Diving Birds of North America, by Paul Johnsgard Papers in the Biological Sciences

Total Page:16

File Type:pdf, Size:1020Kb

Diving Birds of North America, by Paul Johnsgard Papers in the Biological Sciences University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Diving Birds of North America, by Paul Johnsgard Papers in the Biological Sciences April 1987 Diving Birds of North America: Species Accounts — Auks (Alcidae) Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscidivingbirds Part of the Ornithology Commons Johnsgard, Paul A., "Diving Birds of North America: Species Accounts — Auks (Alcidae)" (1987). Diving Birds of North America, by Paul Johnsgard. 11. https://digitalcommons.unl.edu/bioscidivingbirds/11 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Diving Birds of North America, by Paul Johnsgard by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Species Accounts Aulzs (A1cida e) aries sharply but narrowly tipped with white, the pos- Dovekie terior scapulars narrowly streaked with the same; underparts of body immaculate white (abruptly defined Alle alle (Linnaeus) against the dark brown of chest), the upper or outer por- tion of flanks broadly streaked with blackish; bill bGckj OTHER VERNACULAR NAMES:Little auk (British); iris dark brown; legs and feet grayish, with dusky webs; skonge (Danish);mergule main (French);Krabben- inside of mouth light yellow. taucher (German);agpaliarssuk (Greenland);haftyrdill WINTER PLUMAGE.Malar region, chin, throat, chest, (Icelandic);lyurik (Russian);alkekung (Swedish). and sides of nape white, the latter mottled with grayish and the feathers of chest with dusky bases; otherwise Distribution of North American Subspecies (See Map like the summer plumage. First-winter birds are more 11) brownish than are older age groups (Kozlova 1961). JUVENILES. Similar to the breeding plumage, but the Alle alle alle (Linnaeus) head and upperparts browner and less glossy, scapular BREEDS from northwestern Greenland (Thule area) lo- feathers unmarked, white markings above the eye very cally southward, and from eastern Greenland, Jan small, and throat flecked with brown and not strongly Mayen, Spitsbergen, Novaya Zemlya, and North Land separated from the anterior breast (Glutz and Bauer (USSR)south to southeastern Greenland. Also breeds on 1982). Bear Island (Norway)and probably also on the New Si- berian Islands. Probably breeds rarely in Bering Strait DOWNY YOUNG.Entirely sooty grayish brown, the un- area, including Saint Lawrence and Little Diomede is- derparts paler and more grayish. Iris blackish brown, lands, and possibly on Ellesmere Island. Until recently bill blackish, legs and feet dusky. also bred off northern Iceland (Grimsey Island). WINTERS south from breeding range, in open water, to Measurements and Weights Southampton Island, Ungava Bay, along the Gulf of MEASUREMENTS.Wing: males 108-22 mm (average of Saint Lawrence, southeastern Newfoundland, Nova 11, 115.8);females 106.5-118.0 mm (average of 5, Scotia, the Bay of Fundy, rarely to New Jersey, and to I I 3.3). Exposed culmen: males I 3-1 mm (average of the Canary Islands, Azores, France, and the Baltic Sea. 11, 13.9); females 12.5-14.5 mm (average of 5, 13.9) (Ridgway 1919). Eggs: average of 44, 48.2 x 33.0 mm Description (Adapted from Ridgway 19 I 9) (Bent 1919). ADULTS IN BREEDING PLUMAGE (sexes alike). Head, WEIGHTS.The average of I I 7 breeding-season males neck, and chest plain dark sooty brown (clove brown), was 153.5 g, while 92 females averaged 146.8 g (Roby, becoming gradually darker on pileum and hindneck; a Brink, and Nettleship 1981). Bradstreet (198za)reported short white streak immediately above upper eyelid; rest slightly higher averages for birds taken over a broader of upperparts sooty black (slightly glossy), the second- time span. Estimated egg weight, 28 g (Schonwetter I I. Current North American distribution of the dovekie, showing colony locations, estimated breeding numbers, nonbreeding range limits (broken line),and Eurasian range (inset). 