W^yy,foco%McoAfrZP5y* zx\7, aftmzmmytzo xcotz#>, ^^m^m^xisoooi^nmbt^, jc*z>¥fir©Hit*

2.2 mvii&n m^m\byxtexfr^cD&mmwLbyxcomzm, &%, m.mco iXMbLXAtiA*ti^-?yA, XABAfo, 5~h^K **y^ fcl£<£fflL7t0 '95 ¥<^$? x\±^^yxb^*y$:&mbatpco2®, 2^r-fl, A%.

- 187- JAERI­Conf 99­001

U5= E E m a. a. a. a. 1 T00 m 8 8 OS 12 o •*• Cl o Cs| sr P w _> Cl o I, Cs| Os E e ■H at a. P Cs| JS o. Os Os o r~­ o SO 00 •> HE S 11 SO r­ *© >/i Cs| I Cs| X Os P tm JS JS o V Cl 50*E1 o O 00 00 Cs| * "o i AJ Cl stf rs­ ■H JS E JS 00 sii 00 sr sr =1 r^ Cl m 00 n Os Cs| *£ Os 0*1 t­s 81 % w 0 a ­H r£ E E m 15 a. E a *w a. a m 3o ■R 00 so Cs| *$• l> o 00 r~­ so p 00 sr p Cs| I Cl w Cs3| Cs| Cl o ■H 00 E o o e o >/1 o. ci CI so so o. ci o Os JS Os p T Os o o w 00 "o © Cl so © I ci © Cl I Os p w nn /1 ■H m Cl JS JS Cl CO o JS 00 00 00 3pk tf 00 * 1/­1 "o i Cs| JS JS E ­H 00 S? 00 sr sr =1 4n ^ so Cs| rs) X." Cs| AJ 0*1 si Cs| A n ­K p* 11 n • • m J- ­ ® N * ­1­ 11 E <*■> H S H »( •W ite g E E ■s a. a. T}­ O•/1 Os o * Cl Cs| sr so r~­ o I 5; E Cl o p Os ci a. CI e o A Os a. c5 Os o "e o Cs| © © Cs| 1/­1 00 'il ^­s "o ni Ci Cl w Cs| nn ­R X Os Cs| *o o SO Cl 7 m i Ci E A 11 ci Ci 5 o Cs| rH t~­ Oc4 ""2 „ oCl "=1t ^ p* WK o tf 5 Cl e o I n w sr sr AJ Os 1 Os X)

4|U iS m m| ­K K Htf & ^ _\ 5E mm •E € Sa er­< a a Pn £A m « ­B­ K S * m *m T v­ m si X Pn *­s

­S­>

­ 188­ JAERI­Conf 99­001

yx, h­^h, 7f^7^, 7m**$imytz0 &b&mm*\?=---7v^yy,^\zwb^^-, STKTK^^^IS^L, mmcom, mtebzuzmm

\zW;&ytz0 >96^commxte?kff6\z^\,^xte&mcommyxx£tex^tztz}b, w^commx nm^w^i^my, &&2®commmm*?T^fz0 %m^com.mco±m\t'95 ^-co^^yxu^ \-x\f=.~juxm^y Amxbfe^co&io&fyx^^xoizytzo 7kW6\-xm<^ytexofzX\

TkfficoTkteMkmmT&t&x 3ooopPm nmxhv, mmcoxmxmxxfoofz0 &$iLfzumn &&7k£mAyyxx%ft, &&m@k£®imLfzTCDtf#xy&-?bXyyxmTkmmzmfe

LtzA M7kC0?FtEB1&b LX\7.D20 b HDOti^AbtlZty Z rTf**t^TD20 \Z&%ytz

2.3 ±smm ±m&nb LTf*, Mmttmmx&&Lfzmtt±mRmz2mmcoffi^\zfr\7, i-coim^,

WbLfzhCOb, Tk&MAZ Z bX^7km*MiktS7tfzhC0£@imLfzo jlLl£4.8cm, $l£7cm tzffiX^yxfo xw-b&z*, M7k7kmwzmmytza wm^7^m\x^^±mx 44%(%-7kftm/±mmmm b

29% , ®>X\3%b6%C0AmmXh^tzo ^C0%, £#]fft{­&&L, W.Z Xb ,­##JLT7K#£ m&, m.mco&&Kbmmz77-*yxi^bXyyxwmm*m%ytza

3. m^kb^m 3.1 mmm& &TK* D2O mmcommmt (1) 1995 %-co%mz-$o\7x>mm D2O mmcom^^it )co%\z x ZMTkco&v & 0.7 ^f*^^Tj£faL/t0 b Cp/Ca = R(l­e­ ) (1) ^'T, CpteH^grJaTK^fiTK^ /£ (ppm), Cait^MTK^^fiTKM =■­*­ yx& s (ppm), R w&&tcomyoM& tefccpmrn b ±^7K#*fi7K& Sc75it (­)^ k iiitg^fC (h"1), t ixmmfflte'&com^m (h)T& So tev>)tpm7\zm& (D/

­ 189 JAERI­Conf 99­001

M&&7ktpm7kmmxA% -+a±m o n-^y-j- TkfttpMTkmmcommmt: v ?=W1­ %A;Ao 1995 ^tt^­7 7t i 5 * sv zmvot&w- b LT

h v MixxthX°ti£:(i)X]5:

i9.Ltz&%;X&Z>0 1995 ¥ 4 6 8 10 12 ©^ife­ew­ 2 HJW]©^©* wt*m GO nxboititto* w-mmm\z Fig. 2 £4*9% i STK^STK^S/^^TK^^STK­SS^^^^I: \xmyxx

1.2 &b%Abii&a %%M\zy yy xfchvm^MZh^ ­B­ xts<, it&Lxmbfr^m ­K ii^^iiv\ ^tz^-^yxn ­B­ &mxh$x9 ^^mm^m ­ffl •tm <, &bW:comixD~? xxh

0 7C0

Fig. 3 ftfe$ 3 F£**fi7KM/±^*#*M*M«»^t; (2) 1996 ^C0%mz$5\7Z> 1996 ¥ SlffliSfcffi (8/23) m ^ 0.6 ­ ­ttl­^tl, flWffi*&^?> 12 s ft! o ^ ­ ?­Wr­ * 0.4 : /X •B­ o ■ffl 0.2 yy°-" ­ ■nn - / / ­to 1995 ¥^^mi[pl^, * o r i i i i i i 4 6 8 10 12 &iH$ffl (h) f^LT^^^TfeSo 1996 ¥ FigAfe®m&&7\c*m7\cmmAA%7\c9r*m7\cmmcommmk 1996 ¥ SfflJfettJ (8/24)

­ 190 JAERI-Conf 99-001

mm ytzx>, xtix'ticDmTkTkMUx

M *) ii^i&Kfci-gStfS JL biitz0 & COM *) jA^-icov^Tli, fficom *) ii wmhAZ <, XABAfocom, •x-^yx, -* = h*^ h©n«z>KB^/£ o/Co *7C, ftWttgW^tt^^ it

(3) 1997 ^•H^.Cfttt'SWW 10 15 30 D20 W^NF^fb 8§»B#ffl (h) 1996 ^-mz)xmco%mxMMy Fig.5 W^COmzX6M7K7KM^COMy)i2-^o ^g, n^Btf^^^mwii (i997¥^am^^m) fl&-7)*rt4fe^-*^*t*, 97 ^E

^^ffofco flBliric^H:R|-»a*5t>*x>Sr2offl«L-t0 -ott, rlM^filT, ^Hft^J-^J:

5 ^MTEb&fcfco fe 5--XXMW& 2mr$umm\,imxhoita Fig. 5t1997*¥©^ifc&*

Table 2 B#£$Ck, ¥»B£©*rt*iJ*g fc****/*'!**^****!; R&tf ¥ftl-Jii-^*T(7)B#rrfl R#£& ¥-®#f '95 ¥ 0.16±0.08 0.98±0.40 19 avyt '96 ¥ 8/24 0.62±0.12 0.88±0.06 4.8 a-ry-h '96 ¥ 8/25 0.66±0.21 0.83±0.08 4.5 -+0*18 '96 ¥ 8/24 0.71±0.13 0.98±0.06 4.2 -+B^m '96 ¥ 8/25 1 08±0.33 0.85±0.08 2.8 5-h-^h '96 ¥ 8/24 0.75±0.13 0.86±0.05 4.0 fig '96 ¥ 8/25 3.30±0.68 0.88±0.04 0.9 '97 ¥ 1.04±0.08 0.86±0.03 2.9 &m 5#y '95 ¥ 0.06±0.31 0.88±4.3 50 n-^^y^- '96 ¥ 0.33±0.08 0.72±0.07 9.1 -+ B**B '96 ¥ 0.47±0.09 0.85±0.07 6.4 5= iWh '96 ¥ 0.16±0.03 0.75±0.06 19 m '97 ¥ 0.29±0.03 0.76±0.03 10

191 - JAERI­Conf 99­001

(4) mMmMRttMi&Xcoti:®. 3 izfflcom%kxmbtitzx-y& * 0.8 $:(\)Xhx\Zfrx#:frtzmfe$iik co■e ­ m, w-mrncommas&**p 0.6 —•— ~ + B ­*:«©«, 11 mmbA%.fcfttpmmcob£Rx}, w- ­K —e ­ 5­ h­v h©"£, S to! ­ ♦­ ­ ­ ­+­ 0 *«©«, * mmmco 95%^jt­t 5 mm £ Table 2 *g 0.4 ­­©­­ *­iKho^ * ­A­ r­t­H­*:«©«, fi2 X^A. Zti^tKDmto&lztirMtt A *8©«s S ■e­ z>b, Micomx^xiz, 96^com 0.2 ■a ­c7))WT (h) Fig.6 ~ h­7 b*&, 1 £T, Sc7)H^OV^T 0.58±0.38 h' mcomcos&TkpmTkmm

xcommix, &mx\xMxo 9­2.9 m 0 m, ^-?yxx4.5-4.%mmbmco77 ­1 flS8H#ffl (h) xmmmxA-ffi\zmytzcD\z)xM\s Fig.7 \%tz}h, m&&fc^cDbvxyx cDm&fymmixm®fcpcDbvxyxmtfmz^mAz>Axmmxhz>0

3 2 ^.^^^^^C0M7^C0m7 &mcD&MmmzxzmxxmAmmz\x^^cDmm^'&mxhz>0 *#,^~ h­^ h^­n^ r+0*^ft©ft©^i­i^*x?­ftffli­*r5­«t­is#v^«9tt, &MpcDmmhMmbftz>a Fig. 6

­ |W hcDlU'­o^T, ^^^^7">^Kl­^7^J:i9«±#L7cfec7)c7)^^c7)ii7JDttil^Tfeo

­ 192 ­ JAERI-Conf 99-001 ffl&z ® -1- I—. r-T-1- EBL b\XX%f£X^tztztb,mfficovl 20 30 40 50 60 70 -kmxhzKconftxbtitztf m7yx^z>x\xmfex%xx Fig. 8 #ffl*!rT*£-z>S**«-z>teT (J ofco Fig. 7 x^comcom^mm commmtetiiMcommz^^x 1.2 i I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' I ' ' ' ' X^Ao M\z^\^x\XM&com A : C=0. 76exp (-0. 24t) +0. 25 T =2.8 h :C=0. 97exp(-0. 57t)+0. 03 =1.2 h" •* < &btitzt>y m\zi^xmz m (WWEfllfl 1/2 G m (mitm :C=0. 97exp(-0. 61t)+0. 03 T =1 lh bXbm^£X^tz0 0.8 1/2 -

S 3.3 WLttimT&cowmpMfcm « 0.6

0.4 Fig. 8, Fig. 9 \Zffi8fm Wi Lfc^-e*5„ AMticomx, d^co^\zm&.yXo Fig. 9 ik&mT&coi iTkmmco&T m Cp= a + 0elt (2) Mco$: b AS r-T, a\xm.%&&7kP'&7)<.co^yyXyyy vmmjs \xmm a s^s^wMmTB** mxba^wxzm, xi*0#^fcTfeso xMiycox nmmco^ftxtezmmTmzmizTFAo mxv, mco s«a, fcmzimxi&yyx^zz mmxvc&irzb&coxtmxm^\ mttmbmtt&xmzb xbmxt£x^tz0 mtembitnyxmmco&Ti>m<, x^wi-^ytz 10 mmumcomxn, y

3.4 xm^xpmmcommmk

193 - JAERI­Conf 99­001

Fig. 10 \zm& 0­4cm b(D&fffl (h) mx.tzhcox^7^mx 44% Fig io xmTkftpmmTkmmcDmmmk Tfco7t0 ^fi^ficoM^ mmzbmxzb, mmp ~ 8000 \x£7kmcDmmzx%^^ B 7000 \xmxx&ofz0 $M, #2 ^ 6000 icov>X(*, J£ 3000 42 m\z^^xnm&feT'&cD an 20001- mm&TcD%kAh^7km9 <7)fi Fig 11 Tktt^mcDmmmkZAffo (±*^rS 0-4 cm)

3.7c, Fig.12 ^±Jg£­Jg&<7) 30000

25000 —• -0-0.5 cm - ♦- 0. 5-1 cm Z^Ao Ztibcoffi^XV, & 20000 - - e - 1-2 cm xm^cDtt^mix, ­^TK^^ —o- -2-4 cm + - 4-7 cm ■-j- 15000 xz>0 $.tz, M7kcotf:%\x± -fc 10000 x~ mcommm\zmbfi, xmco A 30 mmcomnxm^bxb 5000 . «>

194­ JAERI-Conf 99-001

4. &b£> b v Ay xtmmxttr:mt5titzM&$m*^\ mi&T*±m^)&&7i<.cpm7kmmiz^^x - - m&&M%9:&fymm<7)^^X, =3-?yAxmzbXbX<, $.#>* ^~ WK ffixxz

Xotz0 . ^whc7)!!<7)Mit7jn}i/h£<, i®.m$(Dnux\x, \^bxbmz\xw^yx^^zbx^x-

Xotz0 • fti,-o^T,±, mbMtz0 mmrnxm (Dmm&riz^^x, momm&Ttmx<9 txz<, x^m^ytz 70 mmnm^mizit, m

• ^Tkmzx%mmb, ^7kmx>m^±teby it^m^x^^^mbx^tz, . ±m^

(1) Morishita, T. and Noda, S.: Measurement and tracer technique for heavy water by use of gaschromatograph, Radioisotopes 31,619-627, (1982) (2) J.A.Garland and L.C.Cox: Uptake of Tritiated Water Vapor by Bean Leaves, Water Air Soil Pollut. 17,207-212,(1982) (3) F.S.Spencer. Tritiated Water Uptake Kinetics in Tissue-Free Water and Organically-Bound Fractions of Tomato Plants, Ontario Hydro Research Division, OH-84-69-K, (March 1984)

- 195- JAERI-Conf 99-001 JP9950140

is. mmm±^mmAxy^mm^(Dmm

mmm Mm- x&tztb, ttmMAx^&im&msiyx&Zo mmxu 1 mv-kmAJL&m&zmiz #, xn\mn, m*, mmtkcD&^w&^xx&v, B^±mco^m^^^^bxa±x &M?ZZ\ttf»lffiX*$>%>o ::m A-ffiBXim^ZMWL, XZXfryZb^XX^ z>mncD-^£mftxz>o

Artificial Climate Experiment Facility in Institute for Environmental Sciences

Shun'ichi HISAMATSU Department of Radioecology, Institute for Environmental Sciences

The Institute for Environmental Sciences is now constructing the artificial climate experiment facility (ACEF) to research the effect of climate on movement of elements in the various environments. The ACEF will have one large, and five small artificial climate experiment chambers. The large chamber is designed to simulate climate conditions in all Japan. It will equip systems to simulate sunshine, rainfall (including acid rain), snowfall and fog (including acid fog). 'Yamase' condition will also be reproduced in it. Yamase is a Japanese term describing the characteristic weather condition occurring mainly on the Pacific Ocean side at the northern Japan. While the small chamber will not have rainfall, snowfall and fog systems, radioisotopes will be used in the two small chambers which will be set up in a radioisotopes facility. We describe here the outline of the ACEF and the preliminary research programs being undertaken using both kinds of chambers

Keywords Artificial climate chamber, Climate effect, Radioisotopes, Environmental transfer, Yamase

1. *£^£«5Ka>M mmwmmnm mmm) x\x ±^mkAx%imm(±Amkm)*mm*xhz>, tz* vxvtetfb, m&

- 196- JAERI Conf 99­001

Table 1 Construction plan of artificial climate experiment facilities Financial year 1995 1996 1997 1998 1999 2000 Designing **♦■ Construction of building Radioisotope laboratories Small chambers ­> General laboratories ***lr" Small chambers Large chamber it, mmoimmm*Fig.lusifc. ±3zmnm\z\ti&zb*Bmyx&v, urn, ma> nm^m ^mXtzWX^ Urn, flSl2m, iUS 13m £>^fc^T&­5. t*J SB £>­»££ Fig. 2 \Z, ±fc mt& Table 2 K^L­fc. UM%m**9)V/\y'i \iy>-y°tJ\uyt>y>7°&Ufr&t># X&K), Amffizfc^x^y bAttm^nbtiz, Fig. 3 izuttmmvx^y bA&mmA mx^y b)ib7±\zmLtzo ^mizmyxtz, m%<»n<»m^zmma&n£mtf&r)*-pm &x(Dm,&m&&b^z>zb7)mmx$)Z>o &wmwxu#yyxm*mmytz(Fig. 4>. sltitts ^b7k&M&LxyXAftbm&L, zn^XynyAy b*Wiytzffi(DAXVK mx *.&m7>xfct>nz>w*mz&n. • frm$to*m#Lxfc$nzw\zimLx&®-T)<\

Snowfall nozzles

Fig. 1 Artificial climate experiment facilities in Institute for Environmental Sciences

197­ JAERI Conf 99­001

Rainfall nozzles Snowfall system

Fig. 2 Large artificial climate experimental

Table 2 Control range for various parameters in a large artificial climate experiment chamber Parameters Control range Note Temperature(°C) ­25­50 Humidity (%RH) 20­90 Light intensity (lx) 15,000­50,000 Rainfall (mm h"1) 10­100 Acid rain (mm h"1) 10­20 ~pH3 Snowfall (mm d"1) 50­250 Apparent density=0.1­0.4 g cm"3 Flake size=l~5mm Fog (g in3) ­2 Particle size=5~100um Acid fog (g m"3) ­2 ~pH3, Particle size=5~100um Wind velocity (m s'1) =s0.5

H(Cs ^mnm(D&mx%n£W;RUMxmA&%y>XA-mAmz\z r^­rj­j tmznz ft&ftM*£ft#*5. zmt, mfrbmzfiyjx&fz^immtf^* *nt&\zmm ^.x^Mmsh^o imbBM^&*bfzbttzibmMiz£±t£BW&5-xz>7)y ±mxx ^^xte^^&mMX&tzmzmz. %tz, xxnXA^mm*^^ &mZo

­L­®|^C?)2L■^umwrn^mmimzmz,T mzmxz'Mm^mxfoZo znbcoAyy

198­ JAERI-Conf 99-001

1.2 - - Standard solar radiation 4-« -^- Light source (0 1 c 4-o« 0.8 c 4-« O) 0.6 o > 0.4 4-« (0 0.2

500 1000 1500 2000 2500 Wave length (nm) Fig. 3 Spectrum of light source in a large artificial climate experiment chamber

Upper scraper

Catcher Moving device

Lower scraper Snowfall device Atomizing nozzle

Fig. 4 Snowfall system of large artificial climate experiment

- 199- JAERI-Conf 99-001

Status indicator Air outlet duct Air inlet duct

onditioner

Air outlet manifold

Window Air inlet Door Floor

Fig. 5 Small artificial climate experiment chamber

Table 3 Control range for temperature in small artificial climate experiment chambers General experiment chambers Radioisotope experiment chambers ABC D E Temperature(°C) -5-50 -10-50 -40-50 -5-50 -40-50

2. tt&mmztsii&mmo^ffiMttw uAiz^xmmmiz&tf&mwibLx^mmzWrmtsnx^&A-^zmmyfz

A§c,frbWfa • Am^TLmWxlzR&A^ZXT.CD&W mvTtmRmiz^Tiz^^cDmw

RnzL^x-yayizR^tm^mw nm\zx^A^rmcommx)]^ n.7ktm\zRmn

A^frb m.fy}^M.7kcojXM

- 200 JAERI-Conf 99-001

Am.Am7koDmizAz>tt:m

m4&w mm*m*tzmm&

- 201 - JAERI-Conf 99-001 JP9950141 19. mtmmi(o±m^h^m^(o Wii\m]x\tum±Wky r x x -

#& t>\ Satyanarayana Gouthu1, ¥ffl1f^\ £»T\ LUP

isi±i«i*^7 7?y-s t%frb±mtp&&&&&. mm.j& m\ MVP, y^b, #-±) , ±\A, tm'tikxynmz^x, ±mxbm^

Plant Uptake of Radionuclides and Rhizosphere Factors

Tsutomu ARIE1, Satyanarayana GOUTHU1, Hiroaki HIRATA2, Shizuko AMBE1 and Isamu YAMAGUCHI1 lrrhe Institute of Physical and Chemical Research (RIKEN) Nissan Chemical Co.

