A Guide to Rotational Molding Figure 1

Total Page:16

File Type:pdf, Size:1020Kb

A Guide to Rotational Molding Figure 1 A Guide to Rotational Molding Figure 1. Various rotomolded toys A Guide to Rotational Molding Introduction Rotational molding – also referred to as rotomolding or rotational cast- ing – is one of the fastest growing plastics processing methods today. It’s easy to see why. Rotational molding techniques – coupled with Microthene® polyolefin powders from LyondellBasell – can be used to make hollow items of any size, open or closed, and of any desired shape. In recent years, rotomolding techniques have been developed extensively. On the production line, this process can now compete with or outperform blow molding, injection molding and thermoform- ing. In many cases, pieces virtually impossible to fabricate by any other processes can be produced by Figure 2. Smaller storage bins and refuse containers are also rotomolded rotomolding. Rotational molding was first developed early in the 20th century. Rotomolding is different But it wasn’t until the early 1960s, The main difference between The plastic particles make contact when replaced vinyl LyondellBasell rotational molding and other and melt on the inner surfaces of plastisol resins with polyolefin resins, plastics molding techniques, such the hot molds and fuse in layers that rotomolding gained wide as blow and injection molding, are until all the powder is fused and the acceptance. as follows: desired end product and wall thick- Within a few years, the develop- • resin powder is used instead of ness is obtained. The wall thickness ment of low and high density pellets; is controlled by the amount of polyethylene specifically designed powder placed in the mold. • the resin melts in the molds for rotomolding enabled rotational instead of being forced under Rotationally molded pieces are molders to enter markets where pressure into the molds in a stress-free except for slight shrink- vinyl parts and processes could not molten state; age forces because the pieces are compete. In the early 1970s, produced without any external pres- crosslinkable and modified polyeth- • the mold has a biaxial rotation; sure. Additionally, there is practically ylene grades made their way into • rotomolding molds are less no scrap in rotational molding. the rotational molding market. expensive because of their These new resins again opened up simplicity; The uniformity of wall thickness more new market areas, especially • and operating pressures are can be maintained to within production of large tanks. relatively low, allowing molds ±10 percent, which is better than that normally possible with the Linear low density polyethylene for to be made from less expensive blow molding process. Wall thick- rotomolding was developed in the materials. nesses can range from 1/32 inch to late 1970s, while the 1980s brought In rotational molding, rigid, resilient 1 inch (0.8mm to 25mm). Most a surge of non-polyethyl-ene resins, hollow bodies are formed by pow- resins used in rotational molding including nylon, polypropylene and dered plastic material in heated are powders ground to 35 mesh polycarbonate for rotomolding. molds, which are rotated simultane- and ranging in diameter from ously in two planes perpendicular to 74 microns to 2000 microns. each other. 1 Figure 3. Rotomolded products in this photo range from 55-gallon drums to billiard balls 2 Typical rotational molding applications Advantages Rotational molding permits produc- • display window mannequins and of rotational tion of a countless number of fully other hollow display figures of all molding or partially closed items. Design sizes, and; Rotational molding offers signifi- versatility of rotationally molded • playground equipment and cant advantages when compared pieces is almost unlimited. sporting equipment such as golf with other molding techniques or carts, footballs, juggling pins, The rigidity or flexibility of an item thermoforming: is controlled by the properties of helmets, dumbbells, golf tee • costs for molds and tooling are the resin used (see section on Resin markers, canoes and kayaks. relatively low; Choice) and by the wall thickness of Rotomolded parts are also used in • the rotomolding technique is the molding. portable outhouses, battery cases, easily adapted to short produc- light globes, vacuum cleaner and Some typical applications for which tion runs, particularly when sets scrubber housings and garbage rotational molding is particularly of multiple-cavity molds are containers. Furniture, game hous- suited include the following: used; ings, surf boards, traffic barricades, • commercial, industrial and display cases and ducting can also • hollow, totally enclosed items as agricultural storage tanks be produced by rotomolding. The well as pieces with openings can ranging in size from 5 gallons list above indicates just some of the be made; to 22,000 gallons; possibilities. Figures 1-4 illustrate • rotational molding eliminates the • containers for packaging and some of these applications. need for secondary tooling; material handling; • there