1967). Newly hatched chicks average 21.5 g (Nor- populations are most abundant, and in the western At- derhaug I 980). lantic the species is limited in its southern distribution by the warming influences of the Gulf Stream. Storm- driven birds sometimes occur well south of normal win- Identification tering limits, and occasionally "wrecks" occur when IN THE FIELD.This is only obviously small (dove-sized) such birds are driven to coastlines or even well inland. alcid found on the Atlantic coast, and in the breeding SOCIALITY AND DENSITIES. This is perhaps the most season it has a sharply contrasting black-and-white pat- social of all the alcids; estimates of colony sizes are tern in which the black upperparts extend to the upper sometimes so large as to defy credibility, such as those breast. In winter, white extends up to include the at Thule, Greenland, which have been estimated at mil- breast, throat, and lower cheeks and extends up around lions of individuals (Salomonsen I 967). However, the ear coverts to a point level with the eyes, leaving a Lovenskiold (1964) stated that early estimates of num- black semicollar in front of the wings. Calls are a series bers in Spitsbergen colonies were greatly exaggerated of chirping or piping notes, uttered on the breeding and that a colony once estimated to have 10 million grounds. In flight the wing movement is very fast and birds perhaps held as few as I or 2 million. In western resembles that of a chimney swift. Greenland Evans (1981) estimated a density of at least IN THE HAND. This is the only small alcid (wing under 0.z~nest per square meter, and on Spitsbergen the aver- 125 mm) that has 12 rectrices and vertically aligned age nest density was judged by Stempniewicz (1981a) as scutes on the lower front of the tarsus. Additionally, the 0.5-0.67 per square meter, while Norderhaug (1970) bill is extremely short and is about as wide as deep at judged a nesting density of up to more than I nest per the base. square meter on Spitsbergen. Roby, Brink, and Nettle- ship (1981) estimated that 7,000 pairs were present in a Greenland study area of 15,400 square meters, or 0.45 Ecology and Habitats -pair -per square meter. As one vroceeds south in the breeding range the numbers and breeding densities de- BREEDING AND NONBREEDING HABITATS.Breeding oc- cline, and many of the southernmost colonies have dis- curs along high arctic and, to a more limited degree, appeared in historical times as the surrounding ocean subarctic coastlines where the adjoining waters have has gradually warmed. On wintering areas the birds surface temperatures in August of o-6°C (Voous 1960). tend to be highly dispersed but are associated primarily Dovekies typically nest in large colonies on mountain with offshore locations and avoid both ice-free and ice- slopes, at altitudes of up to 300-500 meters, where covered areas, attaining their highest densities in areas talus slopes and scree provide abundant breeding sites. having 75-99 percent ice cover (Renaud, McLaren, and Most colonies are within easy flying distance of the sea, Johnson 1982). but the birds locally extend up valleys and fjords to a maximum reported distance of about 20 miles (32 kilo- PREDATORS AND COMPETITORS.A considerable num- meters) inland (Bateson 1961). However, Lovenskiold ber of predators have been identified as enemies of (1964) stated that in Greenland much of the most dovekies, including white-tailed sea eagles (Haliaeetus highly suitable scree breeding habitat is only a few hun- albicilla), parasitic jaegers (Stercorariusparasiticus), dred meters in width. The total altitudinal range of peregrines (Falcoperegrinus), snowy owls (Nyctea scan- nesting birds there is from a few feet above sea level to diaca), and common ravens (Corvus corax), but proba- about 600 meters, with maximum numbers associated bly the most serious predators on adults