Influence of soil factors such as nuclide availability, pH, organic carbon, cation exchange capacity (CEC), exchangeble cations (Ca +, Mg +, and K+), phosphate absorption coefficient (PAC), physical composition of soil (coarse sand, fine sand, silt, and clay), soil texture, and rhizosphere microbes on uptake of radionuclides by plants are studied.

Keywords: Bioremediation, Cesium, Fusarium spp., Microorganisms, Multitracer, Rhizosphere, Soil factors, Uptake radionuclide by plant.

Addresses i 2-1 Hirosawa, Wako, Saitama 351-0198, Japan (mA.mulffifcR2-l) 3-7-1 Kanda-Nishiki-Cho, Chiyoda, Tokyo 101-0054, Japan (JrOTWt HEW 6^8X3-7-1)

- 202 - JAERI­Conf 99­001

1. tetibK &x, mmmM(o'M^(OAm^A^yRisAm§myiit^m^xjtx^, ix#ko ftmi%bLxitTm&m*mmmmi> ^^(oitx^s, mmmm, m&m^xmfbtix^&x, zfibitm^xbAm^^^izw^x iK&w^&tti&m&b, mxm%yx^&A,xmnxymLzixz>i§iisbti0 mm^.^m^x%nxxm'0.wx\thi>xw,A'X^xbWi^^^, m&^%m&w*&feL%

z.btfmmb%z., ±Mp^mm&n^m^o &*t±, tx\z**yi)* Y^b%

12) mfei>mm\z x*)^tzz>zb*xLtz0

^■s:­rr•b•f^Tv•.4o PCB, PCP, PCNB^c^fk­^t/ ^­fttH* • •3^1­£&£&Kov­­T<7)^ti#v­*ls,2ft

Mt^^o Gouthu b (1997) (i, ^a^'J^WH?, ±ig^ b X >) # < (O^UiM^ &fr, £fi iSS8K­C^K44fc», ^9^t5%$^^±«^is^LT^wS!i±K*iR«1­**ts:J:i), ±SS s 8 W^kt^SW?Ili/6 nribt^^it^^^LTV^0 ^c?) J; ^ & 77 ^ b 'J^rVi­yaX^

ft^w^wai^ti, %.m, %%Lmk. MA AM^vMit^ttzmmmxtt <, mum

xy, m^mmmwxyjzftmi, ztibmrn^mmmiyRttAimy^xm

2 . ##£ J: TO& 2. 1. mf*±^£<£^WftPS

*fc&mKW.^tzo ttf*±iHw­ll£ Table nc^­to ±^4:<7)fyfflnrfb;ttS# (available fraction) "i, McLaren and Crawford (1973) ^i^V\ UX «i­)l:I£L/:» 16) Atzhb, vji/f­ bU—V—i'&/»t*±m (2 g) (co.05% i&ffctf^v?^

•fS20ml*SDx., 20rr*20P#rB^ l/y­Znyi­*­ (150 spm) "C^ii^s, 7§fU L£o ­?­c7)f£, if

­ 203 ­ JAERI­Conf 99­001

Xfrffi (1000 xg, 10 55* Table 1 List of soil samples used ini this study. m) xmftLfzxmpy^ Location of Soil no. Land use Soil texture?' sampling site mmmmbLfzo 1 Takasaki, Gunma Agriculture SLC ^W^M (organic carbon) , '2 YosWi, Gunma Agrioitare SL Rl'f t >^^fflfi (cation 3 ToiHioka» Gunma Agriculture SLC exchange capacity: CEC) , 4 Pukaya, Saitama Agriculture liC x. & tt m 4 * y 5 Tomisato, Chiba Agriculture LiC ( exchangeable cations; 6 Karuizawa, Nagano Forest SL Ca2+, Mg2+, and K+) , 7 Tsumagoi, Gunma Agriculture SL It W. U % $C ( phosphate 8 T^umagoi, Gunma Agriculture CL absorption coefficient) , pH, 9 Wako, Saitama Forest LiC fe S & & ( physical composition) , ±14 (soil 10 (Knieha­^il^ Commercial LiC texture) £ *f£l «h L , «?*f "Commercially available horticulture sot (I&reha­engei­ [},­?.; y • HJ­_ .y­^fl^ baido; Kuraha Ctemical Industry, Tokyo, Japan). 2> SLC; sandy day bam; SL* loamy sand; liC; Bghtelay #tt (§£.&§&« ITO Kfc CL: clay loam. Determined by Wyno Survey Ca, Fujioka, jglLfco Gunma, Japan.

2. 2. -7)^f-bU~A- -7)v^-bv-A-\±, %mm)*ML, zti*m^&zbx, -m

7^135 MeV/nucleon14NS^*>" kf­i,£, £&£ V>{iffif4 * * * ­y? HlBSjftL, ISflfcftKJ:

*);fi*&M££$t £o £W*T>f **£I:***v­.|iHN03K?£*#, ?#$^<7):£&£iM2£&£if­;b 7­feT­ htttli^^fai^O^fi­ei^i, ^F­t­4v;b^H/—rj—*f£@, ft&MKv;*••?■ M>­+r­ TK^Fffi­SrilSL­to " ^W^T­i'c^ffl L1z&$: 9 - ¥ v b b L£v;bf­ bV~-A~\z^t ti&lfcm. XM\t, Be, Na, K, Ca, Sc, V, Cr, Mn, Fe, Co, Zn, Ga, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Ag, In, Sn, Te, I, Ba, Ce, Pm, Eu, Gd, Tb, Er, Tm, Yb, Lu, Hf, Re, Os, Ir,

Pt, Hg"e&&0 2. 3. ­fev^A A l5<7)SfcM'ft­fe yy & (cesium­137; cesium chloride in 1 M HC1, Amersham, Buckinghamshire, UK) 137 £fflv*­fco 0.5^1O37MBq/ml Csf#$£v/U'f­h l­­­9­­?#$21 mlKf­I­S­LTiaiKlftifc Lfc0 &

2. 4. I ft ^f JI */* 'J (Cucumis sativus L., cv. Suyo) , h v h (Lycopersicon esculentum Mill., cv. Momotaro) , V^y (Glycine max Merr., cv. Okuharawase) , ­l" "f (Oryza safiva L. cv. Koshihikan) ^r^fttrtLfco &»ii, *°7 h (180 ml) Ki£fc£&§*±&l;:«rtt, 25t («) ~30 t (&M) , 12 MB

­ 204 ­ JAERI­Conf 99­001 ffl (15,000­17,000 lux) -Uhvmmytiybv-iy^iitzmmmu^.px^^, %W

U-A-mm ml/pot£itV±ML, Z­r^Ls wmzmuttzo %&, 1 mmmz3 *°7 K 6 mi±y ^amttzo 2. 5. mxmmmm£vm& ^fti:ov>t, s\Jsi- \zX7y)iy-~^A^fcfc&&£m^xjfyy-utz0 v;i/^ b U~-A-m$L&&U­rrIlj7£L7Cc ztD^-xMmimmxyy^ (ioo%) tnmmbkmt&zbx, wirm^^tzo %&, v;u ■^M/—*­£­££ Khjt%(n^%, tmntt&b Ltzmt, ^Mn, ^Co, ffiZn, BRb, ffiSr, ­"cs­e

2. 6. Ilffll^^tl «Ha*t)i:L­r(i, v;i^Ni^^­£i&fflL&v>#f£±J||­e, 2. 4. icfEiELTt^rStflR f ^L^S%<7)^ffl±^i3J:Li mrS^f3S15t^f^itc J:^^®, *ffl®, ifcRSfc­frlKLfco J£P£« j£<7)i£ifflK ovarii, ftJI^ (1980) 17|i:fto/:„ ­9­tt^tT)fMifJii, #x>fdrX >n­x|f^ (PDA) ^mxxmnLtzo Am^tm&Ltzo 2. 7. fSHf^t^Kt^iW

»£Mf&, t$£MM£±^tcri&^aL, ­L­ogv^f M^­^7­­:r§ffi*«taL^o #

&®&mfo*WL&®%%fobmmiz±mzm&%kmLt:0

3. Ir! * 3. 1. ®ft% ft fco 1"fcfc*K *^KLUJ|Cffi'7)*H­|l##S*'7)±» (±m­tj­>7p^6) T^Rb, ffiSr, ^Cs

%bm<»±&bit&LXmL<&fr<>tz (Table2) 0 ttz, ­<7)itm&f#i:£@e L^H ±§Er3*^±M (±^­'7­>7P^7) K£ It4#»)­&*£, »#T*7)±»^Jttt1­4*h«^L^*«*, HfecT) ±««h'7)jtK­c­(i­ii5^§^o^o znm. i$AmnytA7°;l­6i3 «fc ^C^ItiiiS­?,

­ 205 ­ JAERI Conf 99-001

Table 2 Rant uptake from dffferert soil types.

Soil no Uptake (%) MMn 5SCo S5Zn 8*Rb "Sr 137Cs 1 4.29 0.69 5.70 4.95 5.05 0.10 2 8.75 0.10 4.68 2.66 4.21 0.07 3 7.33 0.03 1.93 1.65 3.15 0.06 4 1.24 0.02 2.93 0.83 1.60 0.02 5 1.24 0.03 3.31 2.69 1.22 0.03 6 15.08 1.44 9.37 59.90 20.09 9.31 7 2.10 0.08 2.59 19.10 7.02 2.72 8 3.09 0.04 2.01 19.84 2.88 0.81 9 3.48 0.20 3.97 24.62 2.40 1.56 10 2.50 0.09 3.63 6.57 1.24 0.46

Cucumber (cv. Suyo), n=5.

3. 2. mmy$m*Rizt±mmA ®&±m, m&^AbiE(nn^mm*Aty7y>?-bi x, Amp^mm^immmm, ±m

>£&#*, ±m.mmz&\7h1fc±%%^ AmpmX&^fzXtltz (Table3;Fig 1) 0 AWkPCT) ^ikmmtAZZ&WiAz-X^Z^^Xiy^JLbtlfz (Table 3; Fig 1) 0

Table 3 Correlation coefficients of a linear correlation analysis between plant uptake and available nuclide fraction and soil properties.

Exchangeable cation Physical composition Nuclide AV pH OC CEC Ca Mg K PAC F-sand Silt Clay

%[n 0.74 -0.49 -0.23 -0.60 -036 -0.60 -0.14 -0.51 0.69 -0.47 -0.S

*Co 0.72 -0.51 -0.05 -0.44 -0.48 -0.50 -0.38 -0.30 0.54 -0.26 -0.46

«Za 0.44 -0.52 -0.05 -0.35 -0.38 -0.40 -0.14 -0,25 0.43 -0.18 -0.35

«Rb 0.80 -0.37 0.36 -0.24 -0.45 -0.58 -0.51 0.03 0.47 -0.22 -0.50

*Sr 0.68 -0.52 -0.07 -0.58 -0.57 -0.59 -0.42 -0.41 0.73 -0.44 -0.63

""Cs 0.88 -0.38 0.14 -0.39 -0.45 -0.52 -0.43 -0.17 0.56 -0.27 -0.55

Abbreviations, AV: available fraction (sum of nuclide amount in soil solution and weekly bound to soil particles by inorganic specific sites); OC: organic carbon; CEC: cation exchange capacity; PAC: phosphate absorption coefficient; F-sand: fine sand.

206 X I* irSit at «3­ s Plant Uptake (%) © Plant Uptake (%) ^ "> b s ­J* •£ ­J ' t « '^f' l t 1111 nf till ■""; * i « r n ­ft ssr 4 1 rS Ui \ ^^ —fc­^­^­lt J1J ­S? fc tw \ ^~*~ ­ n ■ .* *& *• ­St fc ^ a 6J­ ** ri JO 7T T­ rv 77 cd • go II 0 ' & fed r SS • © T & 00 r\ «1 ­ a i n oo f® r?tn ? X o e. [EJf sT* . **q O B1 • K*­ a ? 5(S | "Hf O c r> *4 !­»» f *t r> a. *­3\ § ."5 w 77 h& **S^ § *< © o _ °A B 25­ ?P \ s^ ?$ j3 ■ II \ f s?T3, en Tf ■\ © \ © oo ' m 3 3 rv o » *. s o*. ■ V © r* © sS ©' 00 > B a rv ■ m 3D *^ • ■ • s ©" 94­ ►■ ■ ■ r» H P a o 4i' *5 ©' 5 o a Jaan s 94­ "■ # 3 w. D> <3\: ai 7T te o x r» o t» S3 END a a l C7* rS * 3 y 8­ ^ & o h­ 15 r> rj a 53 r< ©­ ° ED­ sST 7T JAERI­Conf 99­001

10 W-oAmfrAAZTlX&l, A ryA b'x yimmifyzMm, mmi&Ai&m, ttzit^.^ x, m&&^y±AmftAA %

A %> Z b X h Fusarium oxysporum Schlechtend.: Fr. b |n] 17) %$titz0 ro. I *Mn 58Co «­»­ 8JRb *$r »3lCs Nuclile

Fig 2 hflience &Fusariumax$$porumoti uptake of radionuclidbs by tomato. ■: cortrd;D Fusarium acysportm 880621 a­l.

3. 3. 2. ?x y-i

I*] ­e r A x \zmmz na o *i L tit # 0.8' L7C^^X^fi^l00fi*5 mlOTft 137Cs tp­p^^^­T­i'XL­tfc'T)* flM

iwgfittag*, ^ESI (121 x, 40 #15) L7^±^H250ul/*°­y b Mffl L, m%i.mwmm±mzmm L £ o mm mm mx m& x VsMm b LXftBitfSffi±liZ250\Ll/#7 b

208 JAERI­Conf 99­001 x^zbmmLtz (Fig.3) o ttz, mmy&i7%sRb^(omm&mxm^t£mz)mLxiih^z bZft^tzLtzo 3 . 3 . 3 . -i * ­ Gibberella fujikuroi ^^XRmx ^xm • ^^ttz^tmy, sr, cs^

Wollenweber (AyEik}&r%&, Fusarium moniliforme Sheld) b\s]%.£tltz0 G. fujikuroilZlty rA3 ?§

ffi* Jfiffl L/c i: i 6, 150 (ig/ ml­CM^M/S^i: [B]#W^S#tf *Wii7jp^Ei6

Table 4 Influence of Gibberella figik urti and gibbereltin en uptake of radionuclides by rice.

GibbereHin A (ttl/ml) Control G. figikurd " ­ } 600 450 300 150 Uptake amount (%)/ plant 51vln 1.39 2.65 2.62 2.55 2.18 * 2.41 ­ »Co 0.07 0.24 0.18 0J0 0.17 oas ^Zn 0.71 UI 1.44 1.24 J.06 146 «3Rb 1.63 2.55 3.14 2,90 2.83 2.48 8$r 0.08 0.15 0.14 0.13 0.14 0.18 137Cs 0.02 0.04 0.05 0.04 0.04 0.03

Shoot dry wt. (g) 0.209 0.234 0.331 0.309 0.299 0.29 r Root dry wt. (g) 0.076 0.073 NT « NT jK* j» NT

0 Strain no ai. 2)Not tested.

4. •# m m*%m%tft&!yxjS.yttA&;xt^f^i­>3y^x^xaxm^^tix^^ty %<

itfrmxAxmx&z>tzfr, ftmtL!k%i)WA'®Z:£7Emtm£Z> ZbffimmZ, tzbkxhtzb LXt>Za>t mtt&^kx ■AX*m%x%x^:X&z>b%Ahtitzo %(ox, mzm^x, xmptomMw. J|XS*£, ZZbX\ fTs&nMffi ■ mUZfiiyrJ b'J^f­f^­va y\z\t^

­1 Gibberellm A3, Gift from Dr Y Suzuki, Microbial Toxicology Lab , RIKEN

­ 209 ­ JAERI-Cont 99-001 ffl (O XnmXb Z>b%z.bfiZ>o tXlZ, Gouthu^> (1997) -J'ft&UJ:*)!:, ^7'J, b •? b%bi±m'P<0&&.