is little or no waste due to • a variety of industrial parts, Design – almost resin scrap; especially covers and housings, endless potential • wall thickness and piece weight water softening tanks, tote bins; With rotomolding, a plastics can be easily controlled; • numerous under-the-hood and product designer can create a huge • rotational molding procedures in-the-cab automotive parts; array of innovative products. Typical assure uniform wall thickness; • hobby horses, pool tables and design concerns that are handled • deviations can be controlled to many other small or large toys routinely by rotational molding within a maximum tolerance of with complex shapes; include the following: ±10 percent; • baby cribs, balls, dolls, and doll • maintaining uniform wall thick- • pieces with intricate contours parts; ness – rotational molding can and undercuts can be easily provide a more consistently molded; uniform wall thickness for a • virtually any size piece can be part compared to other plastic rotationally molded; processing methods; • there is a minimum of cross- • producing double-wall construc- sectional deformation and tion – rotational molding can warpage; provide uniform double-wall construction on parts; • rotational molding yields pieces with excellent surface detail and • molding thicker corners – due finish; to the process, rotomolded parts will have thicker outer corners • rotationally molded items are which help strengthen the parts; virtually stress free; and • identical or similar items or • molding inserts, reinforcing ribs, different sections on one piece kiss-off ribbing and undercuts – can be molded at the same time these are easily included in a in different colors on a single roto-molded part. spindle; • plastic or metal inserts can often Designers interested in acquiring be molded as integral parts of more specific information can con- the item; and tact the Association of Rotational Molders, 2000 Spring Road, • double wall constructions are feasible. Figure 4. Large storage tanks are Oakbrook IL 60521, (630) 571-0611. a major market for rotomolding 3 The Race Car Bed is rotationally molded from tough, scratch-resist- ant, high impact strength linear low density polyethylene. Kids are all over this seven-foot- high Big Climber gym rotomolded from weather-resistant polyethyl- ene. The colors have been molded-in, so the parts will not chip, splinter, rust or peel. This rocking horse comes as either a palomino or a mustang. Both are rotationally molded from polyethylene. The spinal immobilizer board used by emergency medical services has a rotomolded, linear medium density polyethylene, outer skin and a rigid urethane foam core. 4 Resin choice Melt Index • Type I: Low Density Resins (range of 0.925 g/cm3 and below). To obtain the desired end product, For rotomolding, a resin must have Generally, low density resins are the choice of a quality powdered a good flow when molten. With preferable whenever stiffness is resin is essential in rotational polyethylene, the flow is measured not essential or is undesirable, as molding. One reason is the high by melt index. The higher the melt for many toys, and only when temperatures used risk chemical index, the better the flow. Most light loads are to be expected. rotomolding resins have melt degradation in a less-than-quality • Type II: Medium Density Resins indices ranging from 2g/10 minutes product. (range from 0.926 g/cm3 to to 10g/10 minutes. The term 0.940 g/cm3). Most linear low “g/10 minutes” refers to the weight Table 1. Usage of various resins density polyethylene resins fall for rotational molding of molten resin moving through an within this range. Medium orifice of a predetermined size in density resins are useful for self- RESIN PERCENT OF MARKET 10 minutes. supporting items that require the The melt index is also a rough higher heat-distortion resistance Polyethylene 84% measure of the molecular weight or or stiffness that low density the chain length of a resin. A resin resins do not provide. Polycarbonate with a high melt index has shorter • Type III: High Density Resins Nylon chains and a lower molecular (range from 0.941 g/cm3 to Polyvinyl Chloride 15% weight or smaller molecules. A resin 0.959 g/cm3). High density Polyesters with a low melt index has longer resins impart the highest rigidity Polypropylene chains and a higher molecular to the end product, which weight or larger molecules. frequently permits reduction ABS Molecular weight distribution is in wall thickness. Acetals also important in a rotomolding •
Recommended publications
  • Download the Course Outline