and young are with scree deposits below perpendicular rock walls. arctic foxes (Alopex lagopus) and glaucous gulls (Larus Stempniewicz (198~a) judged that the first requirement hyperboreus). Norderhaug (1970) stated that the parasi- of breeding habitat is that it be near the sea, and he ob- tic jaeger and glaucous gulls are important predators of served no nesting farther than 6 kilometers inland. eggs and nestlings, and glaucous gulls often kill adult Slope and exposure are also important, since they influ- dovekies. Stempniewicz (1981a) agreed that the ence the rate of thawing of nesting sites. Sites having glaucous gull is an extremely serious predator of adults high humidity are avoided, since they retain water, and and chicks but found no evidence that the parasitic jae- slopes of 25-35" are most suitable because they are ger is a significant predator. According to Bateson fairly stable and allow for easy takeoffs. (I96 r ), glaucous gulls can catch adults in flight with rel- During the nonbreeding season the birds are pelagic, ative ease, and arctic foxes often lie in wait at colonies tending to remain near the pack ice, foraging in the cold to pounce on incoming birds or crawl into nesting holes waters of ice leads, where small planktonic crustacean after adults or young. In some areas they feed exclu- sively on these birds in summer and may even cache 15-20 times as great as that group's abundance in the supplies of dead birds to use in winter. Roby, Brink, and zooplankton population. Generally the birds took the Nettleship (1981)judged that glaucous gulls are serious largest copepods available in the upper 50 meters of wa- predators of adults and young, and arctic foxes were ter and also the largest life stage of each species. During found to take both eggs and adults. Stempniewicz the time that adults are feeding nestlings the pairs prob- (1981a) stated that the arctic fox prefers eggs and in try- ably forage around the clock, feeding their young an ing to dig out nests sometimes causes them to cave in, average of 5 .z~(Evans 198 I ) to 8.5 (Norderhaug 1970) killing the birds or destroying the eggs inside.
Recommended publications
  • Arctic Seabirds and Shrinking Sea Ice: Egg Analyses Reveal the Importance
    www.nature.com/scientificreports OPEN Arctic seabirds and shrinking sea ice: egg analyses reveal the importance of ice-derived resources Fanny Cusset1*, Jérôme Fort2, Mark Mallory3, Birgit Braune4, Philippe Massicotte1 & Guillaume Massé1,5 In the Arctic, sea-ice plays a central role in the functioning of marine food webs and its rapid shrinking has large efects on the biota. It is thus crucial to assess the importance of sea-ice and ice-derived resources to Arctic marine species. Here, we used a multi-biomarker approach combining Highly Branched Isoprenoids (HBIs) with δ13C and δ15N to evaluate how much Arctic seabirds rely on sea-ice derived resources during the pre-laying period, and if changes in sea-ice extent and duration afect their investment in reproduction. Eggs of thick-billed murres (Uria lomvia) and northern fulmars (Fulmarus glacialis) were collected in the Canadian Arctic during four years of highly contrasting ice conditions, and analysed for HBIs, isotopic (carbon and nitrogen) and energetic composition. Murres heavily relied on ice-associated prey, and sea-ice was benefcial for this species which produced larger and more energy-dense eggs during icier years. In contrast, fulmars did not exhibit any clear association with sympagic communities and were not impacted by changes in sea ice. Murres, like other species more constrained in their response to sea-ice variations, therefore appear more sensitive to changes and may become the losers of future climate shifts in the Arctic, unlike more resilient species such as fulmars. Sea ice plays a central role in polar marine ecosystems; it drives the phenology of primary producers that con- stitute the base of marine food webs.