4i:-tx.^*M, ^(iilc^ft^^T'^filt/i: LT^^^iifeTv^0 L^L£-^, SR^cD-ft; Mt4^a«V-xt LTc7)ifftWpTfgt4^^o^lSc7)i*^#x7t:^i^, $Htij?)^&^1\ *^tf!^

4«h#x.^*M, ^l^ii: LT, &3^ W*-W ^^fflv^c^m^^mii^^T'*^ «hS*b*M40 n*it*mmimzx, m^^(ommm7ym^x^±m£$#i:, ±mtitzmM±mX, X'& 2hlzUWffiLX^coRtft$m(vm®y-?^Xffl%r£m!b& b b k\z, Ztih(D77y ? -Zffl_fr& h^x, mmmizx&±mp

±mp, b*)t>i7mytiimiz^ imy^mo, ttz^mo^A^x^^x^x, mmmmw^ ~$$£&,^x, tm^z^m^Awnb£mm&^i>

f iu£, t&fah (1998) (i, H'EJ Saccharimyces cerevisiae Meyen ex Hansen 11 v JU •/ - h 1/ — +r — £ -*f-

i^CffifLtt bU-V-imiXXtc^Zbfrh, &<*Z^L*to -8*1-* -X, B®W, ii F^A^-7 ^;i/^fc*g£*t;&*>;<*K££gt*£J: fc#£S fi-CiSiJ, 13'1^c7)J;^ ^Wfn-T^ ^^jffeT-^ffit/HSAL, IMfMJ'^^KiMU J:^#J;^^, A ^^ra->3 vfflffi^-fr-Fffafc^&^S *M4 bZhXhho

(1) £»?- : " v;i/-if- h 1/--9*-ooliijgi: ifc^, £ %-^ (7) j£ ffl " , RADIOISOTOPES, 44, 321-329, (1995). (2) ^1 # • Hr&J&ft * UJT^- * ±Jf§#~ • *m?lj£ : " Pseudomonas gladioli ifeM Z^ttz* Attz\±~y(omt\zx&zi.yif*^&nm

- 210- JAERI-Conf 99-001

Radioactivity, 19, 25-39, (1993). (6) Dighton, J., Clint, G. M. and Poskitt, J : Uptake and accumulation of 137Cs by upland grassland soil fungi : a potential pool of Cs immobilization, Mycol. Res., 95, 1052-1056, (1991). (7) Entry, J. A., Rygiewicz, P. T. and Emmingham, W. H.. : Accumulation of cesium-137 and strontium-90 in Ponderosa pine and Monterey pine seedlings, J. Environ. Qual., 22, 742-746, (1993). (8) Gouthu S., Arie, T., Ambe, S. and Yamaguchi, I.: Screening of plant species for comparative uptake abilities of radioactive Co, Rb, Sr andCs from soil., J. Radioanal. Nucl. Chem., 222 , 247-251, (1997a). (9) Gouthu S., Arie, T., Ambe S. and Yamaguchi, I.: Selection of plants for phytoremediation of soil contaminated with radionuclides and the impact of some parameters on plant uptake, in Proceedings of International Meeting on Influence of Climatic Characteristics upon Behavior of Radioactive Elements, IES, Aomori, pp. 221-228, (1997b). (10) Gouthu S., Arie, T., Ambe S. and Yamaguchi, I.: Screening of plants for soil-radionuclide accumulators., RIKEN Accel. Prog. Rep., 31, 145, (1998a). (11) Gouthu, S., Arie, T., Ambe, S. and Yamaguchi, I.: Possible role of soil-microbes in plant uptake of radionuclides. RIKEN Accel. Prog. Rep., 31, 146, (1998b). (12) Gouthu, S., Weginwar, R, Arie, T., Ambe, S. and Yamaguchi, I. : Subcellular distribution and translocation of radionuclides, Environ. Tox. Chem., submitted. (13) Inouhe, M., Sumiyoshi, M., Tohoyama, H. and Joho, M. : Resistance to cadmium ions and formation of a cadmium-binding complex in various wild-type yeasts, Plant Cell Physiol., 37, 331-346, (1996). (14) Kneer, R., Kutchan, T. M., Hochberger, A. and Zenk, M. H. : Saccharomyces cerevisiae and Neurospora cmssa contain heavy metal sequestering phytochelatin, Arch. Microbiol., 157 , 305-310, (1992). (15) Kudo, T., Maeda, M„ Fuji, F., Chung, S.-Y., Hasegawa, Y., Eun, S. and Yoshida, Y. : Isolation and characterization of diveerse polychlorinated biphenyl (PCB)/ biphenyl-degrading gram-positive bacteria, in Microbial diversity and genetics of biodegradation, Japan Scientific Societies Press., pp. 133-147, (1997). (16) MacLaren.R. G. and Crawford, D. V. : Studies on soil copper. 1. The fractionation of copper in soils. J. Soil. Sci. 24, 172-181, (1973). d7) ftm^^-mm K, &E mm:" ft®

- 211 - JAERI-Conf 99-001

(22) Stomp. A.-M., Han, K.-H, Wilbert, S. and Gordon, M. P. : Genetic improvement of tree species for remediation of hazardous wastes, In Vitro Cell. Dev. Biol., 29, 227-232, (1993). (23) Tamura, K., Hasegawa, Y., Kudo, Y. and Yamaguchi, I. : Isolation and characterization of PCNB degrading bacterium, Pseudomonas aeruginosa strain 1-41. J. Pesticide Sci., 20, 145-151, (1995). (24) Yamaguchi, I., Nakashita, H., Arie, T., Kobayashi, Y., Someya, K., Tamura, K., Kono, Y. and Okada, G. : Microbial degradation of PCNB, a residual fungicide against clubroot: How can clubroot disease of crucifers be controlled with less impact on the environment? in Proceedings of International Conference on Asian Network on Microbial Researches (ANMR Conference), Yogyakarta, Indonesia, pp. 359-370, (1998).

- 212 - JP9950142

20. %k£.mz.£z>vyis-7*/isb~yA.(D£.fcmm BIOACCUMULATION OF URANIUM AND PLUTONIUM BY MICROORGANISMS MfoA-sUXX^ gp#H SAKAGUCHI TAKASHI

$yy(D&m, tttti, n­tt, mimfeffi, mmmm^mmx^hm^-^xcD^M, vzm$*m&y^b-tJ*i&&tteZo z,titb

•bftfcrfUi, ^20 &^5fe, »^*­^­i***K*fcWfflr5a«iJ|Sr*KoiaiR*H^ Sc*ttt^ac7)|i*

T^5­J5, ^roflf^iiS­?, 4**3Ja«ft*Klc»UTMv^attS:*1­ii:SrJS,aL*:. ^Jt­ibcDfcijLSr SSICLT, 4#i^^oT^5ffi­rL7'c4^^ill^fiJffiLTa^^^'g^[H]it5i?iJffiLJ;5 t­f­5, v^*5^ ^•i­^o'fe­y^^^oWSWroBB'SSSrBJfiUTWfaSriifeTV^S. $&4^c7">&­5ilC>­i, Bacillus subtilis, Micrococcus luteus, Zooglea ramigera, Streptomyces lleroris, S. viridochromogenes f£fmt)$:i)'0 %><&&&■&■? 5o tyy&ftmmat, ^y>^t'(onki^^m^m\t^h^tc^\tm^yymmm^^^^yy^m ar5i6*«rfcofc«±«­*3J#­fiEUTV^5fe©i:S*fc>tL5. tif. *b*H,*b*H,J±, f£#ro±­gr>7>±^H xhzzxy, ryvz, *-xby])T&mMmzto^x, Ktttg*? >»«*©­»**' fi­oT^fco %bhtz.0 ft/J^fe 5. JHA/i/is, Arthrobacter sp. Ii, gft l gSfci? 615 mg |C feS..££firor> 7 y^fflfcAZ Z t #­***#, %c7)a4«­©r>9i/8llja^­i, iia­i5^­bv*Tii<(i~2^g^), u*»t«it7)*B'fe«'r*>a**a':},c*#LTv^Tt, it>a^f^icr>

£;TL£<9 fe h

£ft& ©Steffi* 7 :••«»««, 4«­**t7)fe©*«,t"c*<, ­^yr^y^T? K^/ncasH^tu­t tixts •?, * 7 >*MM&** if ro­^&l*?!1*^fttefcroawiKamJ­c* 5o Jii.±CDi5l­, 5­ JHA/i/is, Arthrobacter sp. ft if <£>#■£#*.i, *7 7>\ h y £ Al£;ttL&^&fttt*S­­^1­ ­js, Aia*tt7c*"C*>57'^r­ = '>^|­i­4tUTJ±, ift7)SJEt7)aMBIBS:*1­©­C*)5 5*4».

•»±»©*//l'r­ = ">A|C­4t­f5'¥ft*Sr, 5. 5HZ>///«, Arthrobacter sp. •Srfl^*­*TffL©»4»tt, ?7^c7);­*/£<£>$•£#,'2, pH4~8©ffi#^*feJ:<0 7:'*fc0&tr;flJ. 0 ~3 (7>BfH4»«ir)­­$>«■£< »9iitri J­as­e­Sfci/*«. L­i^L, r­ft^ro$r£^,2, pH0'­i.5'7)!ftifM±IS«*J»fefeivffi*7,/i'h = r>^iS:±<»«­f Sifc­tf­C­ta. fc 9 *»ft pH 1.5 toSf«*»?,«, Htf­e­ftWlc­y^r­^^^­lrftrtlcBiQatr. —#, £*rT,$>(7>«±*J*i, !Vgi*7,/i'h=:r>A;lrVffi*7,/i'h = *>AlCiS7c1­5ffi*SrfeoTV^5. V«£33

213 JAERI-Conf 99-001 nZftlty/i' b-V J±\tt®ikfcfc\z£.vwmtVimz:&tDZ>i!>K &&Vtt*Nm--fA'b~$J»t:iktilK^9t 1&mx#-ft\z£.A, TVu r-zir>AOT^TV-< Kjcsif'-tt-f 5^

WHX 5t3gc75S!Sc75-avMsiJ;o-rS*o-rv^^fc^ofc:0 ®l£.®^, y^b-t^te wry 7-/4 vn^mm^, gSTK^a^ifwiagisi, §bisiii^itttiisE^toawaaiiflDiifctsifijffl-rs^bvv^^-i/^xA^fli^ -e$5<7)-ei2*v^fc5ot\ m%bn, zx^z<,

- 214 - JAERI-Conf 99-001 21. 7m±mK&vz®MffintWL£Mi

itttffiTt AM±¥ m%¥3 frm±mte0MfcmRfr*r&x., yyM*?T%y*yx, mtoxyyy v>%¥ 3i6^4^fttf«i4oTv^o ttzmffi&!,z£vx±%bmmzti&mxffimz tizb, m.%mm.mzij:V), mitM%muyyytf!A$L-tz>. ttz, ^mmftMnrnxh^mfctzt^AiW btz>^%mt>y?y(D±j&%:Mb%-ox^z>o y?y&&mj)%:77xbix, &

CYCLES OF MATERIALS AND ROLES OF MICROORGANISMS IN PADDY SOIL

INUBUSHI KAZUYUKI Faculty of Horticulture, Chiba University

Paddy soil is characterized as a unique anaerobic ecosystem covered by surface water, which is suitable harbor of phototrophic organisms including cyanobacteria, azolla and other phytoplanctons. Surface water of paddy soil is also playing as a barrier of diffusing oxygen from the atmosphere into the soil, so that reduced conditions are predominant in the soil, due to the successive reactions of oxygen consumption, nitrate-, Mn oxides-, Fe oxides- and sulfate-reductions. These reactions occur in parallel with decomposition of soil organic matter, resulting built up of carbon dioxide (bicarbonate) in soil solution. After consuming these oxidizing agents, methane production starts which is derived from accumulated carbon dioxide and hydrogen released by rice root or soil organic matter. Methane is also made from organic acids due to organic matter decomposition. Methane is one of greenhouse gases, and control of this gas flux becomes a big concern by the world. This paper is dealing with such reactions taking places in the submerged paddy soil, with attentions to soil microorganisms carrying these reactions.

Key word Paddy Soil, Anaerobic Bacteria, Organic Matter Decomposition, Cycling of Bioelements

- 215 - JAERI-Conf 99-001

1

fcmtB*XimMMffi<7)$)¥/7f*&&, ttzM$tz£fcXliTXT%tpAb LX folW.5AJ5^??-Xt<~Jxtf'DX^Z>o ZLxn.%%£$i$imgm*<<. Ltzii^xm^xnmm^^Mmm y*xxxbht£AXbtfx^Z>0 iiTii, *ffl±&

2. &m±m

&m±m<7)M±<7x%WLit, ^ti

x^z> ($*) zbXT*>2> (Fig. i) 0 %

&mi,Z&l72>mMffi$:%&LX\<*2>0

ttS-eS-i-':

(t«fe)

Fig. 1 Schematic diagram of submerged paddy soil

- 216 JAERI-Conf 99-001

^mmmfeftmz&otzib, frm±mo % m^^bxx^y^ u \z^yx\t£mmbLXT*y*yxmmi)mmikLx^ feKLxxmmw^ftM'mmmb Lxmsztiz* +^&m=

2. 2 ^jtf-^Bos

tx-^&ztiZo xtihvxxmimi?;, m&.&.%jiMM&&x-&7't2> (Fig. 2) 0

&K$kZtiX\<*2> (Fig.3) o &£, J^T<7)-^<7)^lt-ettML/'s:±afK 3r4(i, Table l^^L^i^^iI^i3i(7^SJSIIt««^^30~50^m±^tJ^S &fflm&&m&mft±£i)ffltiLtz±mx*&2>o ^Tabie*^ mm^mm^x^

Tabic I. Some characteristics of the soils (/). Years of Total C Total N Name Soil group Plot* PH Texture experiment (H.O) (%) (°/„) Aomori Wet andosol 45 PK(A) 5.7 3. 12 0.246 CL PKM (B) 5.8 4.26 0.348 CL Aizu Gray lowland soil 53 NPK (A) 5.0 Z46 0.226 CL NPKM (B) 5.0 3.24 0.311 SL NPKS 5.9 3.15 0.260 CL Nagano Gray lowland soil 28 NPK (A) 5.9 1.18 0.115 LiC NPKM (B) 6.0 1.51 0. 148 CL Konosu Gray lowland soil 51 none (A, NF) 6.2 2.07 0.185 LiC NPK (CF) 5.4 2.73 0.239 LiC PKCaG (GM) 6.5 2.75 0.269 LiC PKM (B, OM) 5.6 3.39 0.320 LiC Anjo Yellow soil 52 NPKCa (A) 6.0 1.11 0. 100 LiC NPKCaM (B) 5.6 1.85 0.165 LiC Shizuoka Brown lowland soil 35 NPK (A) 6.0 1.65 0.174 LiC NPKM (B) 5.9 2. 15 0.223 LiC Yamanashi Gray lowland soil — — 6.5 1.52 0.153 SL • Fertilizer application: nitrogen, N; phosphate, P; potassium, K; calcium, Ca; farmyard manure or compost, M; rice straw, S; green manure, G; and no fertilizer application, none.

217 - JAERI-Conf 99-001

•*£ ■06

•DA

-aOg'Jffi £

Fig.2 Fig.3 Fig. 2 Changes in contents of dissolved gaseous components (ml/liter of soil solution) and Eh (V) in moist soil of Konosu (OM) at 20°C under submerged conditions. Fig. 3 Decrease of Eh in air-dry ( ) and moist ( ) soils of Konosu (NF) under submerged conditions.

2. 3 ^ytfyb$k (Figs.

4,5) 0 ±m.^\z^tfihmt^yffy^mtw&L\z\t, ±m? J xx>mmmz ru &&Mimtt*>t%z>z\bi!immzti2>o

K-AtAOT^ 40 ^t> "~ K-A(15'C)_

2 / / K-C f * K B Z // " \/fy~~—■ N

1 2 ~A" ,, 7 weeks Fig. 4 Fig. 5 Fig. 4 Mn(II) formation in air-dry soils of Konosu (K) and Nagano (N). Three curves for K-C, K-B, and N show the averages of results at 15, 20, 30, and 40°C. Fig. 5 Fe(II) formation under submerged conditions in air-dry soils of Konosu (K) and Nagano (N) at 40°C, and air-dry ( ) and moist ( , 15°C) soils of Anjo (An).

218 JAERI-Conf 99-001

2. 4 ffiWLMjT;Kmb%®m° ±m*o ttzG&to^^Mmyox'&zm&tet: C\bt>feCzy)ft2> (Figs. 6, 7) 0 &&%&& W7t^mM(Dwm±, mznu&ftx-mmitzmibhtiZo

Fig.6 Fig.7

Fig. 6 Changes in the amounts of volatile fatty acids in air-dry soil of Konosu (CF). Fig. 7 Effect of temperature on S(JJ) formation in air-dry soil of Konosu (CF). Vertical bars indicate the difference between duplicated experiments.

2. 5 m%RJ&t%®.y35ffiBU&

#\ tm%®to^tz^\zimLX%.t>Ltz%> 0 ZyyyiA)&$>jk%®:M-Lx&tbx&&o z\ M%X*b 2>z\b 1Pt> frh o ttzm&*mfrt>fe*x*\z, %m&i&tz x>yy y^^mfjEwtftte^Km &#J^£ rija6 h X b imfrt> h titzo

Table 2. Reduction reactions and organic matter decomposition.

CH20 + 02 HC03- + H+

5CH20+4N03- 5HCOa-+ H++2N2+2H20 4+ + 2+ CH20+2Mn +2H20 HC03- + 5H +2Mn 3 J+ CH20+4Fe ++2H20 HC03- + 5H++4Fe 2 + J 2CH20+S04 - 2HC03- + 2H + S -

219- JAERI-Conf 99-001

weeks Fig. 8 Products of reduction reactions associated with decomposition of soil organic matter in Konosu air-dry soil (OM) at 20°C (left) and 40°C (right). xy%&im^ttitf&mnmmnmTm&i>M, m%tfm$>x&<-get* XbtimnZtltz (Fig. 9) o X'tKDWMbLXli, Table 2-?-#!§ SftT^&^S ]A^mo

Measured. mgC/lOOg 60-

4,0-

y* /o 33

JO Nagano 20 40 60 20 40 60 Calculated, mgC/TOOg Calculated, mgC/lOOg

Fig. 9 Calculated amount of decomposed organic carbon and measured amount of COs in Konosu (NF and OM) and Nagano soils. Broken lines ( ) indicate that the calculated amounts are equal to the measured ones. 2. 6 *?y$E.J&EU& bxhxMTvzmny?yA$Lm (-&M m) KX-DX, xxih^xmitRmb^muttzit^mm^m^^^A^^mifx b*r\x&bLx, y?ytf$x$LZtiz, (Fig. io) o cKDmfrb, msAfe¥xmx7-x mitRMmco^^by yy^^m^mjLxmxx^^xb^mm^ti^o Xyz, mk*^fottk%ffl&^*9ykim&9.t%z>Q

220- JAERI­Conf 99­001

Fig

Fig. 10 Changes in carbon dioxide ( ) and methane ( ) concentrations in air­dry soil of Konosu (CF). &&Ltz* ?y

2. 7 ^moftm^rx Xtitxm^tzy y y^xmtvmtXJ&A*, ^mMmM^^m^b LX 1 yiK mxrxK^x\±nbtz0 mmtZ7kmtMfrbffi&Ltz±MKy)i/zi-z*?T7=-

A) Paddy soil ­•­ 5oC 20oC ­*­ 30oC 40 oC ,„„„ Control +Glucose ^Alanine 2000 2000 2000 ,­,"800 1800 1800 /:=, 1600­ 1600 "§1600 1400 J"1400 1400 1200 1200 ^"_ 0)1200 1000 1000 0 1000 800 fe 800 £ 800 ­>■ t^r* 7- f G00 600 t """ 600 01 too ir 400 400 « 200 200 ° 200 * 0 *^ 0

24001 i i i i i 1 1 II 2200­ +Alanine ­,/i Control +Glucose _.. / 2000­ 1800 <~ ,­, 1800 ifion % 1600­ 600 /*­ X "400- 1400 r X"* O) 1200 r 1200­ , H O 1000 £ 800 .% . /: 'Z: ti i "•" 600 ^■­7 600­ „" X*" 400 ­ r 400­ / /­ / ° 200 1" 200­ L ^ ./.'' ■ — >■ 0--4* "—­ Days of incubation Fig. 11a Production of C02 and CH4 in anaerobically incubated paddy soils

221 JAERI­Conl 99­001

B) Upland soil ­•­ 5 oC • 20 oC 30 oC 40 oC Control +Glucose +Alanine

oooooooooo •­fsjmvi/iicr^corj!