    Fundamentals of Packaging Technology Seminar Course Outline Semester 1 Day One • Course Introduction • Course Overview 1-3 Market Research • Course Logistics • Why perform market studies • Market study tools 1-1 Perspective on Packaging • Broad based studies • Demographic Workshop: Part One • Focused studies • A definition of packaging • Updating persona through market • The historical evolution of packaging research and packaging materials • The industrial revolution and packaging 1-4 Graphic Design • Growth of modern packaging roles • Demographic Workshop: Part Two • The modern packaging industry • Technical and communication roles compared 1-2 Package Development • The importance of demographic and Process psychographic information • Management of the packaging function • The modern retail environment • The package as the purchase motivator • Project Scope and objectives • Fundamental messages: Cords of • The package development process familiarity and points of difference • The package design brief • Equity and brand names • Specifications • Emotional aspects of color • Basics of graphic design: balance, unity, direction, typography and Day Two illustrations 1-5 Introduction to Printing 1-6 Printing Methods and Printing Methods • Preparing the artwork, prepress proofing Flexographic and Related Relief Printing Processes • Package printing methods and printing presses • Nature and production of the printing plate • Line art, color selection and Pantone Matching System • Configuration of the printing station • Halftone art, screens and
    [Show full text]
  • Blow Molding Solutions Selection Guide
    FRESH SOLUTIO FOR BLOW NS MOLDE D CO NTA INE RS YOUR BEST SOURCE FOR BLOW MOLDING SOLUTIONS As the world’s leading polyethylene producer, The Dow Chemical Company (Dow) is uniquely positioned to be your supplier of choice for blow molding materials. By collaborating with customers and other key members throughout the value chain, Dow helps drive innovation and promote sustainability with solutions that successfully address the needs of virtually every blow molding market, including: • Water Juice Dairy (WJD) • Pharmaceuticals (Pharma) • Household & Industrial Chemicals (HIC) • Large Part Blow Molding (LPBM) • Agricultural Chemicals (Ag Chem) • Durable Goods • Personal Care Our rich portfolio of sustainable solutions is backed by industry-leading technical expertise, deep understanding of the marketplace, a highly responsive supply chain, and an unmatched set of global resources. In addition to offering excellent performance and processing, Dow solutions are integral to developing containers that help reduce costs, improve retail visibility, and enhance shelf life. 1 The following pages provide an overview of Dow plastic resins designed for use in blow molded rigid packaging applications: • UNIVAL™ High Density Polyethylene (HDPE) Resins are industry standard, “workhorse” materials for everything from food and beverages to household, industrial, and agricultural chemicals. • CONTINUUM™ Bimodal Polyethylene Resins offer opportunities for increased competitive advantage with enhanced performance that creates the potential for lightweighting, incorporation of post-consumer recycle (PCR) content, and more. • DOW HEALTH+™ Polyethylene Resins deliver the high levels of quality, compliance, and commitment needed to meet the stringent requirements of healthcare and pharmaceutical applications. • DOW™ HDPE Resins are available in bimodal and monomodal grades that offer Dow customers in Latin America excellent top load strength, ESCR, and more for a wide range of applications.
    [Show full text]
  • Thinwall Packaging High Performance Systems for High Performance Parts
    Thinwall Packaging High performance systems for high performance parts Benefits • High performance production systems— fast, repeatable • Lighter, more sustainable high performance parts • Consistent part quality • High productivity, low scrap • Complete melt delivery systems with all elements optimized for each application: - machine - hot runner - Altanium® controller With more than 50 years of experience in Our dedicated global thinwall team sup- • Single point of contact for the thinwall packaging industry, Husky is ports customers on multiple levels offering integrated workcell a leader in developing high performance skills, software and services that ensure packaging solutions. Our complete high- the best return on investment. In the early speed systems are optimized to meet our product development stages, we offer • In-mold labeling solutions customers’ specific packaging needs while a wide range of services, including part that help parts stand out on lowering overall part costs. design, flow simulation analysis, finite ele- store shelves ment analysis and resin validation tests. We are committed to being a long-term Once in production, our locally-based partner to help thinwall packaging custom- Service and Sales network is accessible for ers grow their business. To achieve this, 24/7 spare parts and technical support to we maintain collaborative relationships keep systems running efficiently and with with other industry-leading companies to maximum uptime. deliver integrated, best-in-class thinwall packaging systems. Thinwall systems tailored for performance requirements HyPAC two-stage injection HyPAC with two-stage injection is ideal for customers running the highest cavitation molds with the largest shot weights at fast cycles. HyPAC reciprocating-screw injection The unique HyPAC injection unit design offers 30% more throughput and more than twice the melt acceleration for a given screw size.