    [Show full text]
  • Breeding Ecology and Extinction of the Great Auk (Pinguinus Impennis): Anecdotal Evidence and Conjectures
    THE AUK A QUARTERLY JOURNAL OF ORNITHOLOGY VOL. 101 JANUARY1984 No. 1 BREEDING ECOLOGY AND EXTINCTION OF THE GREAT AUK (PINGUINUS IMPENNIS): ANECDOTAL EVIDENCE AND CONJECTURES SVEN-AXEL BENGTSON Museumof Zoology,University of Lund,Helgonavi•en 3, S-223 62 Lund,Sweden The Garefowl, or Great Auk (Pinguinusimpen- Thus, the sad history of this grand, flightless nis)(Frontispiece), met its final fate in 1844 (or auk has received considerable attention and has shortly thereafter), before anyone versed in often been told. Still, the final episodeof the natural history had endeavoured to study the epilogue deservesto be repeated.Probably al- living bird in the field. In fact, no naturalist ready before the beginning of the 19th centu- ever reported having met with a Great Auk in ry, the GreatAuk wasgone on the westernside its natural environment, although specimens of the Atlantic, and in Europe it was on the were occasionallykept in captivity for short verge of extinction. The last few pairs were periods of time. For instance, the Danish nat- known to breed on some isolated skerries and uralist Ole Worm (Worm 1655) obtained a live rocks off the southwesternpeninsula of Ice- bird from the Faroe Islands and observed it for land. One day between 2 and 5 June 1844, a several months, and Fleming (1824) had the party of Icelanderslanded on Eldey, a stackof opportunity to study a Great Auk that had been volcanic tuff with precipitouscliffs and a flat caught on the island of St. Kilda, Outer Heb- top, now harbouring one of the largestsgan- rides, in 1821. nettles in the world.
    [Show full text]
  • Maximum Dive Depths Attained by South Georgia Diving Petrel Pelecanoides Georgicus at Bird Island, South Georgia
    Antarctic Science 4 (4): 433434 (1992) Short note Maximum dive depths attained by South Georgia diving petrel Pelecanoides georgicus at Bird Island, South Georgia P.A. PRINCE and M. JONES British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET Accepted 25 September 1992 Introduction Maximum dive depths have been recorded for a number of powder was measured to the nearest 0.5 mm. Maximum sea-bird species using simple lightweight capillary gauges depth attained was calculated by the equation: (Burger & Wilson 1988). So far these studies have been dmax= 10.08 ($ -1) confined to penguins (Montague 1985, Seddon &vanHeezik d 1990, Whitehead 1989, Wilson & Wilson 1990, Scolaro & where dmaxismaximumdepth (m)Lsis theinitial length (mm) Suburo 1991), alcids (Burger & Simpson 1986, Burger & of undissolved indicator andL, the length (mm) on recovery Powell 1988, Harris etal. 1990,Burger 1991)andcormorants (Burger & Wilson 1988). (Burger 1991, Wanless et al. 1991). The most proficient divers of the order Procellariformes Results are likely to be thedivingpetrels in the family Pelecanoididae. Although the diet of some species has been studied (Payne & The results are shown in Table I. For all six gauges the mean Prince 1979), their divingperformance and foraging ecology maximumdepthdived was25.7m sd 11.4 (range=17.1-48.6). are unknown. This paper reports the first data on maximum If only the four gauges recovered within 24 h are considered depths attained by South Georgia divingpetrelsp. georgicus then the mean maximum dive depth is reduced to 21.3 m sd (weighing less than 1OOg) while engaged in rearing chicks.
    [Show full text]
  • SEAPOP Studies in the Lofoten and Barents Sea Area in 2006
    249 SEAPOP studies in the Lofoten and Barents Sea area in 2006 Tycho Anker-Nilssen Robert T. Barrett Jan Ove Bustnes Kjell Einar Erikstad Per Fauchald Svein-Håkon Lorentsen Harald Steen Hallvard Strøm Geir Helge Systad Torkild Tveraa NINA Publications NINA Report (NINA Rapport) This is a new, electronic series beginning in 2005, which replaces the earlier series NINA commissioned reports and NINA project reports. This will be NINA’s usual form of reporting completed research, monitoring or review work to clients. In addition, the series will include much of the institute’s other reporting, for example from seminars and conferences, results of internal research and review work and literature studies, etc. NINA report may also be issued in a second language where appropriate. NINA Special Report (NINA Temahefte) As the name suggests, special reports deal with special subjects. Special reports are produced as required and the series ranges widely: from systematic identification keys to information on important problem areas in society. NINA special reports are usually given a popular scientific form with more weight on illustrations than a NINA report. NINA Factsheet (NINA Fakta) Factsheets have as their goal to make NINA’s research results quickly and easily accessible to the general public. The are sent to the press, civil society organisations, nature management at all levels, politicians, and other special interests. Fact sheets give a short presentation of some of our most important research themes. Other publishing In addition to reporting in NINA’s own series, the institute’s employees publish a large proportion of their scientific results in international journals, popular science books and magazines.
