Products With
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparative Evaluation of Dehydroepiandrosterone Sulfate
Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2016/12/01/dmd.116.072355.DC1 1521-009X/45/2/224–227$25.00 http://dx.doi.org/10.1124/dmd.116.072355 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 45:224–227, February 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics Short Communication Comparative Evaluation of Dehydroepiandrosterone Sulfate Potential to Predict Hepatic Organic Anion Transporting Polypeptide Transporter-Based Drug-Drug Interactions s Received July 4, 2016; accepted November 30, 2016 ABSTRACT Pharmacokinetic drug-drug interactions (DDIs) on hepatic organic 59 ml/rat. Comparison of the in vitro IC50 of rifampicin for DHEAS anion transporting polypeptides (OATPs) are important clinical issues. uptake by isolated rat hepatocytes and in vivo plasma rifampicin Previously, we reported that plasma dehydroepiandrosterone sulfate concentration suggested that the effect of rifampicin on the plasma Downloaded from (DHEAS) could serve as an endogenous probe to predict OATP-based DHEAS concentration was explained mostly by the inhibition of DDIs in monkeys using rifampicin as an OATP inhibitor. Since the hepatic OATPs, demonstrating that DHEAS could be a biomarker of contribution of hepatic OATPs to the changes in plasma DHEAS by hepatic OATP activity. Next, previously reported rifampicin-induced rifampicin remains unclear, however, we performed an in vivo phar- changes in plasma concentrations evaluated as an AUC ratio (AUCR) macokinetic study to explore this issue. Since plasma DHEAS of possible probe compounds were compared on the basis of concentrations were low in our rat model, the disposition of externally rifampicin dose/body surface area. -
ADME and Pharmacokinetic Properties of Remdesivir: Its Drug Interaction Potential
pharmaceuticals Review ADME and Pharmacokinetic Properties of Remdesivir: Its Drug Interaction Potential Subrata Deb * , Anthony Allen Reeves, Robert Hopefl and Rebecca Bejusca Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA; [email protected] (A.A.R.); [email protected] (R.H.); [email protected] (R.B.) * Correspondence: [email protected]; Tel.: +224-310-7870 Abstract: On 11 March 2020, the World Health Organization (WHO) classified the Coronavirus Disease 2019 (COVID-19) as a global pandemic, which tested healthcare systems, administrations, and treatment ingenuity across the world. COVID-19 is caused by the novel beta coronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Since the inception of the pandemic, treatment options have been either limited or ineffective. Remdesivir, a drug originally designed to be used for Ebola virus, has antiviral activity against SARS-CoV-2 and has been included in the COVID-19 treatment regimens. Remdesivir is an adenosine nucleotide analog prodrug that is metabolically activated to a nucleoside triphosphate metabolite (GS-443902). The active nucleoside triphosphate metabolite is incorporated into the SARS-CoV-2 RNA viral chains, preventing its replication. The lack of reported drug development and characterization studies with remdesivir in public domain has created a void where information on the absorption, distribution, metabolism, elimination (ADME) properties, pharmacokinetics (PK), or drug-drug interaction (DDI) is limited. By Citation: Deb, S.; Reeves, A.A.; understanding these properties, clinicians can prevent subtherapeutic and supratherapeutic levels of Hopefl, R.; Bejusca, R. ADME and remdesivir and thus avoid further complications in COVID-19 patients. Remdesivir is metabolized Pharmacokinetic Properties of by both cytochrome P450 (CYP) and non-CYP enzymes such as carboxylesterases. -
Sodium Prasterone Sulfate Hydrate Sodium Pyrosulfite
JP XVI Official Monographs / Sodium Pyrosulfite 1411 50 mL. Perform the test using this solution as the test solu- Sodium Prasterone Sulfate Hydrate tion. Prepare the control solution as follows: to 0.40 mL of 0.005 mol/L sulfuric acid VS add 20 mL of acetone, 1 mL of プラステロン硫酸エステルナトリウム水和物 dilute hydrochloric acid and water to make 50 mL (not more than 0.032z). (4) Heavy metals <1.07>—Proceed with 2.0 g of Sodium Prasterone Sulfate Hydrate according to Method 2, and per- form the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm). (5) Related substances—Dissolve 0.10 g of Sodium Prasterone Sulfate Hydrate in 10 mL of methanol, and use C19H27NaO5S.2H2O: 426.50 this solution as the sample solution. Pipet 1 mL of the sam- Monosodium 17-oxoandrost-5-en-3b-yl sulfate dihydrate ple solution, add methanol to make exactly 200 mL, and use [1099-87-2, anhydride] this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatogra- Sodium Prasterone Sulfate Hydrate contains not phy <2.03>. Spot 5 mL each of the sample solution and stand- less than 98.0z of sodium prasterone sulfate ard solution on a plate of silica gel with fluorescent indicator (C19H27NaO5S: 390.47), calculated on the dried basis. for thin-layer chromatography. Develop the plate with a mixture of chloroform, methanol and water (75:22:3) to a Description Sodium Prasterone Sulfate Hydrate occurs as distance of about 10 cm, and air-dry the plate. -