    [Show full text]
  • Solutions for Injection Molding Applications Selection Guide
    TOUGH, RELIABLE SOLUTIONS FOR INJECTIONMOLDING APPLICATIONS YOUR ONE-STOP SHOP FOR INJECTION MOLDING SOLUTIONS As the world’s top producer of polyethylene, • CONTINUUM™ Bimodal Polyethylene The Dow Chemical Company (Dow) is uniquely Resins offer opportunities for enhanced qualified to meet your needs for injection closure performance and increased molding solutions. Our product portfolio competitive advantage with the potential covers everything from industry standards for lightweighting, incorporation of post- to the latest breakthroughs – all backed by consumer recycle (PCR) content, and more. a singular understanding of material science • DOW HEALTH+™ Polyethylene Resins and processing, plus global manufacturing deliver the high levels of quality, compliance, capabilities. By working closely with customers and commitment needed to meet the and other key members of the value chain, stringent requirements of healthcare and Dow helps drive innovation and promote pharmaceutical applications. sustainability in applications such as: • DOW™ HDPE Resins feature excellent • Caps & Closures (C&C) flow, impact strength, rigidity, ESCR, and downgauging capabilities – plus low warpage • Industrial Containers and taste/odor contributions – making • Thin-wall Containers (TWC) them a solid choice for injection molded and • Lids extruded/thermoformed applications like The following pages provide an overview of tubs, pails, and single-serve containers. Dow plastic resins designed for use in injection • DOWLEX™ IP HDPE Resins offer the high molded rigid
    [Show full text]
  • Silicone Molding with FDM Patterns
    TECHNICAL APPLICATION GUIDE Silicone Molding With FDM Patterns Silicone molding, also known as room temperature vulcanized (RTV) molding, is a fast and affordable solution for prototyping and short-run production. Offering lead APPLICATION times of three to seven days at just a fraction of the cost of an aluminum tool for COMPATIBILITY injection molding, silicone molding is an attractive alternative for the production of TECHNOLOGY IDEA DESIGN PRODUCTION plastic parts. FDM 2 3 3 PolyJet NA 5 5 A silicone mold is made by pouring liquid silicone rubber over a pattern. After the rubber cures, it becomes firm, yet flexible. The result is a mold that can hold tight (0 – N/A, 1 – Low, 5 – High) tolerances while reproducing extremely complex geometries, intricate details, COMPANION AND and undercuts. REFERENCE MATERIALS By replacing machined patterns with FDM® patterns, the mold-making process Technical • Document can be completed in two to three days. And unlike machining, complex and application guide intricate shapes have little effect on the time or cost of the FDM pattern. Application brief • Document • Commercial An important consideration, which is often overlooked, is that FDM patterns can Video • Success story endure the mold-making process. They can withstand the weight of the rubber • How It’s Used and heat from an accelerated curing process. Additionally, the strength of the Case Studies • ScanMed FDM material makes it possible to extract complex patterns from the silicone mold • Best Practice: without breaking, which means that patterns can be reused to make Referenced processes Orienting for multiple molds. Strength, Speed or Surface Finish • Best Practice: CAD to STL • Best Practice: Sectioning an Oversized Part • Best Practice: Applying Custom Toolpaths for Thin • Walls and Bosses • Best Practice: Bonding • Best Practice: Optimizing Seam Location • Best Practice: Media Blasting Silicone molded MRI cover and tooling.