    [Show full text]
  • Earliest Northeastern Atlantic Ocean Basin Record of an Auk (Charadriiformes, Pan-Alcidae): Fossil Remains from the Miocene of Germany
    J Ornithol (2013) 154:775–782 DOI 10.1007/s10336-013-0943-6 ORIGINAL ARTICLE Earliest northeastern Atlantic Ocean basin record of an auk (Charadriiformes, Pan-Alcidae): fossil remains from the Miocene of Germany N. Adam Smith • Gerald Mayr Received: 26 November 2012 / Accepted: 28 February 2013 / Published online: 21 March 2013 Ó Dt. Ornithologen-Gesellschaft e.V. 2013 Abstract Newly discovered fossil remains of an auk Zusammenfassung (Aves, Charadriiformes) extend the temporal range of Pan- Alcidae in the northeastern Atlantic Ocean basin and the Fru¨hester Nachweis eines Alkenvogels (Charadriifor- geographic range of the clade during the Miocene. The new mes, Pan-Alcidae) im nordo¨stlichen Atlantik: Fossil- specimen consists of a partial ulna and a radius of a single reste aus dem Mioza¨n Deutschlands individual. It represents the earliest fossil auk from the northeastern Atlantic Ocean basin and the first fossil Ku¨rzlich entdeckte Fossilreste eines Alken (Aves, Cha- remains of an auk reported from Germany. The specimen is radriiformes) erweitern das bekannte zeitliche Vorkommen from a moderately sized auk similar to the extant Razorbill der Pan-Alcidae im nordo¨stlichen Atlantik und das geo- Alca torda, which it also resembles in morphological fea- graphische Verbreitungsgebiet der Gruppe wa¨hrend des tures. A definitive taxonomic referral of the fossil is not Mioza¨ns. Das neue Exemplar besteht aus einem Ulnafrag- possible, but the presence of Alca in the Miocene of the ment und einem Radius eines einzigen Individuums. Es northeastern Atlantic Ocean basin would be congruent with stellt den a¨ltesten fossilen Alken aus dem Nordostatlantik the occurrence of this taxon in the northwestern Atlantic at dar und den ersten Fossilrest eines Alken aus Deutschland.
    [Show full text]
  • Allocation of Growth in Food-Stressed Atlantic Puffin Chicks
    The Auk 113(4):830-841, 1996 ALLOCATION OF GROWTH IN FOOD-STRESSED ATLANTIC PUFFIN CHICKS HILDE STOL •JYAN • AND TYCHO ANKER-NILSSEN NorwegianInstitute for NatureResearch, Tungasletta 2, N-7005 Trondheim,Norway ABSTt•CT.--In long-lived seabirdsthat lay a single-eggclutch, allocation of growth to certain body parts may be advantageousfor the chick if food is limited. To investigatethis, 40 Atlantic Puffin (Fraterculaarctica) hatchlings were distributedin sevengroups that were raisedon differentamounts of food to 38 daysof age.When food intakewas reduced,growth rateswere depressedfor all charactersmeasured (i.e. body massand length of the wing, 2nd primary, forearm, head + bill, culmen, skull, tarsus,and middle toe). Head and wing parts grew preferentiallyrelative to the other characters,and onsetof growth was delayedin the primaries.All chicksaccumulated significant amounts of subcutaneousfat, whereasinternal fat depositswere presentonly in the chicksthat receivedthe mostfood. Received14 July1995, accepted20 March 1996. ONEWAY that parent birds adjustfor variation The wide variation in chick growth rates in food availability is to vary clutch size (Lack among speciesof alcids has been attributed to 1954,1966, 1968). In long-livedspecies that lay constraintson feeding ecology, such as spe- a single-eggclutch, alteration of chick growth cialized foraging behaviors,unpredictable and rate apparentlyis the only strategyavailable to patchy food distributions, and great distances adjust for variation in food. Slow growth re- between feeding and nesting sites (Lack 1968; duces daily energy requirements and allows Ricklefs 1968, 1984;Ashmole 1971;Sealy 1973; food to be delivered at a lower rate (Lack 1968; Nelson 1977; Birkhead and Harris 1985). Thus, Ricklefs 1968, 1979; Harris 1977; Nelson 1977; chicks of pelagic alcids often face the problem Drent and Daan 1980).