Control 2000 2000 fGlucose 4-Alamne 000 i"ooo 1800- 8 1600 1600- 1600 1100 1400- l-'OO 1200- 1200- 1000 1000 800- 800

100 400 , 400- 200 • 0- m- 0- i ■ -1 • i -i -- r * 0- *^i » oooooooooo .­rsjrovi/HDr^corjt Days of incubation Rg. 11b Production of C02 and CH4 in anaerobically incubated upland soils y'MWi^mwL, ^TL^TL

Y = Ai(l­ exp(­ki't)] + A2[l­ exp(­k2't)] j \Zl<%X\±tZ>Z\btf%l\<>m £tltz (Fig. 12) o

5oC * 20 oC A 30 oC ♦ 40 oC

Paddy soil Upland soil 01400

T„1200 1 ^> u 1000 — ­ ~*s* ^­'—' JE 800 if 600 co 400

£ 200 O u 0 Q 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 Days of incubation Rg. 12 Decomposition pattern of soil organic matter in paddy soil and upland soil under different temperatures

222 ­ JAERI-Conf 99-001

2. 8 &mfrbA%l mWl>z£zmm*&&to®MiX*&Zb%x.t>ti2> (Fig. 13) 0 /:tx.lf*fli: u mzry*-TffikRiBx~te±Mfrh#MmV[it.Lx, yyyxv^h\z^X)

xx Straw, compost Atmosphere fPlant ^ Chetical 'N \Debrisy (Fertilizer J Mountain Soil .Slug

OH "ZZApplicatioLn of Application Chemical GD Hethod Fertilizer Ir* Surface Water

Soil

Soil liprovement

Orgam Organic c Hatter Acids e^. _,& Water Microbiological Fig. 13 Poss ible techniques to reduce Management CH. emission fro« paddy field Control 4

\Mkim

imx\±xik^xm^ (m&b^i) 0 X

^MMitt±MW^±±&^MfiKBz>0 -f&fc>*>, yyymt, 1 texmrnxmAAho tztzt, nmmm^m^m^)^ni~Kmtitz&, ?x

223 - JAERI-Conf 99-001

4 . la a

7Kffl^m^^^^^^^tt^-t/®#^^^x;vhLTsr-^^T^^B^*^-r^ zttfxszo ttzMmmcoimbm&xgf£&m%®±^

^^\xss?ii^ximsT[z^m^titzmx:a'2)K&^^, §!& • nmj&Ltzi>

#^»

(1) Inubushi, K., H. Wada and Y. Takai: Easily decomposable organic matter in paddy soil, IV. Relationship between reduction process and organic matter decomposition, Soil Sci. Plant Nutr., 30, 189-198, (1984). (2) Inubushi, K., K. Hori, S. Matsumoto and H. Wada: Anaerobic decomposition of organic carbon in paddy soil in relation to methane emission to the atmosphere, Water Sci. Tech., 36, 523-530,(1997).

SR£&£>£&19, H«£t/£S^iSl, ^fflfcty*-, 91-118, (1994).

- 224 - JAERI-Conf 99-001 22. fcmmzko'gMtva'gmn

jAnA^Amm^wftm x w m

m.mx, A%mb±mm^^xmmx®:m%:M:tzyx\^0 -A, ±mnmmzxvx.m£titzfimvomk, m.wxb£tizfrft&bm

«, m^ftzfxn, Amt^^x-Mzxtfx^mm^yxztzmmxhzftwzzsmz, mm £fflo ytibom&z fi7kmm%kcD!wmby?}Mi!£m b\^?w*)ux

MANAGEMENT OF WATER CYCLE SYSTEM AND BIOGEOCHEMICAL CYCLE

MITSUNO TORU

Graduate School of Agriculture, Kyoto University

The auther already discussed on this subject in some publications individually. In this paper, they are arranged to be unified on the view point of the management of water cycle system. The modernization of the water use system in agriculture is developing by excluding a natural system from it. It becomes, however, clear that it is very important to include a natural eco-system, ie. the plant ecosystem and/or the soil ecosystem, on the view point of material cycle. It will be necessary to combine a natural system to an artficial one in order to establish the better environmental conditions.

Keyword Water Cycle, Evapotranspiration, Biogeochemical cycle, Agricultural Water Use, Environmental Stock, Environmental Management

- 225 - JAERI­Conf 99­001

i. 7kmmkmv>)(D&m m$tmzt3i7Zft#i\sL3La mmyyyyxixMmAwmmz^zmz.AmmA)txzty mmxx&ttwm Lx±mmfrb±mfcft&&*>.M*fflm yxA%m^xti^^mx< mwz^ztm^n^o z.o z.yyb%:z>o uxx^^xmmxm^ fc^r^­c^­tv*­,,

1.1 Mi0tmz$3l7 Z>WL#l\5L3£ y^^yTy • #7uy-?yZ>fofcn. nMWLoo mxmttiima xm<^ a«tt 5, 7OOK bmfe&tix&y s xffimxnm^X7^--%ijkftAz>i)K MMiD^&iMmx-fexhzxb, mm^%&x&^X7i<¥~tMmmMA&^X7i<^~ix¥ffiyx^^o mmmnx&AWi^ A7i<¥~\xxmzm^xmm£&&M^mzAmf£mz%ytzt>f)\ m&

•cm ­ 2­min­ 1 (0.342KW- m­2) t Xh0 X77r> • A-7Vy-^y(DfemXb&WAZ) b , McD ^mm\xi50K (­23°o txv, A

*Mfrb&biz-m*5L#isti, **iw^ ^m\ZV&&&flZ)(D\XA(Dift(D47%\ZA:&X^ im±ftx\*m 3T%i)m%ii&ttmzx%.&tsti% z.b\zt£Z)0 mSL&m%:bWzM£tmzt3\7Z>1& MU^<7X£U%&mytzi>

nmxm&&tx&0 ^ffim\z-my, mmmmrn 15 °cttm*fmmftmbx%mmxhv, W]^^m^

1.2 mmfcmtmmfcmmift A%XXZ>^A7i<3c-mmtt, -kf$.&!fc)bZ>Mxm8£

­ 226 JAERI-Conf 99-001 mxzmmfcm mm(Dmx(Dmmm^tzv

«S*fi&l-j Rni^LV^'b, H$W£ji« R-/E Xb$^AZZ\btfX%Zo AXfy^, tm&i

b

Z.(DX.IX, iAM^X7^x-tmM^h^^yx7K^xm^^X7^x—bm^^A7^x-\z^t)Z m\z^(Dm®:m&*mAz.b\zxzt\ st«©ntt-efc5Mffir, ^-k^wztsi-tz mn^^A7^x-(Dm^m'\A^mA n ty mnmx^^X'^x-wxm^xb^xoxmm^ AAzxzziytbxwmzmyx\<^0 b<\z&m&Rffizt3\7Zfcto(D&&&mm. mt&om / ^X7^x~(DU x\zm.femx&witXAz>z.btft>frz>0 mm(D^^.^m^m(DfLm.(Dn.mxm mA\z&tfzAmmbmm^(D!mmmmM\zAzxB^$-Azr\ *irxAmX'^^xb(D^xr~x*>ibzz.b tfyifufm^zAx^^o z.Mx, m^M^(Dm^tmm^m<^.xA]o^^x

%tz, %m±.ux\*m&\z#i&bbi,\zM,m\zDm$x, xx\zx*)A%.^\y- m &bmm^*^~(o&fttexibZ£^*/i>¥~)

- 227 - JAERI­Conf 99­001

mxivtzmmxmmmmxb V=V„

^yy7Vh°-£i\*c&?7.^ x p~pa

£^b1&mirZ)z.b\zt£Z)o AXXh®m0 aii*

i)*t3

#bfe±i^i^;i­­¥­«ti:cti9, mmmfflzfey)&<:^*;v¥~$;&m\z£vxmy)j&%-, ft mxxmftm*fto®'&*, &^mkiK(Dfcmmx\XX< , ±5$ LtzX 5 ft*&■■ ilffl©­yt­5E^*g­­b*rg?>iMffi6£a. #S i«iWi­7k'«sa^ffi­borv'>5rt*asa*<»­etSo

1.3 Iit±«­»*7Cl^fi^ (SPAC) *, ^^^^i^tli^/v^­^jji^tbr^^Tt^^^^^ctor^K^Mi:^^^^^^ J#£;ft5o ­a­^S^^^­rSf^U^^^iift^tL, m£XXV mmzx%7t&f$mmzik¥rxmxlz{%yxm^iTfc

H2O+CO2+ES l/6­C«Hu0rK)j (4)

%■%&bW-mbiXnE.WzmKfc h D t­a^fflcD^tLi V) %>±% < fcSfcfcUl* i^hn h°-

z.btfX$Z>0 M%ftT®U&&ibX%ti&.

■tzb7t&j$MU\zfc

n­fLCKO+ILO+CCh+Es ­» l/e­GHnOs+Ch+n­fLCKvHEa (5) x7mmzxzm\z£m

bv\i°~%7kZ.b\zXi9, %m bv\i°—X]9 7Xm

7xm^^m^faxorAfc*xmbAz>a xxx^b, mmwxb

^^yb^yy-^A%^W\^Ahtzmz^mX^^.Xh^b^X^z\b^X^^o z.(Dlt#>\z&

^>TK^A(D300mxb 500mumbnn^tix^^o ^ymmzxzmAtefcvmx&ib^x

■y£*g*fijc©fe*^w$tb57Kii­att, Amytz&m0 n&m&rrzmzmmm, m&mbyxiktixstitz^ybut'-ix, m mm^z&tembLx\zzti>&%WAm(Dm%.{'$mz xvfrmzti, Rmz&m#xnfcmxx\zmt>*).ftxmtoo Z\(DXO\Z^ A, mm, wtmixmxxmw.A%m^yx\<^j)y z.tibixm-3iz^xxoizA^xm^iw^ m^xs z.b \zxz>o z\*e—0 AtilXA^ < &ffii>^xi>$y<-±y bSXTXhV, z\(DX yiz^xmfc£titzik¥^A7^~\cx^xmnAo 1.4 ±m7rx*b7kXbtj\z}%m<7XMm. yt&rftiz X V ArfX5titz^A7i<¥~ bW\mz, %^^(DWMXhhmM wv&ft%i>i&Tyxmyo£.&m.m*ft& x v tmirz b muxm c*f>* z>z.b tmbxizzti

-x, ±mmmn%mbmm/x\z^nbti^^, ±m* yx^xmfokftgamizhz-bfr^xbbxmmbxzo muX'WAixmmiztevzAftrnm *ftW£^\z^mxz>tzmzfixtih0 mmx7mmbmmmmizA%

­ 229 ­ JAERI­Conf 99­001

tkU\zX^XA% < £BB£*L5 d btft>t*Z>0 mm0 mmAx\x%m^A0 ±m*.ftz.bi>snimxhz>o siAiz^^x^imxm 'htt 135.0 2349 z^^xm^x^tzw 326.0 4.2 1369 e# 34.0 8.4 286 2.1 A^mmt^^mn (Biogeochemical Cycle"*) ^B«**, , mummm 2.0 83.6 167 mmzxy Amt5titzik¥^X7V¥~^ ± >m 362.0 1322 4241 tomm\zx:v)£m&&m£x&wrt-?>i>K mm £tf 497.4

^7Km, MmUft(D$(.ik7zm'hffi£?\zMlXtiZ)0 ** mn±m^Hi±nmmmimni-tz £«£«*ft5:M^­¥~£&£­­fr«^ mm^z ix±mmAmzxv)ttm$tixmmmz^fr%0 AtibtDmmmxmmmzx^xm&ztiz tzfr\z, x.mm%i@iX-fffimA5z_bizxz0 -A, mmxizix, Amytzx?XAM%k*'m& irz&&&ftz.bl)^\ ±m*XAy%z\A0 AmmTtmbLx, xtzmmbyx^mmxmmxh^mm^mmix, Am^mmb^m^ mmxm^\zm^^^x\^a -mitxmm^^^bx^ NOX ixz.mm\x, m-4\zAAx?xmm®i&*ft^x\<^0 &®m&±m\z5-z.z% mn, z.^a ztz, m7t^m

230 ­ JAERI-Conf 99-001

^BgjS^^S0

2.2 xmmizion^^m^xmm m xmx^mwxDmm'xmmb LT m&A(Dmwm\znwx&M\mx xyx\^, ±iuii^i^i \zAM,x^^x.m^x(D/xn^u^ x\^0 ±mmft mmmix, mmmzmxzymx xftmAojmtxmb LA%JZ&.U

(0)B*MtK*6 (RJilSS't; it^m^tzmxn, ^A^x—, ®i&to

TV*50 nxmxft'\^m^M^x^X7^x-(D\mMmi^Atmx, Amx%}z.bttx^\ xid, mt\zm&x\xxxA%xmww<(Dm\\itAy, wx^bAmx y>ib(Dtprm-&fa£Ayx\^0 UAm^'Lxx^xBi&£n&±mma AA^m(D^moy-^xh^ft\A^m.m\xA(DX ?xmx^xDmm^mytzi>0 m i&XA&mzmmytz^FD*>, A^x^x^ftrnxwA^mmizx^^m^^xMA^^xh 50 %1&tihiziZ±m&ffii&lZ£Z'%mizMZlzLXt>, hbXyibA%,&)Xfcm\zX^XteZ>-< < AMXM^tD^znx, wmfoxftftmmzmwA&^%^%xxxfc&mxhz>0 x&, mm\zmmx^mm$:MAz\b\x, ^mmzxz±m&m®L

2.3 ®nmm\ziotfZ)±mAfr(D®imbAo mm0 m%^ux. mxmmoxfon, w>t&&^ytfy&m7cirzm&m0 xmmxxmwxmoymm^.m^m'xy xmtL±mmnhtzv (Dmmrmm^xx, mm^^^ijm^xm^^mmxycD^mxm^y ^^y-y3y\zxv^^tx^^^,mB^^^yy-y\zb^xmmytzi,(D^m--5xh?>o mmfc io%%mx%W;£xn±mixMimffibxz>j)y * b&TcVtf&btez z. b

- 231 JAERI­Conf 99­001

St*«K­gm­s MW«^7K^Mro&§^fc>9, ­a7kW*#< 100 200 280

*5t*Siffi^tt«'>i­50 feM, ±£0>*£zKs£fc:«fc oT±^ro^M^B^&£S^9, ± mx.m%n±m7k5?m7ix x o rs*^ xgx o T

±*izk#!f S;SM3i*TMi: /isz. bitXti\zX >9

m\z-&Kffl&\z&i7Zttmtfyt£MWii&mirz bm- (SIflllfclK (+ + i"<^. 1987) OjRHKi­a"fti»

6o Z.tltbiZ—titoZtfXV&Wi&bvX ©■•/* * u­­>a vie* ±mfflmzmi&yxA%Ai^&;mytzV), xxyxy bx^x±mx*mzhtzv, ±m*<»&W}\zftix 5 ±*^©r^*«S^*^a -x, &A>-?yxyxb&bykxMAz>mM ^"~^­* CH, mxm0 z. _ N, ^~~­»~ NH, fob(D<&.myAy\x, xm^^mitMTu^mxx^ ^ SO, XTkxttAzmMmtfmty, ®mzhtzvmmy «E3ts : #>©*£ W&^XbMz&tf^bW Lfc^oT7;V7J y& a&mmm) Mfbf»a* ^ FeJ+ (ff«i»a») m, wmtxbvyxix, T&%v±m&mw^ixT^jj v ±m&fc &)<\ («**K) (MJUHiaHt) ^mmzxhT^^RUXAm^Mxb^mmzxx) H­6 Wt­a^ttftin­teftSli­Ko^tB ±m7k\x%^{m\zx^xm\^±mxbimfc<(omtm^imirZo mmmzxz>m.uxm% \zmyx±m7^(DmMtfo\xx(D-£-£^tiZ)Xb, *v^«:i5tN mk^tDxmxmm o &m*?k%tfr%bftm\zfoft* b^yxmrnxxz* b^y^AyxAmxx w>y, ^\yz\x*&wArz>x, h&v^xxbv yx±(DXyiz±m£ik*®m4k&5\zftxir&Atix^

v^0 m%msffiW>ir?>bs Ahizft^xy Ay^mmzti&o $mm&*xmk

232 ­ JAERI-Conf 99-001

^mzmmx^b'xmyxzwzmtm^mtx^o m.MMffi*®AAztz&\zttMm%k&zA®%mM7k$'5-xx, m&yxmm**imAx>, v* xtyz>v-xyy%fty&^h%o yxyx&bmxm7k>&mzAttftfrX\^b, mmm^co ;*T7M££±#£-e:, mizlzl&MmzfflgMniBti&h?>0 £b\zMTWtoz£Qm.ft mmmb, xyxm.mMmtm±x^fc.mmmx?>0 it^o xv-xyXrAi7k(D&mz\xAft&ii,A%&whz)ft, ftmnx\xM%nx*&mA&vxtb\z^ Wzxtzxixi&w x&, umttmxMmmm%mmzA®ztztb\zi&mmmA.yxw &y^mmzx%±m(omm\zXA$Mxh]o, z.ti\xmAxmb b i,\zm^umm

&,x\z^ Tk^mtxxx tiixm&'&mttgtzAo Lfc^ots ±mfc*bXM'gteMti&1ftiX^Z0 f mmx>m7mmm gmz.b\zxv, mm*&< ytzvmx L-tu-rsa** m-?xft<9, m^m0

3. ma&Tkffimbxmtgm 7^WBb\^y^-^^^m £ffl^TiZJw

3.1 ^WJll^TM^roJft^MiJV^-ri. •btfSL5©;*:Wil*T-Mfc:M^5^ fcdNfft^ fj?lF^F'R'7)|nS^-«ftTtV'«*b-flT*fel9, mfc *±^M^SI(j©^kt&oT;^b©M5t{i •b-fjiMfti OOXXLXM^XW yitmytz0 %&im\z, i&frmx&^tzmx>m^mm>b0 xtz, AffiTkmxby&xtitzmTkcDyh, m&w&mw&T&^mm ^fx%^(DmMxz\(DiKmzwiK^fi, z\z\b(DW7k\xxmA&(Dm7m,byxmmt$z\z>a ?K R~>

^$m,t5ti&0 Z\

- 233 - JAERI-Conf 99-001 mwxhv, TktD^mxMyxix-MLtix^^Mmfoxtgmz&mbAz* xyx, m^m% W7tzikXih$:$Gy X y tefc^&mx—^7kft\1B. tfTfey, t>xm0 Z.(DXOXB mtbxmmTkmyy^xn, nx*mmAbA%&f&mAyy^xb&mmwM&*b LT &*), mMxhtzxhm^bx^xAm^^m^Ah^A7^x:-(D'mfi(DXo\z, mfemz-M* mrHLoiAXyxmttb^x^^o mmmbm^mnwmx-fcbx^xtemz^foft LX^b, «g^tt#^it£ffMLTV^£#;ibti5o TkmWfXX, Z.(DXyXW\%*-£ibbiriito Bc^mz^xiz &%b%, Am^(DM^y^mxnA^^{zmm\^(D7Kmm^wmzumA^z.bxm^^ti, m iMmmx±mmznym^btitz0 -A, Mm^mzWymmm^X'mmmm^mmzx^x, -or>^ot7)HI#©aii^7K*Wa^*feP,*K% A7km(DXy\z#$:rMfflAZ>yb{zXV, fflzk^r SiWffltSr^^fcbtifco Ax.m\zh %z>b^5V].mmMb LX, 7kmmz^±\zumx%zmmm^farttzM7xm(D&m^bmm LTV**ofc0 nmi$&n