Reproductive DHEA-S
Reproductive DHEA-S Analyte Information - 1 - DHEA-S Introduction DHEA-S, DHEA sulfate or dehydroepiandrosterone sulfate, it is a metabolite of dehydroepiandrosterone (DHEA) resulting from the addition of a sulfate group. It is the sulfate form of aromatic C19 steroid with 10,13-dimethyl, 3-hydroxy group and 17-ketone. Its chemical name is 3β-hydroxy-5-androsten-17-one sulfate, its summary formula is C19H28O5S and its molecular weight (Mr) is 368.5 Da. The structural formula of DHEA-S is shown in (Fig.1). Fig.1: Structural formula of DHEA-S Other names used for DHEA-S include: Dehydroisoandrosterone sulfate, (3beta)-3- (sulfooxy), androst-5-en-17-one, 3beta-hydroxy-androst-5-en-17-one hydrogen sulfate, Prasterone sulfate and so on. As DHEA-S is very closely connected with DHEA, both hormones are mentioned together in the following text. Biosynthesis DHEA-S is the major C19 steroid and is a precursor in testosterone and estrogen biosynthesis. DHEA-S originates almost exclusively in the zona reticularis of the adrenal cortex (Fig.2). Some may be produced by the testes, none is produced by the ovaries. The adrenal gland is the sole source of this steroid in women, whereas in men the testes secrete 5% of DHEA-S and 10 – 20% of DHEA. The production of DHEA-S and DHEA is regulated by adrenocorticotropin (ACTH). Corticotropin-releasing hormone (CRH) and, to a lesser extent, arginine vasopressin (AVP) stimulate the release of adrenocorticotropin (ACTH) from the anterior pituitary gland (Fig.3). In turn, ACTH stimulates the adrenal cortex to secrete DHEA and DHEA-S, in addition to cortisol. -
Tuesday June 2 Wednesday June 3
Tuesday June 2 14:00- Registration 18:30 19:30 Welcome reception Wednesday June 3 08:00- Registration 09:00 09:00- Welcome and Introduction 09:15 09:15- Targeting Ebola Chair: Steven Kern 10:45 09:15- Conducting clinical trials in challenging Steven Kern 09:30 environments 09:30- France Estimating an effective dose for a repurposed 09:55 Mentré drug to treat Ebola: the case of favipiravir Estimating an effective dose for a new drug to 09:55- Matthias treat Ebola with incomplete information: the 10:20 Machacek case of Zmapp 10:20- An Adaptive Platform Trial for Ebola: Scott Berry 10:45 Application to Future Epidemics 10:45- Coffee break, Poster and Software session I 12:15 Posters in Group I (with poster numbers starting with I-) are accompanied by their presenter 12:15- Diabetes Chair: IñakiTrocóniz 12:55 Page | 1 12:15- Roberto A model of glucose clearance to improve the 12:35 Bizzotto description of glucose homeostasis A longitudinal HbA1c model elucidates genes 12:35- Rada Savic linked to disease progression on metformin 12:55 therapy 12:55- Lunch 14:25 On the 20th anniversary of 'Nonlinear 14:25- Chair: France models for repeated measurement 15:15 Mentré data' 14:25- David Why write a book in 1995 on nonlinear mixed 14:50 Giltinan effects modeling? 14:50- Marie Subsequent developments in nonlinear mixed 15:15 Davidian effects modeling 15:15- Tea break, Poster and Software session II 16:40 Posters in Group II (with poster numbers starting with II-) are accompanied by their presenter 16:40- Other diseases Chair: Ana Ruiz 17:40 José -
CAS Number Index
2334 CAS Number Index CAS # Page Name CAS # Page Name CAS # Page Name 50-00-0 905 Formaldehyde 56-81-5 967 Glycerol 61-90-5 1135 Leucine 50-02-2 596 Dexamethasone 56-85-9 963 Glutamine 62-44-2 1640 Phenacetin 50-06-6 1654 Phenobarbital 57-00-1 514 Creatine 62-46-4 1166 α-Lipoic acid 50-11-3 1288 Metharbital 57-22-7 2229 Vincristine 62-53-3 131 Aniline 50-12-4 1245 Mephenytoin 57-24-9 1950 Strychnine 62-73-7 626 Dichlorvos 50-23-7 1017 Hydrocortisone 57-27-2 1428 Morphine 63-05-8 127 Androstenedione 50-24-8 1739 Prednisolone 57-41-0 1672 Phenytoin 63-25-2 335 Carbaryl 50-29-3 569 DDT 57-42-1 1239 Meperidine 63-75-2 142 Arecoline 50-33-9 1666 Phenylbutazone 57-43-2 108 Amobarbital 64-04-0 1648 Phenethylamine 50-34-0 1770 Propantheline bromide 57-44-3 191 Barbital 64-13-1 1308 p-Methoxyamphetamine 50-35-1 2054 Thalidomide 57-47-6 1683 Physostigmine 64-17-5 784 Ethanol 50-36-2 497 Cocaine 57-53-4 1249 Meprobamate 64-18-6 909 Formic acid 50-37-3 1197 Lysergic acid diethylamide 57-55-6 1782 Propylene glycol 64-77-7 2104 Tolbutamide 50-44-2 1253 6-Mercaptopurine 57-66-9 1751 Probenecid 64-86-8 506 Colchicine 50-47-5 589 Desipramine 57-74-9 398 Chlordane 65-23-6 1802 Pyridoxine 50-48-6 103 Amitriptyline 57-92-1 1947 Streptomycin 65-29-2 931 Gallamine 50-49-7 1053 Imipramine 57-94-3 2179 Tubocurarine chloride 65-45-2 1888 Salicylamide 50-52-2 2071 Thioridazine 57-96-5 1966 Sulfinpyrazone 65-49-6 98 p-Aminosalicylic acid 50-53-3 426 Chlorpromazine 58-00-4 138 Apomorphine 66-76-2 632 Dicumarol 50-55-5 1841 Reserpine 58-05-9 1136 Leucovorin 66-79-5 -