    [Show full text]
  • Feasting Little Auks Suck Patience Was Eventually Rewarded and When He Returned to Spitsbergen the Following Year, the Birds Were Far More Cooperative
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb184945. doi:10.1242/jeb.184945 INSIDE JEB Feasting little auks suck patience was eventually rewarded and when he returned to Spitsbergen the following year, the birds were far more cooperative. ‘It was so amazing to finally see them doing their business underwater’, smiles Enstipp, describing how the bird’s heads snapped left and right. ‘Clearly, they were doing something. Only later, when I could look at the recorded GoPro footage, could I see the details of their foraging behaviour’, he laughs. Having thought that the birds would swim around taking indiscriminate gulps as they filtered copepods from the water, Enstipp was amazed to see that the birds were actively targeting individual crustaceans. And when he slowed down the video, he A little auk just after sucking in a copepod and closing its beak while the pouch was astonished to see them extend their beneath the tongue is still extended. Photo credit: Manfred Enstipp. heads before opening the beak slightly and quickly extending the pouch beneath Despite their prodigious numbers – As there are no little auks in captivity, the tongue to suck in a copepod. ‘You can there are estimated to be 60–80 million thanks to the difficulty of providing their see the birds attacking the copepod and in little auks (Alle alle) living and breeding copepod diet, Enstipp travelled north to the next frame it has disappeared’,says in the high Arctic – their situation is not Ny-Ålesund on the Norwegian island Enstipp. The little auks were sucking the assured.
    [Show full text]
  • Sentinels of the Ocean the Science of the World’S Penguins
    A scientific report from The Pew Charitable Trusts April 2015 Sentinels Of the Ocean The science of the world’s penguins Contents 1 Overview 1 Status of penguin populations 1 Penguin biology Species 3 22 The Southern Ocean 24 Threats to penguins Fisheries 24 Increasing forage fisheries 24 Bycatch 24 Mismatch 24 Climate change 25 Habitat degradation and changes in land use 25 Petroleum pollution 25 Guano harvest 26 Erosion and loss of native plants 26 Tourism 26 Predation 26 Invasive predators 26 Native predators 27 Disease and toxins 27 27 Protecting penguins Marine protected areas 27 Ecosystem-based management 29 Ocean zoning 29 Habitat protections on land 30 31 Conclusion 32 References This report was written for Pew by: Pablo García Borboroglu, Ph.D., president, Global Penguin Society P. Dee Boersma, Ph.D., director, Center for Penguins as Ocean Sentinels, University of Washington Caroline Cappello, Center for Penguins as Ocean Sentinels, University of Washington Pew’s environmental initiative Joshua S. Reichert, executive vice president Tom Wathen, vice president Environmental science division Becky Goldburg, Ph.D., director, environmental science Rachel Brittin, officer, communications Polita Glynn, director, Pew Marine Fellows Program Ben Shouse, senior associate Charlotte Hudson, director, Lenfest Ocean Program Anthony Rogers, senior associate Katie Matthews, Ph.D., manager Katy Sater, senior associate Angela Bednarek, Ph.D., manager Acknowledgments The authors wish to thank the many contributors to Penguins: Natural History and Conservation (University of Washington Press, 2013), upon whose scholarship this report is based. Used by permission of the University of Washington Press The environmental science team would like to thank Dee Boersma, Pablo “Popi” Borboroglu, and Caroline Cappello for sharing their knowledge of penguins by writing and preparing this report.