    [Show full text]
  • Polyvinyl Chloride Molding Powder
    Europa,schesP_ MM M II M M M MM MM M MM II J European Patent Office _ _ _ © Publication number: 0 273 766 B1 Office europeen* des.. brevets , © EUROPEAN PATENT SPECIFICATION © Date of publication of patent specification: 08.03.95 © Int. CI.6: C08K 13/02, C08L 27/06, //(C08K1 3/02,3:24,5:02) © Application number: 87311502.6 @ Date of filing: 29.12.87 © Polyvinyl chloride molding powder. © Priority: 29.12.86 JP 311269/86 Chuo-ku Osaka 541 (JP) @ Date of publication of application: 06.07.88 Bulletin 88/27 @ Inventor: Kobayashl, Masanorl 1- 17-9, Klyomldal © Publication of the grant of the patent: Kawachlnagano 08.03.95 Bulletin 95/10 Osaka-fu (JP) Inventor: Matsuura, Isao © Designated Contracting States: 4-5-5-303, Kamlhamuro BE DE FR GB IT NL Takatsuki Osaka-fu (JP) © References cited: Inventor: Wakatsukl, Aklra 2- 1-132, Kuwatacho CHEMICAL ABSTRACTS, vol. 89, 10th July Ibarakl 1978, page 39, abstract no. 7120k, Columbus, Osaka-fu (JP) Ohio, US; & JP-A-78 16 750 Inventor: Shlda, Yu 1-9-1-208, Tamagawa CHEMICAL ABSTRACTS, vol. 101, 26th No- Takatsuki vember 1984, page 47, abstract no. 1931 61 p, Osaka-fu (JP) Columbus, Ohio, US; & JP-A-59 140 261 CHEMICAL ABSTRACTS, vol. 104, 19th May © Representative: Geerlng, Keith Edwin et al 1986, page 46, abstract no. 169545h, Colum- REDDIE & GROSE 00 bus, Ohio, US; & JP-A-60 219 247 16 Theobalds Road CO London WC1X 8PL (GB) CO © Proprietor: SUMITOMO CHEMICAL COMPANY, iv LIMITED CO Kltahama 4-chome 5-33 IV CM Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • WO 2012/120109 Al 13 September 2012 (13.09.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/120109 Al 13 September 2012 (13.09.2012) P O P C T (51) International Patent Classification: (72) Inventors; and B65D 51/28 (2006.01) C12H 1/14 (2006.01) (75) Inventors/Applicants (for US only): AAGAARD, Olav B65D 81/20 (2006.01) C12H 1/22 (2006.01) Marcus [NL/NL]; van Slingelandtlaan 32, NL-305 1 HX B65D 81/24 (2006.01) B65D 1/02 (2006.01) Rotterdam (NL). CAMPBELL GLASGOW, Katherine B65D 81/32 (2006.01) [US/US]; 1729 Gracechurch Street, Wake Forest, North Carolina 27587 (US). THOMPSON, Malcolm Joseph (21) International Application Number: [US/US]; 112 Walcott Way, Cary, North Carolina 275 19 PCT/EP2012/054084 (US). KIRCH, Marco Josef Otto [DE/US]; 220 Caniff (22) International Filing Date: Lane, Cary, North Carolina 2751 9 (US). March 2012 (09.03.2012) (74) Agent: COHAUSZ & FLORACK (24),; Bleichstrasse 14, (25) Filing Language: English 4021 1 Dusseldorf(DE). (26) Publication Language: English (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (30) Priority Data: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, 61/45 1,192 10 March 201 1 (10.03.201 1) US CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, 61/538,242 23 September 201 1 (23.09.201 1) US DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (71) Applicant (for all designated States except US): NOMA- HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, CORC LLC [US/US]; 400 Vintage Park Drive, Zebulon, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, North Carolina 27597 (US).