*##>Z>z.bbtev-fc.0 mifi4kimffim\zmkisi£Z>0 xtz, mmA-m^oxn mmi\xm7k\zXZ^&*y*iXXUA\zM< bZ>Z\b*Mtz0 xtz, MAm®#xvMAft^mtXy\zx^tz0 x£frbtiz>Xy\zxz>0 7k$mm^%sx>mMmx mxtx m*mx, w*&wMmk\z^ xmz^yyv-bxm*m&$ykxt5

3.2 m&7k(DmmyyAxbmmf%7k mmAm\x&mzmxtitzmm(Dyx, uwm,*ftm yxAm^Wi^Xy by^\z^mxh 5o &m, m%m, w&b\^it&fmm*bfc*z7ku%&ft&*wbLXs xtiz$y£ik£ ^&tzmzAT.mzm7kzw&ytzy-m\7kzmmyx, imm&zmytzTkmmz&vAWX

- 234 - JAERI-Conf 99-001 otwtifflFTkxhZo &m7km*bm^7kWL%^y^xzmy0 X:\z^^tz^mmm^7KMx\xz\^t7$ti^o Kwm^x^tz^ \z, ffi7KK©*±SlE/fS-CSl7K yXtftiltXbX^Tkmx&Xu y y

9, %0 ^mxmm7kmx%.mm^x< xzfttmtmxzo zwmi&n. %®yMz£5fc%mAz\<\ xxxh, 7kR^^xmxyy'rxxnx^\ ziytbxmm xmmttFxiAx^ A^ytzXyX&MLmm&immzTkWMm^Xs^^-, ^bxix^mm xb'Dmmxftj&mw^tfMiyzz.bxxzo x&tzmx&ffi&mi£AZ)Z\bxxy, xvmmtftizmzxmmyyrx^m Xxzz.bfc&mxh?>y0 7kmmM

IXAZ < tbot< 3 si b \ziAM*m LXy0

3.3 Ammm0 *z\bftA^AbXZ>o ZbX, z.

- 235 - JAERI-Conf 99-001

Mi&cDZLftmiMoy&xb-r, mn^x-m\z^^x7kmmmbbhizj&f&zfrtzxikM&mzAz X&WZ5X., M®0 xtz, ^x^mxtiif, XM,Xbizx^ytixx(D7kmm(D^mmmzf\t>v, mmmmooiw^, AXfr^mMojnmmzMMAzz.bizxzvy Ax\zMk^\*%i>^&Az>^x(DmzXA ^mcnmrn^xzybbx^o ytz^^xiA^mmconm^xmm^^^m^w^Tknb b^xbtiz* 7Kmy^x^ixmmoyA.mftm^

ElZX.ft, ALX&mmmZ^XZtMmmffibLXiiLWXtfZXbtf&WXhZOo b<\z&^ m^\zm^X^^ y b ^-BthXlXXbX^Xz^ oo $x, ^(DXyxmy^Tkmmy^TxmmzixTzbyx, m^bxxyxnu^rxm^ ^mm^mmxhxmmbx^yc, mnxmz.b\zx%ya ^mmmm7Kmxix7kmmmxm^Mix^x^xz^izAti^^^mbiu.w:-in, *6W« { T7hthxztz0 b<\z&\J^m&z\btfx%Z)0 xtizijL i fX\z3\%m^X~^Z$>Z±i&&.&m.XhZ0 LXLXtfb, &fc#)JSkm7k%\i> te&&ft tz^mzix^mxmixmm^m^mmftW](D^'Lxytzm^-mxmm±^m^^tix^xzb ^xbthZAK xM^MAj>mmzwMLtzt>tm

*&OTV-*50 MfeMMx^h^^xmx&m^m^fDwmmbfox^tzfr, yxyxxbWs &ftxi3y, mmmm^mmmb LX(D±m&&&-x^Xy\zfg,t3tiz>a mm^mxmy^M^&^Mxmm \zm&, mmiRfa\z£z>mfmwiti?>0 ^M7kmftmxn±m&&&(Dw^z^^xm*xfcmmfrbtitefi tzby^xh^o xtz, ^X(D^^

(Dft\Bixh?>0 Tkmmoofxsyzix, ^^xmiAmcoTmmwm^mb^my^Txnmm^^'mbXhx, z.tixx\zmtzfrtzmnm\(Dmmmx^m*mmb yx, mn&m.mmz.m]tfrz>

- 236- JAERI­Conf 99­001

Oo Mmm\xz.ti^b

3.4 z\ftfcbftx&wmt>v&ft<>x^z0 MTfrom xMbxzmmixftTkmbmxtiztiK tm¥mLx^ 5o ^7kmixnm^moo7koymmm^(D-^xhy, mmmm^&mmmzmmx&wttxxz ! x, isb\z$frfrxA$X7kgmAi:m'ix^^0 Z\>b-1£fcLX^Zbz\Zizz7kW,yyAxbXA%m mxzmmyyy-xzmmfrikisit, xAXAyy / ^rxz%&xxx%tz0 A<7A&$k, 7k

WBLX y b LX^tzX y \z&t>ti?>0 TkM^AiiXitfti>tzb L7h»agffJffl©^Sb^»ffitS^^ ff)^^oxxymm&mx, ^xmmbx^x^^^^m^u,mM^X(Dm^^^.m^07 *xm

7kmmmmff)^y\^m:t=wmz, xv)Mx-L\^myyxxbAxyyxx(DW^*mz> ybfryAXb*?J*b

A\zxymmxmmnm*^x-x^%mzxw&

4. vmmmmmb%.^w^yyxx mmx&&AMbm&fc±t£mxz^xi*tzfr0 m\z, r^j xi>X< r&j ­ct^^fi: s­t^asf Lv^­t­c&s r&}i>mmt?:®&i%%tzLx%tL-o z.tixbd^mmxmMxfoz0 ^xAiz^^xmrnxm^%11K^S,,

4.1 mm^mbms mm'gmttftfamtmmb yxiA^yxAAixxbx^xy mim&bmxmmmm

­ 237 ­ JAERI-Conf 99-001

&zb(Dxyxyxmtitxx^^(DX, ^m

ftfe&mtommz&zm&wz&iM.LThxism^^^mbti^xbix, -timt^wxmig. i&zmixs^zbAz, m&to'*y~h&&m\zmmt;W;<%Ri&&ftVrfei>K &*-<%x hzbxz^AAxhZo LXLX^b, #.£&}&&&&*<£-?&«ty\zm$tz*mAz>b, m m*£ityx&m-d:mizmxyxftmu^tstix^z>0 mmmtDtbummz^Mxtzb ittii £wm&mA{kxx,xttmm0 AX h^mmmmx, m&mm^tt&mmz*). smmm. AXhh&m^AmAbmtmxxx ^xxivmmmfcfcxzxbzMMm&A^xh&c xmimm&mmxwkm&zmytzv, yuyx^iDimMmxffim&ziAytz <9A%xm^Abtiz>0 z\tL2>o mmxxaymta^mxm^b, 9bmmm*^tf$xtzAx#.£;(D*m$:M(.Ai\:Az>xyxmmmmziktbx, &&mzw\Q%xz ftfexhZo LXL, i^^(DxmxrMmm/X(D^mmmifbti^(Dx&xL0 b<\zmmb LT, mtbAz>Mn,hhz>a x.(DXy\zm%mm\x, xtixtixx^xx^x^xx^x, %J&m*lEfrM\ztj:Z>z. b hXX< fcv\,

4.2 mm^mb^t^ mm^mzAmmmzmib&t>ybAz>mwzttyx, mx, tt^wxA'&xb&zbz, m mwmixmmxnu^btix^"b LX, #.£-<£&b LT£ si-^t-cfcsb(D^±mhhz>a AMmmxix&fcmmxx v Azx&mvxxA ,m im^^A^-mm^x^ z. b xx%0 mm%mrm$i&\s\fc(D-^b Lxm^x^m^^nfcmybtiz^zxhzbxzxmxh 50 m&mmxAftm, A^m^-nxh^bnAbfi, x^xMA&nxio^xmtmtstitzx ox, ^^(DA^mmt^iDm^^^^mz^u^ti^^^xh^bA^y^y^^^^^^^A Ab&mxz^AXxhZo x ^XhZ>b(DAmxhZ>a nmx,mm'\i. b im&mz x o x Am^mz x^&mmx&^byxmm^nbtiho xmtzwtzx^'M^ix, t±£^m-b&xmAXft&mzmuAztz&xnmmix&&mz x^xmiEX#fe7kmzmuAz>z.bm&mbxz>o ^t><&z#&%*mffib yxmmmm^

- 238- JAERI­Cont 99­001

4.3 m&tinmbmkmm mtrm^mmtDmmmzfrcz^mmmx, Mtt>mmmi,^tRma m$ffl\m*#>

(2) ^#^¥J¥V^SH»TT\ mfc5V^fi^m^(^5lrjW(i:^Jffl«i^Il]­rirV^5#^^

® m%, ^xx^^rxmxizmx'X^hbxy^muytzxx, mzitofiMm^mttt

\^-?x, xt%(D^x%mmx(D&nix%xfrxMy^"bnxgz>$:nx\<\ ■%&<» m^^^m\zmx^A^ytzXyX^mmx^^x(D^Mxmntiix, mm^xm^yy^x^ m%-iLxzz.b&x%te\<\ o£>9, mm*fam&b\<^iz%t>ibxtt\zm^z-fti>K m ! ! mm\mX' gmttib<'^xA%x &m*xxz>0

4.4 mm'gmizioxzx;'&.%itmmybyy xn, m&:mm±£x, h^\yxmymm±£WAi(Dcp-bxhY), xommxixx^mmmxA^x^^rnxm

< MboTV^ r ir *as­b^*.50 J»l£JftttM$l£{ir.c7) j; y %#£-%*mffi\zt3^X %bfcTS g*

M^7K^tL57Km±^g*Tfi^V\ tiE7im±^S*Tiifc5^MJIim±^»*T«^V^0 1­&*b ht±£w*Mm®m(D#mbxzAxffimmzmj£zti, 7mu^w)nxb(D&®mm±£rM *xnt&\ xtixti^y^^mbA^(DixAxmm^xixxM^x-^y •CfcSo ^T\ 7K­^MJIIftifc7)g^£^g;£ir£l£LT, ^H^tt^S*RESULTS5 : ^#­cfc5ti­5­%^sfc50 *yt, N)\\&mtiz>7m, &^m&#)teigL ®&i&xterfL£tiiz#. £M£bLx

«9. AtibttXbihtz rtt^W^iiS^J irV^M^$rfc«|01£;?xTV^o ir < ^JW­tiffiEc Wg &#«£#£ L, SS&W • flliJ^W^SfiStsCJg*^ ^LT^^cDAX^^^JTfcStt^ M*^iiLTr­fL^^f??o|t^W^^^A^<^^$­ar5^ir^­5I^ir^5o «irJft*tT«^

­ 239 ­ JAERI-Conf 99-001

A^(n^lf(ni%'&*&Z)Z.bfrA%XWmxh]9, z.

mmmnmmmmzmxmmb LT, wm^mm^mxmmt^yy^x^mmx^y l btmimm &m

2)xw

yb-mmm^mx^-i, 177-189, mn±*^ (1997)

240 JAERI-Conf 99-001 JP9950143 23. ^^m^

ift*»n, ffifflx^k )m-*L. -SSJII^W, ***#-&

\z$ktztmtyy°yyy byo)'&m*, 7*-frh*m&bMftnik&MLtr.o ma Xyyybymx, n*tt*Mr«cJn;U **ttai5«J:UfF,3J§ttaK:«J:oT«li«Sn, &£ ao^as»^ij*t>««jiisnfco :n5)®ft*^7y-?fy+cii, «*&««&« i;**:-r

•7>^hyc«fc*ftlttt*S**«fcUt$^7C*0»«tt, ft»-g|&fc«*»K:Snfco ^fciZ^/fc^oaBK-giatt, mmxy yy b yiz£Zfo%&mn%

Behavior of Radioactive and Stable Elements in the Brackish Lake Obuchi in Rokkasho Village

Kunio KONDO, Shinji UEDA, Hitoshi KAWABATA, Hidenao HASEGAWA and Yoichiro OHMOMO,

Institute for Environmental Sciences

Uptake of radionuclides and stable elements by phytoplankton and it's species composition were inve• stigated in the brackish Lake Obuchi bordaring nuclear fuel cycle facilities. The occurrence of 46 spe• cies of phytoplankton were observed during the period from September, 1993 and December, 1996. The species composition revealed the presence of coastal and freshwater species in addition to species peculiar to brackish lakes. Seasonal fluctuations in the species composition were alsoobserved. A close relationship between the uptake of Sr and Cs by phytoplankton and photosynthetic activity was confiremed. Salinity and light intensity have strong effects on the uptake of Sr and Cs by phyto• plankton, and the effects were different by the species.

Keywards : Brakish Lake, Radionuclides, Uptake, Suspended organic matter, Phytoplankton

1. ItCMz

- 241 - JAERI-Conf 99-001

m\) tz&-zT-k¥ft£^>ti:tfzHfom mmm 3.71 km») x&z>0 gi«s©ffi*s-r5A*

t i snws0 ^fflarS««sAaafiia;©3iia;Ao, jftv^**s*^w*&sn

»©#&*$£ ^TV^0 £±mm±te. -H>&££* (safety margin) 4fcot, 7jC^ £®^t£ton.*nz^tiiibZo mmv>wfoXyyy by*^&b^%wmm&*\z\x^ *&#&««&« ta t-r *-# a©7C*^^^SnTV^S„ «L«77V*h>tt, $mi&£ft©»«©S*L-{£MC &«?-**:#£, ffl!*+©ftlttttta-^©#ll7C*«:!RJR-!R-tLfc», gtt0fiTtff^ : 2 etft-rs^fccio, #a7I;^ &fflJ£^sI#^-rssslJ's5r*/iLTv^§') »0 Lfc^oT, «a-ss 4^^rtT©st^ttfes^©^iij • £fr&#"rrsfc«>nw., «i^7>^ h voatjs,

2. SH±*tt©ft-£ a?:4.8m) , ffl©^ffl,i 14.3 km (£ 5:5.3km ; -fcfclg 1.5 km) (DH&fflX &Z> (Fig. 1) „ $#&£ttft&g&

AMJII.irXJIIjoM *TJ, JgRJII^

•WlTV'So Fig. 1 Map of Lake Obuchi.

Fig. 2 Horizontal distribution of salinity in Lake Obuchi (Sept., 1996).

- 242 - JAERI­Conf 99­001

^­a©*3?^****:, mm*b(DMA\zifrbm)\\tfffiAt%7kmzmz> 5.3km(Dmz 5~25units*"e^:*<|E­ft'rS (Fig.2) 0 &#©B#£?iJ»&, mfctmAt Z>~%W(DM •aiotrxjii^wA­rsisflicisia (0.5 ~ 21 units)

3. »£&£ 3.1 »!&i£»&l*©7c*ai*^­flJa SR^©30p4^^t^nt^jiBigii^^+©^a^^©asrBl©ffiM'&^S^, fflMftft *«0.9J^_h©li:R«J?r|V>fil**S«>?>Hfc©tt, 238U i: ,37Cs (r=0.90) , 137Cs i: Mn (r=0.95) , "KtMn (r=0.93) , Co b 40K (r=0.91) , Ba fc Co (r=0.91) fc©HI"e*>ofc„ Ztl^fDyt^ tt£V>CtfcifciB, toS­ffc^ttttB,^«*fctt*»©!B»»^©!aJR­!Rif , *SV>tt«I£c ^©#9tae©v>­rn*»**«iaLTv>*t©i:**Ae>n­So sv>ffiH#&fte>nfc;Ki­t­H­t* 238 I37 238 ,37 g u *fc«tuf Cs©W*&S«:JeS'rsfc«>c, u feJ­tf Cs £«*+©&#£ ©M^&SI 238 4L^m, u«gi:Jg^i:©rH­jts:{iiE©^­t^^HM^ (r = 0.95) #gfte>nfco *fc, l37cs©«Ss,l^!7>i:©rr3■JT^itl!s:l^^isv^ffiH|g# (r=o.89) #&«>e>nfco rne>©rfc*t>e>, 238 137 SK­SH­fcltSffli**© u fecfctf Cs ©^fc&#fcffi&&W#,#& 0, $*+© 238U fe J:Uf,37Cs©tt«&«tt^CJS^­C*Si:fU»f3n­So £fc, ^JgiSm^+tfentS<tt^a©^^^^^^^^©^^^^^^, 0.075mm & A(DA2teft.®77-mtf&&zm&tfAZ\mmVl)\i 238U fecfctfI37Cs©&&#As*<&SiM tfmtb^ntza sinnttL, ±ztj;&&ifi*&ft*&itox\^zmnto\tm£&i&

<*££, i«ic*«»c*telts»IJtt«a©*fii:*«»ffi*«i©»fii:®P8«**Si:, j±l!s!f^ii5v^H^iSJ6e>n/i7rj^«238u, '"csfectt/^K­e^o/io ^©ffeCTcStt^Wtoffi «JSii:©IBIH*fi*fflHH^ttS«)e>nftA»oferi:A»e>, itM+KfettS 238u, 137Cs fe

j;tf40K&, ris*+©sine>©&ittt^a^tt­fe^vy^ h^ciBw^flM&ca­tsnTtt

&£, M©si&fre>*^4n^^ i:, *¥^^e>^^^t^s*^^ST^AL/c^7K^B^^^^TIiJ^L/i^ BM&£ »­K>i: LT^J563n*S^^4ff»MCJ:oT­­H#»­St­*ffil«lAJ*>*o SM&^e>£ii» ­&£*»»£££*# (*«2.5m&flS) T*&, $*©&##­^£SLT,lrJifcfi (20 &_h) % WLTV^o :n», ^^7K^^&^tt^S238ufecfcrj'"Cs^ii5»fic^tfriS7K­6^SL TV^;i£:£^i<V^0 Cl ©£:»*« Cfctt 3 * n n 7 * ;l/ aMtt, ffe©*«H*felt* ^m^±mmtm<. mm^mvammm^tz^ tt»*­tfc#, si©7K^cfev^T238ufecfcrj'"Cs^i^«fic^tf«7K^fil^^v>^ h y*3i&b Lfc!R»*«4»c:!R­t*fctt!ajRSnTtt» U*­v­?^*^y^) , **V>tt*»#l*JiB0£

­ 243 ­ JAERI­Conf 99­001

3.2 M^£*#)*©­rc*a& 1993­¥9H*»5>1995^9H©ra, «*+©»»*»*+ (tt^7>ny^ffi £fe ftZim&W&&&V&m7Gl!S

: 239.9 ug/g dry ) , Sr A* 82.5 ~ 128.2 ug/g dry (TO:98.1 ug/g dry) , Cs & 0.81 ~ 1.65 fig/

g dry W£:l.ll ug/g dry) , Pb & 11.2 ~ 16.5 ug/g dry (TO : 13.1 ug/g dry) X&^tz0 3.3 Wtt7­7>*h >©fflt/£ K»w<^+t*&*$n5ft*r'ftaa­^©»ffi^sft­r5mH© 1 ­^ LT, M^»