    [Show full text]
  • Scottish Marine and Freshwater Science
    Scottish Marine and Freshwater Science Volume 5 Number 9 Strategic surveys of seabirds off the west coast of Lewis to determine use of seaspace in areas of potential marine renewable energy developments © Crown copyright 2014 Scottish Marine and Freshwater Science Vol 5 No 9 Strategic surveys of seabirds off the west coast of Lewis to determine use of seaspace in areas of potential marine renewable energy developments Published by Marine Scotland Science ISSN: 2043-7722 Marine Scotland is the directorate of the Scottish Government responsible for the integrated management of Scotland’s seas. Marine Scotland Science (formerly Fisheries Research Services) provides expert scientific and technical advice on marine and fisheries issues. Scottish Marine and Freshwater Science is a series of reports that publishes results of research and monitoring carried out by Marine Scotland Science. It also publishes the results of marine and freshwater scientific work that has been carried out for Marine Scotland under external commission. These reports are not subject to formal external peer-review. This report presents the results of marine and freshwater scientific work carried out for Marine Scotland under external commission. Copies of this report are available from the Marine Scotland website at www.scotland.gov.uk/marinescotland Wildfowl & Wetlands Trust (Consulting) Ltd and HiDef Aerial Survey Limited accept no responsibility or liability for any use which is made of this document other than by the Client for the purpose for which it was originally
    [Show full text]
  • SHORT NOTE Re-Laying Following Egg Failure by Common Diving
    240 Notornis, 2007, Vol. 54: 240-242 0029-4470 © The Ornithological Society of New Zealand, Inc. SHORT NOTE Re-laying following egg failure by common diving petrels (Pelecanoides urinatrix) GRAEME A. TAYLOR Research and Development Group, Department of Conservation, P.O. Box 10 420, Wellington 6143, New Zealand [email protected] COLIN M. MISKELLY Wellington Conservancy, Department of Conservation, P.O. Box 5086, Wellington 6145, New Zealand The c.130 species of albatrosses and petrels storm petrels (Oceanodroma furcata) where 2nd eggs (Procellariiformes) all lay a single egg during were laid an average of 3 weeks after removal of the each breeding attempt (Marchant & Higgins 1990; 1st egg (from a sample of 36 nests from which eggs Warham 1990). There are few documented instances were removed). In 1 nest, the same female laid a 3rd of members of the order laying a replacement egg egg after the 2nd egg was removed. Both members following egg failure, and all but 1 of these examples of the pair were marked at only 1 of the 29 nests has been from storm petrels (Hydrobatidae). where replacement eggs were laid so the parentage Boersma et al. (1980) reported 29 nests of fork-tailed of the replacement egg could not be confirmed, but at least 1 of the mates remained the same at a further 11 nests. Other examples of storm petrels apparently Received 8 July 2006; accepted 31 August 2006 re-laying following egg failure include: British storm Short Note 241 petrel (Hydrobates pelagicus), n = 2 (Gordon 1931; western coast of Auckland, North I, New Zealand, David 1957); Leach’s storm petrel (O.