    [Show full text]
  • Teflon™ PFA 9738-JN Rotomolding Fluoroplastic Resin
    Teflon™ PFA 9738-JN Rotomolding Fluoroplastic Resin Product Information Description Processing Teflon™ PFA 9738-JN is a premium resin available only as For rotational molding, Teflon™ PFA 9738-JN powder is placed a free-flowing powder. Its most unique features, controlled inside a hollow metal structure that is slowly rotated biaxially particle size and size distribution, provide proper flow and and heated above the melting point of the powder. As the powder fusion behavior in rotational molding process. In addition, melts, it builds up on the inner surface of the structure. Powder Teflon™ PFA 9738-JN is chemically modified to yield enhanced flow and distribution are critical, because the high melt viscosity resin purity, lower extractable fluorides, and freedom from of Teflon™ PFA limits the lateral flow of melted resin. A cooling other foreign materials. Its surface smoothness is improved step then causes the molten resin to solidify and densify in place, by minimizing spherulite size, and its chemical permeability creating an integral lining or a removable, hollow plastic part. resistance is enhanced by increasing its crystallinity. This Good molding requires close attention to many details, such as product contains no additives and is designed for hostile choice of metals for the mold, preparation of the metal surface, chemical environments where purity in the parts-per-billion rate of rotation, venting, and heating/ cooling cycles. The equipment range is needed. must operate at high temperature and resist thermal shock. The properties of Teflon™ PFA 9738-JN in molded form are similar to other grades of Teflon™ PFA (perfluoroalkoxy) Safety Precautions fluoroplastic resin.
    [Show full text]
  • Manufacturing Methods and the Impact of Moisture on Plastic Resins
    an R2M co. PLASTIC RESINS AND MOISTURE WHITEPAPER BY: JAYMIN JEFFERY, QA MANAGER, ICONN SYSTEMS, LLC Manufacturing Methods and The Impact of Moisture on Plastic Resins Introduction Many plastic resins are “hygroscopic”. When resins are hygroscopic, the materials absorb and release moisture from the air depending upon the environment in which they are exposed and the duration of the exposure. This study examines the impact of moisture on plastic resins during the production process of molding the raw materials into finished products and examines steps that manufacturers should take in order to manage the moisture content in their resins. If the appropriate steps to control moisture when injection molding plastics is not taken, moisture is a monster. Plastic Resins: The hygroscopic molding material The majority of resins that are available in the plastic resin manufacturers may dry the material, marketplace are hygroscopic. In other words, the polyethylene bags are not enough to prevent materials absorb moisture in humid air condi- moisture from entering into the bag. Polyethylene tions and release moisture in arid or dry condi- bags are porous and will allow some amount of tions.Hygroscopic resins include PA, PC, PET, ABS, water into the bag. Polyurethane, and PBT. Non-hygroscopic resins include PE, PP, PVC, and Polystyrene. Nylon 6 For manufacturing companies that utilize these is one of the more hygroscopic resins and is plastic resins, both hygroscopic and non-hygro- capable of containing as much as 9% of its weight scopic, in their injection molding process a gen- in moisture. eral understanding of the water content must be understood in order to successfully mold parts Manufacturers of plastic resins in many cases with as little variation in their process as possible.
    [Show full text]
  • Stabilization of Polypropylene for Rotational Molding Applications
    Journal of Research Updates in Polymer Science, 2015, 4, 179-187 179 Stabilization of Polypropylene for Rotational Molding Applications Iñaki Emaldi1,2,*, Christopher Mark Liauw3 and Herman Potgieter4,5 1Division of Chemistry and the Environment, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK 2Institute of Polymeric Materials POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Centre, Av. Tolosa 72, San Sebastian, 20018, Spain 3Division of Mechanical Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK 4School of Research Enterprise and Innovation, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK 5School of Chemical and Metallurgical Engineering, University of the Witwatersrand, P.O. Wits, 2050, South Africa Abstract: Rotational molding (RM) is a useful process for making large hollow objects. Due to its relatively high toughness and forgiving thermal oxidative degradation behavior, polyethylene is a most widely used material. However, it has too low elastic modulus for some important applications which leads to adaptation of polypropylene (PP) as a RM material. PP requires specially tailored antioxidant (AO) packages if it is to have any chance of surviving the often long (up to ca. 30 minutes) cycle times associated with RM. During the study the addition of the following stabilizers and antioxidants (AO) to the PP copolymer were investigated: a hindered phenolic primary AO, a phosphite secondary AO, a thioester secondary AO and a hindered amine light stabilizer. Synergistic effects between the primary and secondary AOs, as well as optimum heating times, were investigated. During the investigation formulations were prepared by compression molding and bench-scale RM.