©±fri:/j:oTVNSfl|^7p*7y^ hy©S«J^©?$ij^l^aL/i(1994^3 7l~1996^12

H)0 ­tans*, •rH*fflHW©acJaA, rt^ttfeckUf^TkttcS^ckoT^^sinTVNSsi bffftfrr>tZo i3k&M.bLX* Melosira sp., Chaetoceros sp., Skeletonema costatum* Cyclo- tella nana* Asterionella japonica ^(D^kWM^S­#$Cf4S3*«©CfeKteeras, C. nanalS* Xf S. costatum* yk.^m.0)M^^M^\Z\X Melosira sp., Chaetoceros sp.$5

ffi«A«#V>i:V>*5S!ft*rBl«lA«B«>5>nfco 3.4 »Hr7­7>* h>^©Csfc^^3•r'5/ifc^3, SRS avails. costatum, C. HO/JO fe J: tfifllfc^ll C. helicoides £ 14 L fe 5 S % i£H*n ^ L, Sr fe J: tf Cs © fit ®y°yyy b y^©»JK • R­S&grtg­SSSIftfc.£ ­•>Tfcfr Lfc„ 0.8 i 1 'M ­/">■"■"■ 64 0.6 — ^ ;w a. a u a 8 0.2 J ­# oa ^ 1 u j 91 « 0 10 20 30 40 50 60 70 80 Time (hr) Fig. 3 Uptake of Cs by S. costatum under light and dark conditions. O, light condition ; #, dark condition

244 JAERI­Conf 99­001

­tote*, w&ftrbffe&iAriz&ttzmyoXyyy by\zx:%m7c%(Dmffim*i£%iT v Si:, V^■rn©tttBt^#efc0t^^#©^•6^s*^o7 c0 Fig.3 £, 5. cosfcrfw/w ©£fH£^< To W*#i:BS*ftC*te»S7c*©*«*©llf4, ­Jt'&fiSffiftCflSoT­ifrrtHljRJRSnfc*: fc^^tft­jft. LfrL, B&£#T­CJg*Lfc»£ (*£$ffia7#T£frlvf*gg) "Ci, ttfe^*7>^ hy + ©Srfe^tJfCs^*?i«t4iiALfco dfttt, *1^£ffiSj£,4&BS&ft ■/nt^T«[ft­/7y^h>i:iBsn5:i:^t. ^ne>©3i:*»5>, J1R­HC&&?­ ssfe^y^ H >mm\*. Tt&j&mmbM&tzyu-tyib* *&$?£» i:^4'teM^*:■/^•fe^^•ff*^nTV^5^i:*«we)*»^3S•f^fco S?>H, ttfe"/­7>^h>© :ft&J5Wg*&»4f£#, Mfife«fc^®fi­^©«%­SH©«»*»^ h >^©&*ftt^a^©^fTi:#a^^SHi:©ia^^Wfe­/­7y^ h >«£«*■&£ aft&offlii­^&s e> KPiiiifcfcitf a ­ i: #&§­?&£<, 4. fcfryt *«f#»4, m&^b(DmwmmzxL-ixnbfttzfc$k(D-?%xibz>0 mmm&zvft^ m®rxMM.*my-£-t0

(i)ifflK#­H,

­ 245 ­ UllIlllIIIIIlllllIIIll JAERI-Conf 99-001 JP9950144

24. ajai-zfc(t*cs-i37»f7t-r;uottw

mmnxyyxm%mm «s*gu SS^M

ttl+tt!»!l©KT-l^Jgar]Wt^i(iLfc«-&©IS^;E-^'J >yi:Xt5l^S. » !lta5*¥#»^fciaBt-SilfflfifcttS,*,7Cs©^rT*tx;i/*«sif*Lfc. JB*a6K« (cft« ±8L •*«*, $1M«^) r-flcD137Csc7)^ffig^^s 1986*^^i=)-*]S6LfcjSI*, jsusjfsi !»t,37cs»s©^i(i^©«ai(gMfcs^'*aAii»*5j'^g^;T^Lfc. *fcs EMO^CS ©#fr»££fcM3!it*©liSg[i:LT^L, *%«;&** 6©,37Cs©aftAS©igflll, $1M*S$, (E M) «#^±lf{life^^I37CsCDS??il*cDiiJD^cD|^m?^^{l^^T^^LfcCDT|g^1-

STUDY ON TRANSFER MODEL OF l37Cs IN LAKE HINUMA Minoru TAKEISHI Environmental Monitoring Section, Tsuruga Head Office, Japan Nuclear Cycle Development Institute

A transfer model has been developed to facilitate the environmental monitoring of fallout (Ceasium-137) in lake Hinuma. The lake Hinuma is located near the Pacific Ocean in Ibaraki-prefecture in Japan. Transfer of Cs between zones (i.e., catcment area, lake water, lake bed sediment) was modeled using standard differential equations based on the results of observations such as fluctuation of Cs concentration in the lake water and sediments since 1986. Transfer velocities of Cs between zones on the model were determined from expressed as a function of rainfall intensity. The effects of rainfall intensity (i.e., increesing infow-flux of Cs from catchment area and rolling-up of particles of sediments carrying l37Cs) were investigated on this model.

1 .itCtblz fflm%\*> mmzt)i,mytzmw*nmxE\z&vnmx%\%\n]Xfoz>» tmmmoA^ nAmmmmzmD\\ytzmz\x, mARummA^^a)mMmMmm^<7)-^W)mmt m&mfe® (&,x, Mmwt^y) ^m%nmmm%.t%7tbnz>, vx Ls mnm^tiL-x&mnmmt, mm%<»AX¥W¥f^izmx

- 246 - JAERI­Conf 99­001

#tis nm\tffiAy y y yy bmitiy y y yy0m%&&mv$\zmmzxz>tz&, mm mz&tf&nm&mmnm^^ttmmxzLTMT&S. XZX, ^m&byxmm ti*5^§ij7cs©^i*Tb*n\zjk&?&mmz\b, ms \z, mm^^yu yyx'mbntzmmimmmm'zzmbLx&vmMXt&ftnmmtemm'Ms STiin­r^Mtttt^a^. fcx, A®&MimbL, MA, mmm^mznxzA ^m

Naka river (Bq/kg)

Fig.i A map showing the location of the lake Hinuma and three water zones of the lake in the model, •: Sampling points ,37 2.1 mmm* cs (on^mwi

i37 cs?gj£©#«ML7c0 mm®\$, AizKmizxy y ■? y;^-ym

»S ©*&¥©*¥»=fti©lg{k­£Fig.21, Csd(in) C«d(l) Csd(2) Cd(3A) C»d(3B) C«d(out) S7ts £*J^©i37Csrf j£©M^rftffi# £Fig.3 \ZXXo 137 Fig.2 Fluctuation of distribution patterns of Cs i986^tts 4, 5 Riz^^nyyy)im in the sediments observed in the lake Hinuma r^©^#(IcfcO,J7Cs©Ami^T*^tiJjPL

247 JAERI­Conf 99­001

ft. Fig.2, 3mmm* i37cs?is^^*iis xm3xv) 20 . ­y = 12 * 9"(­0 083x) R= 0 72 ­ — y = 13 ' eA(­0.049x) R= 0 59 ­ y = 11 * eA{­0 077x) H= 0 90 ­ y = 44 * e*(­0 11x) R= 0 50 1986^8^20HT$>S©Ts fe 1 5 ­ \ /• ^ xmmizm^z&miku^zmm ­ •. A­ i X : ^X^yXV —­ / xztx^xyyy xm& © x &TK m<7> mm m * * "Cs 1­— =>* ­ ­ —r ­ mm\t, Fig.3\zxLrzm\z%W)

1 1 1 1 i 1— —i 1 1986 1987 1988 1989 1990 1991 1992 1993 1994 Lx^z>bm year X Hnuma Ohashi point (Csd(in)ob) Down stream area A (Csd(3Alob) |R]S/KLfco L^L, Fig.2, 3 ~£t— Up­stream area (Csd(1 )ob) Down stream art?d B 'CsdC?Blob) ­• Central area (Csd(2)ob) Onuki bashi point(Csd(out)ob) (D&7ki&m(D®A%imzmm\ztt mxz t«iifttH7csig0i Fig.3 Fluctuation of Cs concentrations in the sediments observed in the lake Hinuma \Z&\7Z>1986A£X&^­tlfl*H;:i5 B £ n£ v * ifgfgj SSM It TJI^L 2 o ­ X Csd(in)ob « Csd(3A)ob : —£r— Csd(1 )ob —1" C*sct'3Bjob ■ mMLTzo R24**50(mm/d) £ —• Csd(2)ob —ffl Csd(out)ob . 1 s n?LZ>&^mmte, Ax.)vyxy : i37 X~A XX \ ­ •­ — ;i>*sj{©^§(­cto cs©A^ \ 10 = ? „_TJ b m%y» £ m m L tz n xs n 2013 on 5 »•*£ ■ S­­ ­« ­.. ju­_ ­t— I s x © 5a \z, 5 n 14 a © ­ ■ 1 r I . J 51(mm/d) , 8 ft 3 H © 198 200 3 | (mm/d)©fr2[o]f84Lfco X*}* 6 1987^©*fS oc a. MI | ill II I llll o ° E 1986 1987 1988 1989 1990 1991 1992 1993 1994 oo | % s M m 0 s T © PrU T « Fig.4 1,7Cs concentrations of the sediments 50(mm/d) £ jg A S ^ M \t, compensated physical decay in the lake Hinuma and 57.5(mm/d)© 1 PU, 1987^^ rainfall intensities over 50mm/d observed at 2km east 61988^Ttt71.5(mm/d)s

­ 248 JAERI­Conf 99­001

Table. 1 Relationship between fluctuation patterns of 117Cs concentrations in the sediments and rainfall intensities over 50mm/d observed at 2km east

R24 >50mm/d Period Csd(3A) Csd(in)0b Csd(1)ob Csd(2)ob ob Csd(3B)ob Csd(out)0b No.of Ave. Max. Rainfall (mm/d) (mm/d)

86.4 ­ 86.8 2 125 198

86.8 ­ 87.8 ­* \ / / \ \ 1 ­ 57.5 87.8 ­ 88.8 ­* / \ \ / ­* 4 76 93

88.8 ­ 89.8 ­* \ \ \ \ / 6 78 133.5 89.8­91.8 / / / / / ­>*• 7 70 113 91.8­92.9 / \ \ \ \ ­* 6 96 191

92.9 ­ 93.8 ­* / / ­*► ­* -* 4 78 78

93.8­94.10 \ \ \ \ / ~* 6 102 184 note X : increase \ : decrease ­>: constant

59(mm/d)s 80(mm/d), 93(mm/d) ©fr4HK 1988^^ b 1989 ^tt68.5(mm/d), 74.5(mm/d)s 53(mm/d), 52(mm/d), 133.5(mm/d), 83.5(mm/d) ©It60 7?* o tz. znb37csm&xx%-Ltz, L^L, i986^bi987^n^t­­t Ttt57.5(mm/d)©M^ 1 0

xm^mm^^,37csmjs.\tnxL, **w£T^i$A©*ia&*,37cs*g»4±#Lfc. 2) 1987 ¥^b 1988¥tts 50(mm/d) £ M?L 3 KM# 4 HI *o tz Z\ tX b , fa® © i37csXffiA®n\m&xxfamizm?>2nxffi^(Dri7csmmxmmx%-ytz. L^L, i37 &m\z£%mxfammiI$ "**# 6 In] . &m&izmm^bm£zntzi37csbtfa^izmzzztxx^, rm w^trnxm^ytzztiz^K), &7k®.mm^yi7csmmx±xi&xL&.

4) 1989^^bl991^©2¥rB1tts jWclfifi A©R24T& & 113(mm/d)©I^M SIHg L fc©j&n989¥©«ft&$ffXB©16B£©|3|­¥8£27BT& 0 . ■?­©&©&£ 2 f£ [$14

­ 249 ­ JAERI­Conf 99­001

100(mm/d)£[email protected]$if!l4&< 55(mm/d)~75.5(mm/d)© Igffl X$> o ft. WiZ, 1989^Pbl990X^Xtl991^mXiZ\X50(mm/d)^mA.^^mf)i53X(mm/d)(D lmyXMX-otZo y(Vtz®1989A8ft27B(D113(mm/d)(D&m&mizmi&Xb"7Cs ■Am*izmALxm&iz&i&zntt. ^©MM*©13^©^^'^^^^^ Xr)tz(DX&MmV>}Xb(D"7Cs

#*T*. L^L, 100(mm/d)^±©|^M^^»3rB1H*^LT^4L7c*|^tt, ±^g|5 &^#>^&g|L T^g|5^:^©«^^^b,37Cs©^??ji^fr5fgtz®%mb *■ m ° r £­­~­i. &frt>mo(cm)Skft (ZXAfeMb^o) M « ,37 •i * 1 (DMA*mm, csmm, &mmmvim c i f­fr ­r* « — mftttZtt&Ltz« A 0Xfg % Z Fig Xlz A M _i i_ j i_ o •» 7 O £1 J 0 Surface water x. m*t¥" csmm(»xiti\xssmmfttt I °0.1 ­A­ Bottom water 137 •s^ *­« HifiiHLT^fc. Cs, ssbhiz&mm o_^ ""**' ^^"^ E­2­102 / miZ^&mtfXM&bTffimJiiOlmK* s _0"0 /' ^v"*** A "p= coo **"">i fc, mmm&\xxmffi, **SB, xm^b a'" Pi­.' rmm^^z.ttfAmzntz„ ntz, m-mm^^^'^csm^b^sTRTj 239'2IOPU mmb

0.01 Csdfln^p.dlD^CscHJ^pacHSAI^sdlSB^pscHout),,, mm<, A®&$Lfttf%w™2Wv\i tm Fig.5 The distribution pattern of Cs mtfh^tzo y,A(Dz\bXb, i^*^,,7cs in the sediments in comparison with that \xss bH-¥Wi%:Xz>z.bmtAmzntz„ of suspended solid (SS) and chlorinty observed in the lake Hinuma

250 JAERI­Conf 99­001

a. £ 1.5 T T■ i —i 1 1—r—r— 1 ­ . X >> y = ­0.40 + 0.095x R= 0.94 . V_ " O) "­•­ 239pu 1.0 ­ A 90Sr A , ­ co­.m4 ­ A* ­ o M

Fig.6 Relationship between 219240Pu, MSr concentrations and ' Cs concentrations in the sediments 3.n,'a=£T)vojm$k2) ^xxmrnxmrnx, ^xm)\zAxtzmAMm ■ QnmMb*n\z&m? z&mX3:\zUm*TZ. 3 .1 .^^)V(r>±wm^L F\g.i\zAxmzmm^7kWL^mm • sr, MA • L« , nmrnm® -. ssduh mmmm^i ■ S^XD &n>/\°­byybtK­^L^©(D~(5)^T^Ltz, ZJ>/\°­byybm^mm^mrMm^mx, i )mmmxmM^(D\xm(Dm^t7im • nAe«, nAi®, 2)^^b^AMiii#ifiT©^*^©&a©$L ii:fdSfs 3mi$,Am^x(Dmm

R1Sf, 5y

^eJt^^bTg^©^!©^^ : AR2SsdLa), AR2SsddO), 10)^E;8^^S **»*&*"(?© sa©&wtt^«: ASsdLQ), ASsddQ), ii)m

f ­r = rfAeff­ dSf­ASf­AR1Sf (l) at

-^ = Tf A/(i) + fd(i)Sf ­ Ke(i _»i +1) ­ Psd(i) + Esd(i) ­ AU(i) (2) (fd(i=M)=0)

­ 251 ­ JAERI­Conf 99­001

dSdL(i) P _ E _ ( 3 ) = sd(i) sd(i) + 1B(, ­1 ­> ■) " 1B(I ­>, ♦ i) AR2SdL(i) ­ ASmi) ­ < dt

dSdd(i) (4) = ^R2SdL(i) ­ ^R2Sdd(i) _ ^dd(i) dt

dF (fis h Uf + Rp­En­EQ­XF, (5) dt fish

Atmosphere

T r, A/(1) l~ r,A;(2) rf A/(3) rfAeff ­I <•* \ fd I ± —I—►■ Sea | Catchment k ke(3*4) [(at mouth I L e(1*2) 4(2) ke^) L(3) area (Sf) /(D of river) I i-*tt«jtf\zi--i*&j y / ­R1 PsMi(1)Jsd(1) Pr sd(2)E ) psd(3)E! J w fsd(1) sd(2)Esdsd(2(2) ^sd(3)tsd(_sdj3: j <­B(3_Sea)

q S S B(0—1) dL(1) q q dL(3) B(1­2) "*dL(2) B(2­3)

"7\ ■4—I "A­R2 Jf* ' *'^R 2 X,­* dd(2) "*dd(3) uf. flS Ef2 ATHR2 rrrc *. 1+ *­* •Sediments­

Fig.7 Schematic flow diagram of Cs transfer model in the lake system 3.2.^«^biW>S^0«ffl0^?7[Csfc[t5KFl^S0l5» mmztt:mLtz137cs(DAfflft\x, xiz, Am^xtthizmmmmx^^m^m^mht^bmA MAXML, X

f Ls (6)

-A, I^MMtLs©f||f^«s ­^M^LsocQ'b^T^$n^3)o Q'ttSttfJitS (mm/s) TftD, b «0.2~3g|t©^^TSSo Q'^^MB#©»ftAMill/K©^S^ (m3/s) QTil, (6) ^.CftAT

St, fdtts (7­l)j£, J±0J£#:kctt(7­2)£Tg$nS. b fd=kcQ (7­1)

kc = (7­2) SfC/

­ 252 ­ JAERI­Conf 99­001

sfes Qt4, mA\z-ymmxmxm^btiz> r^ii^j ■» •£#­%£ (8­D ^xmx. 3 R24^RW : Q = ksfMAfR24xl0 +Qo (8­1) s Af: immm, fM: m*s. MTK 14, »M**SA^hSV^»*&t4*±<7)ftft^tJK»fS*ns. ^T, ^xJI/Ttt, QteBM< : R24^­^©{iRwJ^TT«ii1JPL^V^LT (8­2) ^(DWmgiftZmALtz.