    [Show full text]
  • The Present Status of the Great Black-Backed Gull on the Coast of Maine 1
    Vol.1945 62]] GROSS,Status ofGreat Black-backed Gull 241 97. Melospiza georgiana,SWAMP S•,Am•OW.--Fairly common summer resident. St. Anthony, May 28 to September 19. 98. Plectrophenaxnivalis nivalis, EAST•tN SNOWBtrNTXNG.--Common in migration. Occasionalwinter straggler. St. Anthony, March 27 to May 2; October 13 to November 11. Cape Batfid, October 10, 1943. LABRADOR NoTeS OF INTeReST 1. Ga•a $tellata,R•D-THROAT•D LOON.--lkigolet, September24, 1940 (spedmen). 2. Fulmarusglacialis glacialis, ATLANTIC FULMAR.--Batteau, September 21, 1940. 3. Histrionicushistrionicus histrionicus, EASTERN Iff•m,•Qtr•N Dtmx.•Square Island, July, 1940. Stuffed bird recently killed offered to me for sale. 4. Melanltta fusca deglandl,WHIT•-WXNGB• ScoT•R.--Rigolet, September 21, 1940 (•fty). 5. Melanitta perspicillata, Strm• ScoT•.--Lake Melville, September 15, 1940; September 21, 1940 (2000). 6. Mergus serrator, I•-B•AST• M•ANS•.--Lake Melville, September 16, 1940 (adults with young). 7. Arenaria interpres,R•or•¾ TtmNSTON•.--Oready, August 23, 1936; Seal Islands, September 12, 1940; Barteau, September 21, 1940. 8. Eroliafuscicollis, WmT•-•tnm,• SaNm'n,•R.--Indian Harbor, abundant summer resident. July 22, 1935, adults seen with young birds (I can find no record of the bird's breeding in Labrador). 9. Crocethiaalba, SAN•RLIN•.--Brador Bay, September 23, 1936 (Bttrge). 10. Hirundo rustica erythrogaster,B•mN SwALLOW.--Indian Harbor. One record, August 23, 1935. 11. Loxia Ieucopteraleucoptera, Wm•-WIN• C•osssmL.--Indian Harbor, August 7, 1935. Washington,D.C. THE PRESENT STATUS OF THE GREAT BLACK-BACKED GULL ON THE COAST OF MAINE 1 BY ALFRED O. GROSS Plates 12-15 Sx•c•the beginningof the presentcentury great changes have taken place in the populations of the sea birds inhabiting the Maine coast.
    [Show full text]
  • SYN Seabird Curricul
    Seabirds 2017 Pribilof School District Auk Ecological Oregon State Seabird Youth Network Pribilof School District Ram Papish Consulting University National Park Service Thalassa US Fish and Wildlife Service Oikonos NORTAC PB i www.seabirdyouth.org Elementary/Middle School Curriculum Table of Contents INTRODUCTION . 1 CURRICULUM OVERVIEW . 3 LESSON ONE Seabird Basics . 6 Activity 1.1 Seabird Characteristics . 12 Activity 1.2 Seabird Groups . 20 Activity 1.3 Seabirds of the Pribilofs . 24 Activity 1.4 Seabird Fact Sheet . 26 LESSON TWO Seabird Feeding . 31 Worksheet 2.1 Seabird Feeding . 40 Worksheet 2.2 Catching Food . 42 Worksheet 2.3 Chick Feeding . 44 Worksheet 2.4 Puffin Chick Feeding . 46 LESSON THREE Seabird Breeding . 50 Worksheet 3.1 Seabird Nesting Habitats . .5 . 9 LESSON FOUR Seabird Conservation . 63 Worksheet 4.1 Rat Maze . 72 Worksheet 4.2 Northern Fulmar Threats . 74 Worksheet 4.3 Northern Fulmars and Bycatch . 76 Worksheet 4.4 Northern Fulmars Habitat and Fishing . 78 LESSON FIVE Seabird Cultural Importance . 80 Activity 5.1 Seabird Cultural Importance . 87 LESSON SIX Seabird Research Tools and Methods . 88 Activity 6.1 Seabird Measuring . 102 Activity 6.2 Seabird Monitoring . 108 LESSON SEVEN Seabirds as Marine Indicators . 113 APPENDIX I Glossary . 119 APPENDIX II Educational Standards . 121 APPENDIX III Resources . 123 APPENDIX IV Science Fair Project Ideas . 130 ii www.seabirdyouth.org 1 INTRODUCTION 2017 Seabirds SEABIRDS A seabird is a bird that spends most of its life at sea. Despite a diversity of species, seabirds share similar characteristics. They are all adapted for a life at sea and they all must come to land to lay their eggs and raise their chicks.
    [Show full text]