Drug-Excipient Interaction and Its Importance in Dosage Form
Journal of Applied Pharmaceutical Science 01 (06); 2011: 66-71 ISSN: 2231-3354 Drug-excipient interacti on and its importance in Received: 29-07-2011 Revised on: 02-08-2011 Accepted: 04-08-2011 dosage form development Nishath Fathima, Tirunagari Mamatha, Husna Kanwal Qureshi, Nandagopal Anitha and Jangala Venkateswara Rao ABSTRACT Excipients are included in dosage forms to aid manufacture, administration or absorption. Although considered pharmacologically inert, excipients can initiate, propagate or participate in Nishath Fathima, Tirunagari chemical or physical interactions with drug compounds, which may compromise the effectiveness Mamatha, Husna Kanwal Qureshi, of a medication. Exicipients are not exquisitely pure. Even for the most commonly used excipients, Nandagopal Anitha and Jangala it is necessary to understand the context of their manufacture in order to identify potential active pharmaceutical ingredients interactions with trace components. Chemical interactions can lead to Venkateswara Rao Sultan-Ul-Uloom College of Pharmacy, degradation of the active ingredient, thereby reducing the amount available for therapeutic effect. Physical interactions can affect rate of dissolution, uniformity of dose or ease of administration. Banjara Hills, Hyderabad - 500034, A.P., India. Key words: Excipient, Drug, Interaction, Physical, Chemical. INTRODUCTION Pharmaceutical dosage form is a combination of active pharmaceutical ingredients (API) and excipients. Excipients are included in dosage forms to aid manufacture, administration or absorption (Crowley and Martini).The ideal excipients must be able to fulfill the important functions i.e. dose, stability and release of API from the formulation. Although considered pharmacologically inert, excipients can initiate, propagate or participate in chemical or physical interactions with drug compounds, which may compromise the effectiveness of a medication. -
Current Therapeutic Applications and Pharmacokinetic Modulations of Ivermectin
Veterinary World, EISSN: 2231-0916 REVIEW ARTICLE Available at www.veterinaryworld.org/Vol.12/August-2019/5.pdf Open Access Current therapeutic applications and pharmacokinetic modulations of ivermectin Khan Sharun1, T. S. Shyamkumar2, V. A. Aneesha2, Kuldeep Dhama3, Abhijit Motiram Pawde1 and Amar Pal1 1. Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India; 2. Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India; 3. Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India. Corresponding author: Khan Sharun, e-mail: [email protected] Co-authors: TSS: [email protected], VAA: [email protected], KD: [email protected], AMP: [email protected], AP: [email protected] Received: 17-05-2019, Accepted: 29-06-2019, Published online: 08-08-2019 doi: 10.14202/vetworld.2019.1204-1211 How to cite this article: Sharun K, Shyamkumar TS, Aneesha VA, Dhama K, Pawde AM, Pal A (2019) Current therapeutic applications and pharmacokinetic modulations of ivermectin, Veterinary World, 12(8): 1204-1211. Abstract Ivermectin is considered to be a wonder drug due to its broad-spectrum antiparasitic activity against both ectoparasites and endoparasites (under class of endectocide) and has multiple applications in both veterinary and human medicine. In particular, ivermectin is commonly used in the treatment of different kinds of infections and infestations. By altering the vehicles used in the formulations, the pharmacokinetic properties of different ivermectin preparations can be altered. Since its development, various vehicles have been evaluated to assess the efficacy, safety, and therapeutic systemic concentrations of ivermectin in different species. A subcutaneous route of administration is preferred over a topical or an oral route for ivermectin due to superior bioavailability. -
Parasitology Group Annual Review of Literature and Horizon Scanning Report 2018