R24n& m(DAW£fcx\xm£<, mmm^xmx, mnwmmzxx.^Mm

(9)x.xmmm(Dnnmm*, (io)£xmm®izmmLxmffmx&a7cs(DmirMyyyyx • Esd­so) ?>*l65IttLfc. fc*fe, Era) :^lt^i^*5tj­SIg»E©^s*±^M, a a) : l£»g©#­*±Jf^»C, bs : ^fit Ab(0 : «i©fflft, CsdLss(i) : ^lit«^K:mt&i$3i$W37Csag£l?To

f \ bs T 9 b(i) ] A < > Er(i) = a,(i ) b(i) VTce(i)

Esdss(i) = CsdLss(i)Er(i) (10)

4.gfT­EfJH7)^i4e* 4.1 l37CsKT*(rf)Mli&4&*«£: fe KHBq/m ), itfS#,* Cs?lIt© ffl 8111114, ±*5KgB : CsdUi) = 12(Bq/kg) , ty X SB : CsdU2) = 13(Bq/kg) , TSKSB : 137 fi 2 CsdL(3) = ll(Bq/kg) Cs»S<7)­^fW±#l4, rfj&U Xl0 (Bq/m7d)T,4&7k^©,tl£K&­*3­fc#, 5 XlO7 (Bq/mVd), 1X108 (Bq/m7d)Tt4Cw(i)^Cw(2)

253 ­ JAERI­Conf 99­001

1 0" 1 0" ­ ­ Cw/1) CedL(1) Cwi2J 1! CsdL(2) "£ 4 0 : Cwi3) 1 0 10" : Cwf CsdL(3) i m •a­ 1 o1' — 30 ] rs X ■ 1 0" 1 0'° * 20 i 1 - 1 0'° ­ 10* ^ 1 0 10* \ ■ j ^ IV 1 o1 ­ 1 0' ! • ■ o ■ 10' I i o "i 1 0' t ] ■ io< a ■ i.._. i i 1 i i 1 1 ■ ' 10s ­,,!,, t 0 20 40 SO 80 100 120 140 20 40 60 80 100 120 140 1 0' Days Days

Fig.8 The variations of calculated concentration Fig.9 The variations of calculated concentration of of Cs in the lake water to the temporary Cs in the Sediments to the temporary depositions(rfs) of l,7Cs in the model. Cw(i): depositions(rfs) of Cs in the model. Csdun: Cone. Cone, of 137Cs at the up­stream zone, Cw(2>: Cone. of Cs at the up­stream zone, CsdL(2): Cone, of l,7Cs of l37Cs the central zone, CwO): Cone, of l,7Cs the at the central zone, CsdL(3): Cone, of n7Cs at the down­stream zone down­stream zone mmm^l37csm&ffifil &A htz. R24#£flnt"S­hCsdUi) ©

m&A&\tmwizxz>tfcSdU3)0Xs.x\zxntebA£< •&*>•&&■? tz. R24©iiJntcts csdUD'wffiAy^y yzoimmmfiy fflAmmmoimmizt hXymm^^'cs^A^ gB­^©^ff*ct DB&tztblzCsdLaxnm&tfAHLtz. ZtHzMbX, CsdLUXDm&l&TW 13? A£. *&, csdL^te %bm\ZbXX~itz. ^©|g^(4s 50(mm/d)~100(mm/d)©^MBtH(4±?jtgB©JtK'#I *l37csm%<»AWtf^&%mxvA$LT:feD, Fig. lia^E­r^fr© *§­£££&■*­> T^7Co 8K«J6> 6CIA7 7 y £ X 14, #­t x ^ T 14

­ 254 JAERI­Conf 99­001

(7-i)jZizALtzmizR24

—. 80 ­ ­ Cw(1) Cw(3) \ R24 "E *a­ so . ­ Cw(2) Cwt CO 4.0 ­

3.0

* 2.0

M 1.0 ^.^s /*. y*~ _yv «u«^ A w\~X ',J^j­£^ ^0.0 400 | p g­1.0­ 200' l ­2.0 ■ ■■iiiiiiiiiii 0 40 60 80 100 120 140 Days

F i g. 10 The variations of calculated concentration of F i g. 11 The variations of calculated concentration of Cs in the lake water to the temporary rainfall Cs in the sediments to the temporary rainfall intensities(R24) in the model. intensities(R24) in the model.

(Bq/kg) 4.3 *£»%* ,3?Cs«ffitf)­&7ki«R!]tt*Ti 20 ­»­t=40day| y-yyyx 4tLxx^xyxyx^mm 15 ­

10 m&m o 5 CsdU2)\X^b^{\:Ltj:X-otzo Z\(D IS 11(4, ­»­t=290day| 15 Fig.4© 100(mm/dmT©P$ii# m H£&^ 10 x%&Lrzm£e>mm%%tfe&mwLxwc. 5 1 1 ' CsdL(1) CsdL(2) CsdL(3) 4.4 i986^i*:fcit'S»!7k, &&*£»%* 1s?csa&tf>st*fl F i g. 12 Fluctuation of distribution patterns of 117, AaL)vy xyx^nmmmzxvr, #±#L calculated Cs concentrations in the sediments ,37 at each water zones in the model. tzi986x

255 ­ JAERI­Conf 99­001

£Fig.l3RtfFig.l4';:7KT„ r, (4, R24tmmzmmX b^2km Mmiz&WtZ Arftl^ ir>^­1irt^^a$nfc7K^*fflViTlifflL7Co rlt^L7c^^8^3B^198(mm/d)£* tt T '"Cs a It A* ± # L £ #, 198(mm/d) © P£ S B# \Z (4 CsdL(i) *^­*<±#L*t"ba>a> CsdL(2)tCsdL(3)(4^i'k^^i:tt^ofc«

— 30

CsdL(1) 10' I ­CsdL(2) CsdLO) ■o

10 E 3" 20 u 10­ r"

107 « 1 0 £1 0 o ­, 3005 * 1 5 10 200 E 10s 200 E 3 Ix * u ■ t ­II.). L.IMI.^.IM. i— 4­^ 61 122 1188 2 243 364 ■ i 11 .!!■» uiiili I IWI »l I i L f* i ­ j '■ ■ I 61 122 182 ' 243 ' 364 ' 3

n7 Fig. 13 Simulation of concentration of Cs Fig. 14 Simulation of concentration of n7Cs in the lake water in the model in 1986 in the sediments in the model in 1986 5 .£bit> mmmbLxmmiz&i<7z>ij7cscDm7b^tazR&t&m&tomw&m&L, mmm^m tmmxzz>m7*:Xx^mibtz. ACD'&^zztisbzt&xcDt&iox&z,. mmcDmmfa$kXb&,xcDz\ttfftx^tz. i) mmM^. BM K«AU00(mm/d)^TTfaiBS:43^T»IiIfg4L­tii'&l4, AiMM, ^X^^CDA ffi7kmmxmmv>i^,37csm&tfA%-tz>o L^L, ioo(mm/d)^ A cD^m^mmm izm^yx^ALtzm&ix, xmffl, ^xm. xmffi&7kmxmmw^xi37csmmtf mxtz, 2) m7k^t37csmmcDftift\xssm&ftinizi!i{&Lx&v, :37cs, ssthizmmykmis. \x^xffltf±$i^tTffimx:vM^, *fc, &mmm\t±ffi&, ^x^, TM©I! i37 239 2w I:I ' Pu mm tmmft&itzfiy ^m&tntinx^^Xrtixmmtfm^tz. ztibxb, MT(4, mmwjktfm7k^]tti:z,. so­ 100(mm/d)©R24T(4, *5(t«^ b fit A ffiJH£*i0 3 LT ±fit fBCl' ,7Cs *#&& $ ­ftM ®^ '37Cs?l!t(4±#T^o L^L, 100(mm/d)UACDR24X\Xj&MCD^^X[fm^^±mxm %\ztxommyyyyymnAyyyyy^xmv, mm®^"7csmmtfmxtz>tmmz

256 ­ JAERI-Conf 99-001 ntz. s/is m®frz

l37 8 2 1) rA^ntZb, MA^ Cs\X-^m\Z A^-L tz. rf*U x 10 (Bq/m /d) T(4 3 137 CwiDtf mcDAwmmx o?a< m 40 (Bq/m )^^L^o Mti^ cs?i)t(4, CsdL(2)A«ffi©*«J; 0HfVi±#¥€:-^Lfc. 2) R24& 1 0£tt3O, 50, 100, 200, 300mm/d ty csdL<3>)*l37csm]McDy~xxyxjiTmn$:x\x, r, ?ji±#t5t#*«Jt««i I37 t CsiiSr:(4aSrRlBt(3±#Ls ^©?i©MHJ;i9CSdL(i)(4±^s CsdL(3)(4M'>, CsdL(2)f45&tH|gfbLfe^ofc. ^©fSfrte, 100(mm/dmT©M^PrfllS£&^T %£Lftmts

x^±(si(41-^^iMT#TV^cj:^ofeo ^f£©^WM

DE5 SSJHtt ^,ta ^T:"?l^(i^^§7*-~^7^h^M©^fT^fi)(s:[«r§5if^ (I)", Rffiim, 28,283(1993) 2)^5 ii, mw, %&,^m mx:"mmzm%y*-A7ybmmcDWft¥mizmtz>w $L(nr, ftmytm, 32(1), 53(1997) 3) AA¥£M : 7Ka//>s:m (Hga6o*¥)S) , 467(1994) 4) ^um *ffl#fa; xm7Xnmxmmmtm&&m, AAmrm, 15-8,379(1973) 5) AA¥£m : TkmXXM (BSW60^KS) ,467(1994) 6)A±f-Hli, tfmfem : "JS?IS©#itt^i;^[5g|1L|f^^(ifl1-§^I^^P^", ±*^£lrl #31, 3 65CII-4), 225(1985) 7)x^mm:"Anm^.m^ (ACD7) -m^mmcDm^xm-y mmxx^^m, 62(4), 47(1994)

- 257 - Hiwiiniiiiiiiniuiiniiiiiii JAERI-Conf 99-001 JP9950145

2 5. MilU-«fcStt»i4SS0^ff

&* a

mnmm\z^nzA%nxmM

Migration of radionuclides through a river system

Takeshi MATSUNAGA Department of Environmental Safety Research, Japan Atomic Energy Research Institute

Migration behavior of several atmospherically-derived radionuclides in a river watershed was studied. A main interest was in their relocation from the ground soil ofthe watershed to a downstream region through a river.

1 *"t*7 71 fl 7 Studied radionuclides are: Cs generated by weapon tests in the atmosphere; Pb and Be ofnaturall y occurring 137 239 240 radionuclides; Cs, ^Sr, ' pu and Am released by the Chernobyl nuclear power plant accident. Dominance ofthe form in suspended solid in river water (particulate form) was qualified for the radionuclides in the Kuji river watershed. An importance of discharge in flooding was also confirmed. A historical budget analysis for weapon test derived 137Cs was presented for the Hi-i river watershed and its accompanied lake sediment (Lake Shinji). The work afforded a scheme of a fate of Cs after falling on the ground soil and on the lake surface. Several controlling factors, which can influence on the chemical form of radionuclides discharged to a river, were also investigated in the vicinity ofthe Chernobyl nuclear powerplant. A special attention was paid on the association ofthe radionuclides with dissolved species in water. Preferential association of Pu and Am isotopes to a large molecular size of dissolved matrices, probably of humic substances, was suggested.

Keyword : Nuclear weapon tests, Chernobyl accident, Radionuclides, River watershed, Relocation, Discharge, Chemical form

- 258 - JAERI­Conf 99­001

1. \Xbsb\z *mmtA5a.wzmmn, mmzwr -mmbtzAxm^^mmcD^mm^nmmcDm^zm^ tzyt^smtb,A^xbmm\zmAbtz^<^^(Dn^^mmcDm}\\mmz^7zmm^mn Lfcfe©­c?*s. MmzwmbtzMft&mmcD&ftMmzixi&A^oimm, mm*, nwmutu <^^©«sK*^ffi­rs. ^o btzmmcDM&cD^x, m*m®\z\x, Tm&'mnm&xttm*m\inztK5m%&ffZ>. £&, i©ff#ftjM4Am­Jllt ffi­^ffi**tV^j£«W­­fiWW^^ffjag©­­ai5*fi­3TViS. .r©«k'5£K»©~R;:, Mill (I

Wfc, ^T(;:iz!^3Hg©#m£?­r^7Co ZLZLTtt, A£< 2*3©*#3£i?tV<3o 1*3(4, iBTJliaH* i37 \z&\7z>m%my*-A7y h**© cs ©£ff«rtt*, aftift­^«tiR*«Ens­xis;ii©i«« ■)­ 2), ^bx&&mzimt%%&)m®vxm'o 2-D\Z\X, w;ii**;«:$­ttt««©

2 . fflJIiattfcKfcW­S137 Cs ©S­ff#tt 2. 1 A^)IIM^('*5^§,37Cs©^fT#tt (1) £§*#& : 2 ^^)H(4^Hm© faSm­^^m^Mn, A¥#(c£<\ ^©M^®«(4 1490km T$>3 (Fig.i) 0 ^©M)H©ToSE (&«Jft#IS;*;fflrr7rt) ©Jft^T, iBT;i|*©1*h>^'J >>f%ft\,\ mnwwzmft-t §l37cs (ffif^n) ^b^(­*^(c^ii­r§ss®^H(^sn§i37cs mmm) zfembtz. mi tzfrb \9Mmzt>ftvm'

river water sampling point Kuji River watershed : 1490 km public precipitation gauge public flow rate observatory atmospheric fallout collector (Tokai)

Fig. 1 Location ofthe Kuji River watershed and related sampling/observation points.

259 ­ JAERI­Conf 99­001

xyyvyym&\x, mafrzmioianamAx&r)* &*ig#©iJ#(4gtt&^­^, mmmm. sas (85%) ­a­g­rsasjrJiTfts. jii©*n©*­r>j&>5, MJIITK^*>7°T^7KLT, #­Hjy •^7>e;^ (asiixm) (CSTKL, mmmm. mmmw&&$m zmmbtz. x\z, y^xym ^^©MJil7K('^ViT^#^©KWtt­fev*>A$7xD­>7Mbri;^h^U*>A^»®#^Tffl rnbtz. z\­*­©ttn -m*6nzx:t)M%2titzb(Dx&z>,

(2) m&tm& i) MJH7k*©137Cs«S X^JHMJH7K^©137Cs«Jt©^»^*^ Fig.2 \zinto WimxAX, *,»m#ttV>fc¥*l5©M ^^t^M^ckOiiTK^S^fc^WJg^Lfc^rB^ISS^^^MJilMSttfe^^LTfe^o^©^ *(­£V>T(4, ^*l^©«SU^JW4*#IB­«affi*&*b*l±T0.1~0JmBqA­c?*'3, TK^iSStL l37 l37 T(4^^^ csi@jt©^^^^ cs«mck0fe^v^ ­­#, m7km\z\xmwmt>bmwbtz. mz, mmmwsmizmiaL* t&ftm&Az<±®z&%wfLtii-2tifto z\

0.5 50 1.0 50 ■ dissolved High flow conditions Normal flow conditions Q particulate 0.4 40 0.8 40 □ flow rate

% 0.3 30 0.6 30 I

o 0.2 20 0.4 20

0.1 10 0.2 10

0.0 i i ii i i 0.0 1 0 Nl N2 N3 N4 N5 N6 N7 N8 Hi H2 H3 H4 H5 Observations at selected days (1987­1989) Observations at selected sequential 5 days (1988)

Fig.2 Radioactivity concentrations of I37Cs in dissolved and particulated forms in Kuji River water under different flow rate conditions.

- 260 JAERI­Conf 99­001 ii) MJH7K*©137Cs«£ mftm&fagkxb l37cs©B*MLffi»£i?fjLiL, wimmtoimmftvfzft? tmmxffitt&wxx, \mMxirimxzzz\ttfftx-3tz (Fig.3) , 7Be, 2xoPb (DMmm\z-D^xh, mmx&^tz. oso, mmwzwm^tbx, Mimmv^mvB^x&zmvfatt&mmvffiitimzmAxz z>z\ttfnimx$>z>o yojmmZ>»

iii) !37Cs oD&nw% x.\z, mw§:fc%, —D(Dyy,Axt&f3.bx 3 5 07 i37cs ©^tfiR^^^Afco sr, mm±m\z&\7 10 10 er i37 l37 «■ 3 % cs wmmvmizzfi^ tz, xmx b © cs 10*­ 104 0 v> fflnrici^t!, mAumojum^n^tzmm e •3 10J­ 10J B (1988) (^43^§lrl«r^T*^^^±*^*5^S^ O. 0 mmt btz. A%mftmmtf£ T& ;7*" (A »■ « Suspended particles 0, £©l^ft©I^T­^£©^M©tf£A,£©gB .a 10" 10" Q 1 2 J #£*#$LTV>3o misffl^fS8*£7> ^fUfflLTs 10° 10 10 10 Flow rate (mVs) S^^S^SS^© 1988¥T©3^P$T*£;£#> § £ 3700MBq/km2 £&5. ­MS/H8E«tjfiV­»3R}6W Fig. 3 Dependency of discharge of radionuclides and T(4l976¥^r^©Mfs'Jflt^#bnT*5 0, rn­3© suspended partilces on the river water flow rate mix^^m^m^mmmt^txt-mbtz. xz\x, %Mmnmzx.^-^m-'D<\xx:(DWxm^ i37 2 xmwmmzhmm^mt^Ax cs nwLwmwk*. 37ooMBq/km tmrtbtz, ^zm^tzmmmtam^mm^iz 7 m irical ationshi : Accumulated » Cs * P f Pr , *r$(DBmmm®zmmbT, *zm .j. A . J [ Cs Discharge] = a [Flow rate] in the watershed2 ° t, z.±m&At£b

261 ­ JAERI-Conf 99-001 i37 7 cs tmm\z-mz±m R-*MOft3Btt©ffiV* 2l0Pb fcZtflZ Be fc-3ViTfcjLdtt)lt"3fc©t %AbtlZ>.

2. 2 ^Wil^*£(;:£tt3137Cs©#?f ^(r, a«»,rffi*i*rs*^iiiaE«T©*«*i£^s. 0j&)\\9me>mmx\t, x\zmmm\z&® t^A^^x 137cs ®^ffi©wjnMtij^-5j^iH-mmLft 137Cs tMCil^TL/i 137Cs i37 nrnmbx^z. xz.x\ *©*«**© cs*g£9!---<, *txtx<7zm\ *r$mmm, §g#JHM*£(;:£ttS 137Cs ©:£fm*ffl©l5ft W£S£ jLLtit- - £ £K*&.