    [Show full text]
  • Design Innovation in Rotational Moulding
    DESIGN INNOVATION IN ROTATIONAL MOULDING Wednesday 19th May 2010 Design Innovation in Rotational Moulding At PDM10 Exhibition Wednesday 19th May 2010 Telford International Centre, Telford, Shropshire SEMINAR PROGRAMME 10.25 Chairman Introduction: Martin Spencer, Rototek 10.30 Overview of Rotational Moulding Nick Henwood – 493K · Design Consideration · Process Control · Repeatability of Process 11.00 Materials available to the Rotomoulder John Steele – ICO Polymers · Most commonly used materials · Comparative Properties · Alternative materials used by progressive Rotomoulders 11.30 Design bugs out….. Ian Thompson – Kinneir Dufort 12.00 Coffee Break 12.15 Adding value by innovative design in rotomoulding Aldo Quaratino – Matrix Polymers 12.45 New Surface Treatments Matteo Cortesi – Persico 13.05 Moulding Graphics Peter Clark – MIG 13.25 Recycling and Rotomoulding Mark Roberts – Linpac Recycling · Availability of Raw materails 13.45 Discussion 14.00 Close of Seminar Delegate List Design Innovation in Rotational Moulding At PDM10 Exhibition Wednesday 19th May 2010 Telford International Centre, Telford, Shropshire Name Company ___________________________________________________ Mr Darren Beevor Polypipe Building Products Mr Tony Bunting Amber Plastics Ltd Mr Fabricio Castilho Omya International Mr Peter Clark Mould in Graphics Mr Colin Clements Caledonian Industries Ltd Mr Jonathan Concannon JFC Manufacturing Mr Matteo Cortesi Persico Mr Mark Del Canto Industrial Plastics Limited Mr Rod Dix Orchid Plastics Ltd Mrs Karen Drinkwater JSC Rotational
    [Show full text]
  • Plastic Rotational Molding in This Guide, We Will Cover
    A GUIDE TO PLASTIC ROTATIONAL MOLDING IN THIS GUIDE, WE WILL COVER: Overview of Plastic Rotational Molding Advantages of RotoMolding Plastic Molding Process Comparison The Rational Molding Process Critical Design Considerations for Rotationally Molded Parts The Nominal Wall… the Frame of your Product Uniform Wall Thickness Non-uniform Wall Thickness Flat Surface Limitations Parallel wall separation Requirements for corner angles Draft angles for easy removal Designs using internal and external undercuts Rotational Molding Tooling Fabricated Molds Cast Aluminum Molds CNC Molds Epoxy Molds Mold-in-Graphic Options Typical Projects Sterling Technologies | 10047 Keystone Drive • Lake City, PA 16423 | 814.774.2500 | SterlingRotationalMolding.com A ROTATIONAL MOLDING OVERVIEW Rotational Molding is a unique plastic molding process used to produce large hollow parts. Often referred to as rotomolding, because the molds are slowly rotated in an oven spreading the resin inside using centrifugal force to fill the walls of the mold. Depending on the purpose of part, wall and corner thickness can vary to suit that requirement. This is critical for water and air tight containers and tanks. Rotational molding is a versatile manufacturing option with many benefits over standard thermoform, injection and blow molding. This process makes it possible to design very large hollow pieces in virtually any shape, size, color and configuration. Generally, pieces are lightweight with strong structural integrity. The process uses a variety of mold types and molding machines that contain loading, heating and cooling areas. Once a mold is bolted to one of the machine’s rotating arms, the pre-measured plastic resin is loaded. Several molds on as many as three arms can be used at the same time.
    [Show full text]