APHA Parasitology Group Annual Review of Literature and Horizon Scanning Report 2018 Published: November 2019 November 2019 © Crown copyright 2018 You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v.3. To view this licence visit www.nationalarchives.gov.uk/doc/open-government-licence/version/3/ or email [email protected] This publication is available at www.gov.uk/government/publications Any enquiries regarding this publication should be sent to us at [email protected] Year of publication: 2019 The Animal and Plant Health Agency (APHA) is an executive agency of the Department for Environment, Food & Rural Affairs, and also works on behalf of the Scottish Government and Welsh Government. November 2019 Contents Summary ............................................................................................................................. 1 Fasciola hepatica ............................................................................................................. 1 Rumen fluke (Calicophoron daubneyi) ............................................................................. 2 Parasitic gastro-enteritis (PGE) ........................................................................................ 2 Anthelmintic resistance .................................................................................................... 4 Cestodes ......................................................................................................................... -
Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG . -
APHA Parasitology Group: Annual Review of Literature and Horizon Scanning Report 2018
APHA Parasitology Group Annual Review of Literature and Horizon Scanning Report 2018 Published: November 2019 November 2019 © Crown copyright 2019 You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v.3. To view this licence visit www.nationalarchives.gov.uk/doc/open-government-licence/version/3/ or email [email protected] This publication is available at www.gov.uk/government/publications Any enquiries regarding this publication should be sent to us at [email protected] Year of publication: 2019 The Animal and Plant Health Agency (APHA) is an executive agency of the Department for Environment, Food & Rural Affairs, and also works on behalf of the Scottish Government and Welsh Government. October 2018 Contents Summary ............................................................................................................................. 1 Fasciola hepatica ............................................................................................................. 1 Rumen fluke (Calicophoron daubneyi) ............................................................................. 2 Parasitic gastro-enteritis (PGE) ........................................................................................ 2 Anthelmintic resistance .................................................................................................... 4 Cestodes ......................................................................................................................... -
The New Anthelmintic Tribendimidine Is an L-Type (Levamisole and Pyrantel) Nicotinic Acetylcholine Receptor Agonist
The New Anthelmintic Tribendimidine is an L-type (Levamisole and Pyrantel) Nicotinic Acetylcholine Receptor Agonist Yan Hu1, Shu-Hua Xiao2, Raffi V. Aroian1* 1 Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America, 2 National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China Abstract Background: Intestinal parasitic nematodes such as hookworms, Ascaris lumbricoides, and Trichuris trichiura are amongst most prevalent tropical parasites in the world today. Although these parasites cause a tremendous disease burden, we have very few anthelmintic drugs with which to treat them. In the past three decades only one new anthelmintic, tribendimidine, has been developed and taken into human clinical trials. Studies show that tribendimidine is safe and has good clinical activity against Ascaris and hookworms. However, little is known about its mechanism of action and potential resistance pathway(s). Such information is important for preventing, detecting, and managing resistance, for safety considerations, and for knowing how to combine tribendimidine with other anthelmintics. Methodology/Principal Findings: To investigate how tribendimidine works and how resistance to it might develop, we turned to the genetically tractable nematode, Caenorhabditis elegans. When exposed to tribendimidine, C. elegans hermaphrodites undergo a near immediate loss of motility; longer exposure results in extensive body damage, developmental arrest, reductions in fecundity, and/or death. We performed a forward genetic screen for tribendimidine- resistant mutants and obtained ten resistant alleles that fall into four complementation groups. Intoxication assays, complementation tests, genetic mapping experiments, and sequencing of nucleic acids indicate tribendimidine-resistant mutants are resistant also to levamisole and pyrantel and alter the same genes that mutate to levamisole resistance.