(1) ^$ttf& *^JI|©aE«H*Fig.5,r-^*r. ^WH(4, ft-fi&cmSBfc&lfL, Js7©M*?!cffi}l(si2070km2T& S» ^CTSSfctt, 5*55188 (ffim79.7km2, SAriit5.5m) jW£1tLTv>S. ^ilftrllflTK^.siigfr JH«E«©-5^ 915.3km2 *£»T^S. ^^©^^Ti-m^tl^J&L/i (1994^7 £) . it gllcm©7^U;WW^,.'«tt), 8rtS44cmST©tt"KKfr*^fc. .t©iiW¥£«**;frffl2cmK# T##JL, &*£&, K*a*ttJ^-^«r«»--l-&Lfc. ^©-g|5^^©LT137Cs , 210Pb©?gS£y ;i/v-r>A^s»#ttaiggTaj-sLfc. (2) m&t^m Hi-i River watershed 2070 km2 I 1 i) mmAtfm\z&\7z>™cs(D^mM 915 km2 — Lake Shinii subwateished Lake Naka-umi subwatershed ^Ts v-^^-AiLt, AWMZ Lake Naka-umi *ttS137CsBT**Jd-SLfc. Srtd *ttSttJWtt*«©BTMf45Pr^ftffi rr©«mt«t 0 s &HniJfmT$iJ£$n T*5 0S ag*,* (U) a*ftVrxyy- xx-y^-x\zmmztiT^z>o asm ^mXXAt 1971 *£EJl», fJW«£ •MTViS. Jsr^T1970^J^fi©^f^(; ^ T « H # ##r-fe > ^ - ©1& # £ ?# Fig.5 Location of the Hi-i river watershed and the Lake Shinji associated at the downstream region. T, ms, jiJST©^i^T*x-^^b «i}£Lfc. Z.yLxmtiLLfta,&mzi3 ttS»T**r-^*ffl^T-&*¥fc*^S«a»T-l (»*ftt*£#it&) £#&, Li©-i**^jiiaE n7 tftfcw-s cS(D&mz&tf zwmmt^Atz. n) xmmw&Mm®*vl31cs(DMmmm ^^^©'"CsC&Itft-^ Fig.6 (a) \Z^t. l960SZKwiM\Zl®%tZ>m\Z, Wm.y * -xxy bw-ytf^iftztitz. y<»nmtyUfAx\xyz\txb, &jm& ximmtonm&tenibx&fsifrvftbmm-ztiZo mmrnm**?)2i°pb mm

262 JAERI­Cont 99­001

(mst^m) xbmmm&vtfx&bnx^zv . z

(&) Vertical profile ofthe content of Cs in the bottom sediment 1 210 S Dating by Pb method 5 **^Lj | | j i i 9 13 ▼ S •5 17 21 Deoth<=>Year «* —

100 200 300 137C. s (mBq/g) U 1500 i—i—i—i—i—i—i—i—i—r i—i—i—i—r (b) Sedimentation rate of 137Cs ^ 1000 2 a o & 500

*J3 g 0 I sOV0v0vOv0v0^OsOvO^Ov01O w Year

Fig.6 Analytical procedure for eluciation ofthe sedimentation rate of 137Cs in the Lake Shinji.

l37 iii) xmmmJS^© cs CD^^W^M^ ^Mg^©i37cs©#t^^ ,37 j Mbtz. ^jwt^^© cs \zftttx%z.ft. AH*®^ 4i(4, m &mi) 7km\z&xbtz™cs(D*Tmwmm\zwut^ftx&z>. ^mmz^x zm&MM (1954­1993) ©^©ftff¥i993 vmmw&zff-o ftt^m ©, mi&wmmtM&mm

*^©***&**©Jt«J&>5, ^©^©MJll^4©#J££jJ<#)­to \993^Z>-X, A5L& T*(4^J 30MBq fcififff, ZCD^ft\Z&tfZ>9< : mmfflm^cDmm\zt^xffi&®n\frbcD £$-$tfrtetz\trfxzz)0 1993 mz&tfzmn&wmm

- 263 JAERI­Conf 99­001

©S&g*,43.4xl06MBq £*t£$nS©T\ m)m&. W)l|1r4©±­*3#, M£\z&^XbffiMWmm.cD0.l5%X$>^tztUf£bX, i®£©¥ftC:&H­ Stffljg^© ,37Cs cD&faWMZmfebtz. ittXU, Fig.7 ©MWit­St­ct:­5 .!■*:•*< 4^(:K^T #*.&. Jra*®^^T*©0%^JS*«tl(^ff­r?)ffJ^^oViT(4 2 0©>r­X^{gSLfc:„ lo (4l00%^«Lfet­r?>*^T$.0, 10(4^x;i/y7W;i/*K©^4^b|plffJ^^itSL/t*^T »S. Fig.7±0 (4, M^©#is^*£MJI|1r4£$!*®^4 (Casel :PIT*© 100%*«©{gS) fc*$HtT«£Lfc*&Mi, *B©««»©*#f*^#enfcMt*]tttLfcilS­S*^LTViS. H ©ijgHTte, 137Cs ©?rSl£««*«iSiJM(41'^©¥f^T(4Mill^4t^*ffi^4©*iSM©'&#*(l XVUteftTgZtiX^Zt)^ 1950~1960^ftT,4, Xb&1&A&CD%£M\Zt£^X%o wzfflTkm^zxx.xy xy ;ni$©­u4 Case 1 :100% deposition for atmospheric flux ©tftttfr b #8*® -^» T»© -5 5 $i J&IM-Xtt (I Fluvial flux ^ff-rS#J-&*«ISLfc*-& (Case2) £tf^S0 Atmospheric flux ^x;i/y^­r;i/*K^©^7K®^T*t, ft ft x\zmx< tMfzznzffl&mmmcDmwtt t *Jt«fSt, |SI*iSS:*­*BT*©#5l40%**«9 i£fci68|LfctltSTS it t**•?**S.H©40% i^"3*ffi£ffl^T, ?^J£^© 137Cs ©#l^^^ 1946-19691970-19791980-19891990-1993 ©f¥fffi^if ^fei^^^ Fig.7 TL3 fc^f (Case Period 2) . ^©Case 2T(4*®f^T^#^Mt,5© Case 2 :40% deposition for atmospheric flux T\ 1950~1960*¥ftT©fflJg*M©#i|!&*JE TJ 10000 (4, CaselctOfe, ZblZAZ^. ■ Fluvial flux 8000 \ ■ i ■ ffc*l4, ycD 1950~1960^f>,;T©^^^^(I a 1 Atmospheric flux 6000 ULT, &©«k'3&#S?£f?*­­*T^5. f^t) e revised s V_ fluvial flux! 1 ■fe, ■€*©¥^Tl4M;il'54A*, £¥ (1980ittt *s 4000 I s SIM) XVAZX-jtzCDXfz^Xt^TLZ. o ■•a "i ■ 1 2000 - i95o~i96o^f^(4, M%\zA^mfammmtfi7 a ■■e 1 t>nftftib&Tmifi&ft-Dftmftx$>?>. ^e© 1946-1969 1970-19791980-1989 1990-1993 tz$>m7k\zxz>n&®ftm*mibm<%.\7z> Period i37 m%m±m%mtfm>b cs mm^mx^tzcD xutn^t^^bnzo &tz, ±*'\©RT Fig.7 Estimation of respective contributions from fluvial and atmospheric fluxes of 137Cs to the &©±8M*J5Jt*jRi© (LtfLtf*nJ£W&) accumuation of ,37Cs in the bottom sediment B^-ftfe, gft£tt<iiA,T^&-^fc© ofthe Lake Shinji. T(4&v^£#££$ns, ^^ri^m^cD^^A^^MAXbcDm^^XKiAtX^tzt^^Zy UX&WmXfcZo iXAfrb, 1950~1960 ¥ft(;:&^T, «*9Httlt€'Slt©iE­&*0St, £ © ^f^(i*(t5M)HiigrJ3(i

- 264 - JAERI-Conf 99-001 iv) mm\\-xmM7kmzA>\7z>™cscDWtiwxz. EJLhfcgffifS t,^mA9%m.m(Dyy^XX\X137Cs\z^UXlXA(DX:yt£iR^^m (Fig.8) „ mmmm^(DM)n^0ma^mxT&¥x\xmmmmmcDmoA5%t^^bti^o Aaixy xy xmmz&z&xm&Atfx o izmTkmmx^^^mTkm^xmcD 4o%tu%.tz>t, 1950-60¥ftT(4, M)\m^\X^^X:K)A^t£i%mmt^Pibn^.^iX\zX:^^i\m^cDA^^CD ttmx, &A®CDMmm±m\z&\7Z>M®> • ®%.ltt^y"agmg".

"Atmospheric flux" : Contribution from atmospheric deposition of137Cs

Annual flux: 40%(~100%)of total atmospheric deposition

"Fluvial flux" : Contribution from accumulated 137Cs in the ground

Annual flux: 1980 's -~ : 0.15 % ofthe accumulated 137Cs in the gorund 1950 *s—I960's : ~1%

Fig. 8 Scheme of annual contributions of atmospherically-derived 137Cs from fluvial and atmospheric fluxes to the bottom sediment of Lake Shinji in the Hi-i river watershed.

3. A^xyyy)mMM%'&wm (&ixzmnmy*-x7yb&m<»U7cs) wyuu WfiWAz.*W'&%&&%. ±m

T&£„ ^®@ffi - m^^-m^^.m\zmbx\x, myo &y\x, m&

265 - JAERI-Conf 99-001

S&?fJ3iJ#£*8TV>S. Z\CDyV¥7AW£bTS\zWi!lCD^.WLtmm (1*^©*) X, 1996 3^ b 1998 ^f^ttT&flL'&T 1-3 m, ?SJ/I|7K£££HXLT, mmmbmim*ffl\bXftmbtt. #*f 137 90 Lfc$S^4M(2 Cs, Sr, 239,240pu^ 241Am^L/T_g(*(7D|S^[;oV^T244CmT$)§o

Fig. 9 The river system and the location of sampling points in the vicinity ofthe Chenobyl Nuclear Power Plant.

3. 2 m%t%m i) **»«£««©#£«: **©«*atBi»#«Bi©IWTf©;R«©#^^ 5 6 239,240pu^ 24lAmN 244Cm ©Ji^^gfc^gBltfi^^ < 10 -10 (ml/g) ((Bq/g)/(Bq/ml))T&o fco OU T137Cs l~5xl04(ml/g)T&0, 90SrT,2*fc/jN$&SSB 103-loVl/g)T£o ft. Z\tlbCDft<\X yn£x\z&mmm®cD&M&mm\zttbx®i\\ • mmfcxm&ztix^zm&tmz-m-z (tz fcL9°srxAxzQAzu) . x^xyxy xmmzx:z>. A^xyyyxm&xmmtktHimmx, mm^mm\xmn^buyy\z

- 266 - JAERI­Conf 99­001 fflbZSbbtl, mECDAmVX£ijbXUtzt%7LbtlZ>o mzWm^CDA^tji^ST , Pu, Am, Cm |wHi#T(4, XyX&itzt^^btiZ. ,37Cs \Z~D\^X\X, Mmm*}k&mA2lXztb, Uitzh »«Lfca, mcDMmwmmmiztAzmbtzWimt, »7hu ^xcs­^/t J J

±jlL^E*Ht©^Eft©^ffir^it^ari^(tL,ttOS^W^M^a«I^J;oT^a©^i]^ mmtztztb, £tzmmtzsb\z, mmmtm^m^n^ tnz-y^x, zbiz^cDftteMmfflitzmsbx^Zo zn&x\z, m^m\z-D^x\xm^t^^7km.

^11^^*10^, \iy, ixcDy^xyzm^tz, Linb©^^»(4$.

5rs^^ofe©T$.o, ^^±©^^*^­t5rsL^v^0 z.(DftmzA,^x®ftwmcD5.n^bvyxt bxim\z&^x\^®&mnttM£;mx&v), y*xm\ *Mt£xzz>®jmx\zt^zt\zmMtf &mx&Z>. ^tr^m^Fig.ioti^­r,, 90SrT(4 ri=pj IXAnftAX^XifiAMf5.m^*^bX&

0, mmzMMbtz sr^Aytbxftt£bxuz>m&tfg,^ztZ7Kmbx^z>o —#. Am, pu T(4, xvAZfxftxmA^xcDm^ifiZK, ^xmx^ xcDA^fxm^mm-tfiAm, pu ©£*#&£ t^x^&yttf^mt. ^cDtz®, y^xyx\z M*LTM{t^£#£©T(4&<, ^mmv^(»^(»mxmmmnm±*%z>xy\z, mmtb mz&zmmmzm®&mzftyfmxmzmAbtz, zybxmtzi&mz-D^x, m£, «*©*# tt^tr^jifeTV^,,

■ >100k H 10k>>lk DOC :Dissolved organic carbon D 100k>>10k ■ lk>

DOC : 25 mgC/1

•>­Pu: 1.4mBq/l •*4Am : 0.8 mBq/1 ■■} Sr:2.9Bq/l •

0 10­4 10'3 10"2 10"1 10° 101 Distribution fraction (%) Concentration in dissolved form (Bq/1)

Fig. 10 Size distribution of Chernobyl­derived radionuclides in dissolved forms (Matsunaga et al., unpublished). The figures of molecular sizes in the legend are operationally defined in the employed ultrafiltration procedure.

267 ­ JAERI­Conf 99­001

4. jjgff &A(Dte$:\z, feo(4b, mftUftcDftmzx:ioftbntzi&%:x$>z>tf, mmv&nmmvxm, ^§V^4s^a«^t^^^g^^frT©^tt«S(;(4^^M©W^(3^^a^©S^«l«©a^^

ttfE *^­&(4, B*H^^W^0T »*£•£«*&« sa^^w^s^, z\n£x\zn-ixztzW)\m

^('43tt§KWtt^ffi©^f^ttW^©­^^^^LTiisa^L7cfe©TrJ)§0fH^©W^(;^^T© ^jB#­«*©ifittifc­c)^Ti4##xitt*#R8«*n­t^. &&, ­?x;i/yy­r;i/tfettsw^(4B* mA7jmnffitAx.)iyyyxm®m$iAyy- (yyyyx, CHESCIRTRADEK ) tcDmumn CDT\Zft£>tlX^Z>0 mm xm^xm^tzmmzmbxix, &©;&* ■mmxbmw.u^xztzixz. IHLT, mm^b^t. mm^nmxmmmm. m) B^^mxyy-. &*miJTW)mmiim. m) namr-m® £» =f?f*7yvu> «*) . MS«­ (B*M^*w^m) .

(1) Matsunaga T., Amano H.and N. Yanase: Discharge of dissolved and particulate *"Cs in the Kuji River, Japan, Appl. Geochem., 6, 159­167(1991).

(2) Matsunaga, T., Amano, H., Ueno, T., Yanase, N. and Y. Kobayashi, The role of suspended particles in the discharge of 210Pb and 7Be within the Kuji River watershed, Japan, J.Environ. Radioactivity, 26, 3­17 (1995).

(3) Matsunaga, T., Ueno,T., Chandradjith, R. L. R., Amano, H., Okumura,M. andH. Hashitani: A study on 137Cs and mercury contamination in lake sediment caused by erosion ofsurfac e ground soil, In Proc. XIII Int. Symp. Environ. Biogeochem., 149, Monopoli (Bari), Italy, Sept.21­16 1997.

(4) Matsunaga, T., Ueno, T., Amano,H., Onuma, Y., Watanabe,M., Nagao, S., Kovalyov, A.V., Tkachenko, Yu. V., Sukhoruchikin, A. K. and S.V.Kazakov : Migration Behavior of the Released Radionuclides in the river system in the exclusion zone ofthe Chernobyl Nuclear Power Plant, IAEA­TECDOC­964, 172­177 (1997).

­ 268 ­ JAERI-Conf 99-001

(5) Matsunaga, T., Ueno, T., Amano, H. , Tkachenko, Yu., Kovalyov, A.V., Watanabe, M. and Y. Onuma: Characteristics of Chernobyl-derived radionuclides in particulate form in surface waters in the exclusion zone around the Chernobyl Nuclear Power Plants, J. Contam. Hydrol., in press.

(6) Higuchi H. and N. Nonakaln-situ sampling method of radionuclides in sea water. Japan Chemical Analysis Centre Pub. 10, 65-71 (1985).

(7) Meteorological Research Institute: Geochemical studies and analytical methods of anthropogenic radionuclides in fallout samples, Technical Reports of the Meteorological Research Institute No.36 (1996).

(8) Wise, S. M.: Caesium-137 and Lead-210: A review ofthe techniques and some applications in geomorphology. In Timescales in Geomorphology , eds. R. A. Cullingford, D.A. Davidson & J. Lewin, John Wiley & Sons Ltd., 109-127 (1980).

(9) Ueno, T., Amano, H., Chandrajith, R.L.R. and M. Okumura: Vertical distribution of radionuclides and mercury in Lake sediments, In Proc. Int. Workshop on the Fate of Mercury in Gold Mining and Measures to Control the Environmental Pollution in Various Countries, NIMD 001-1997, 52-60, National Institute for Minamata Disease (1996).

- 269 - mmm (si)bmnm

m 1 sifi^fftfc i- Mill* W. m2 sitofuj^nsiife * 5 Slfgy u ft ft ,ill 'J­ ft W A! sj ffms fgw'i iff rill *J­ IH Ji s y. ­ Y /I. m ^, m, H min, h, d IO X 7 ­fr K 1 K u * P f 7 7s kg It, fr, » 10 ' ^ 7 P 1% it.i ft> s 'J v h ;l> 1, L 10'­ T 7 T 'rt S r > '­s. r A h y t 10'' ¥ A" G 1 ^/J'^riilt 7 ll t' > K & r­ 4< ^ r­ eV 10 ' / A" M 1% H « i ll mol «' 7 > rad 1 eV=1.60218xlO '".I 1 u­1.66054xlO ­7kg >'/: Ms ft X f 7 ■>' 7> sr 10 ' T •> d 10 z ­fe > ­r­ e 10 ! U m :3 wiiui&wzh-osmif.mL 10 '' vOn li flfeWSUPftt *6 4 Sit J'­in ©Pirate 10 '' ^ 7 n ii ft f* .Id "• J­ I­ J; 5 £« 10 " t 3 P JH iiS & ­S /U -/ Hz s ' ft PI­ nd SJ 10 '"' 7xi, h r y 10 '" 7 1­ a ;j ­=­ a. ­ h N m­kg/s­' TT > 7" 7 bu­-b. A If. h , it; A /< X * ii Pa N/rrr ys ­ y b x-^)i¥-,il:%Wm. i" i ­ ii .1 N­m ys' ­ ii bar (ft) r 1­ *, K « sfi V •y h W J/s # ii Gal 1. H\ 5 Ii [sJPS^ft*j tUCAIi, Q3K F1 xv ^ , fll f»J 7 — u y C A­s ^r =. ') - Ci It'i'fWW 1985*FfiJ?it; £ 5, /i/■£ L, 1 eV sit, tt/f:, &n.7i .­x ;U h V W/A V y Y V y R fcj;0* 1 u«fi«liCODATA^1986'f­,ft^ m '.u § M 7 r 7 K F c/v 7 K rad fifllcJ;­?/;,. * V. IS fit * ­ I, U V/A u I, rem 2. A4t;liiS*fi, / '> K 7-n. ^77 3 > 7* 7 7 > x ■>* ­ 7 y X S A/V ­ /KJ & £ tlX V > 7, iq 1 ^ W tjif.V; & cox* C ■7 x ­ >< Wh V­s 1 A = 0.1nm = 10 '"m « s r 48 Sfc tJ It f" X 7 r Wb/rrr 1 b=I00fm­'=l() ­"m­ 3. bar !i, J IS X'liMtf^WJi/J*R^"T"ft ■i y 7" 7 7 y X ­x > >) ­ H Wb/A 1 bar=0.1MPa = 10"'Pa ■fe ^ >• ­> 7 fl it ­fe;U;> <7 Xtt {ilHUt) ti2 mA i- 3 <) -lyfrms-tix^ c 1 Gal­lcm/s­­10 ­m/s­ X » ;U ­ y. y lm cd­sr 1 Ci­3.7xlO"'Bq w 14 ;U 7 7 lx lm/m­ 4. HC|SlfgPP'}s£:ffi^T(i bar, barnfcj; 1 R=2.58xk) 'C/kg a « fre ^ 7 V /U Bq s ' U 'llUlt.wtlfiV.i mmHg5:S2«*f3*1] 1 rad = lcGy=10 2Gy « JK s u 7 V ­1 Gy J/kg ­l­AtiTi.>S, 1 rcm = lcSv = 10­­Sv ^s tt ^ ai •> — s<- tl h Sv J/kg

Jft

/*] N( = 10'dyn) kgf ibr n: MPa( = 10bar) kgi'/cm­ aim mmllg(Torr) lbf/in­(psi) 1 0.101972 0.224809 1 10.1972 9.86923 7.50062x10' 145.038

9.S066ri 1 2.20462 ;j 0.0980665 1 0.967841 735.559 14.2233

444822 0.453592 1 0.101325 1.03323 1 760 14.6959

*i It lPa­s(N­s/m­) = 10P(*7X)(s/(cm­s)) 1.33322x10 ' 1.35951x10 ' 1.31579x10 ' I 1.93368 xHr'

J ; iljifrtlt lm7s­10'Sl(x h ­7 x)(cm /s) 6.89476x10 7.03070x10 ­ 6.80460x10 ' 51.7149 1

X 7 cal(,i|­

bk Bq Ci Gy C/kg R »i Sv rem »J 1 2.70270x10 " u l 100 3876 100 m fit 3.7x10"' 1 0.01 1 2.58X10 4 I 0.01 1

(86'l­12«26IIS*ft) D

I A' I lift 3? is y /K V 0

tt

% H 0) 8!

ft 5ft 5? 0) ST

1 9 9 8 11 26 B 27 B

ft 5ft n

W ft