March 2020 Advanced Public Forum Brief

Total Page:16

File Type:pdf, Size:1020Kb

March 2020 Advanced Public Forum Brief MARCH 2020 ADVANCED PUBLIC FORUM BRIEF National Speech & Debate Association • updated 3/13/2020 March 2020 Advanced Public Forum Brief 2 Resolved: The United States should increase its use of nuclear energy for commercial energy production This topic brief was written by Jesse Meyer. Jesse is a diamond coach, recipient of the Donald Crabtree Service Award, the state of Iowa’s 2015 Coach of the Year, member of the TOC’s PF advisory board, and board member of the Iowa Forensics League. He is currently an assistant coach at Iowa City West High School. He can be reached at [email protected]. National Speech & Debate Association • Public Forum Debate: MARCH 2020 ADVANCED BRIEF March 2020 Advanced Public Forum Brief 3 Table of Contents Contents Resolved: The United States should increase its use of nuclear energy for commercial energy production ....................................................................................................................................................................... 2 Table of Contents ....................................................................................................................................... 3 Introduction ............................................................................................................................................... 5 Definitions and Framework ....................................................................................................................... 7 Framework ............................................................................................................................................. 8 Definitions ............................................................................................................................................ 10 Environment ................................................................................................................................................ 12 Sample Evidence .................................................................................................................................. 13 Further Reading ................................................................................................................................... 15 Proliferation ............................................................................................................................................. 16 Sample Evidence .................................................................................................................................. 18 Further Reading ................................................................................................................................... 21 Mining ...................................................................................................................................................... 22 Sample Evidence .................................................................................................................................. 23 Further Reading ................................................................................................................................... 25 Waste Disposal......................................................................................................................................... 26 Further Reading ................................................................................................................................... 27 Terrorism ................................................................................................................................................. 28 Sample Evidence .................................................................................................................................. 29 Further Reading ................................................................................................................................... 30 Economics ................................................................................................................................................ 31 Sample Evidence .................................................................................................................................. 32 Further Reading ................................................................................................................................... 34 th 4 Generation Reactors ........................................................................................................................... 35 Sample Evidence .................................................................................................................................. 38 Further Reading ................................................................................................................................... 40 Nuclear Renaissance ................................................................................................................................ 41 Sample Evidence .................................................................................................................................. 42 National Speech & Debate Association • Public Forum Debate: MARCH 2020 ADVANCED BRIEF March 2020 Advanced Public Forum Brief 4 Further Reading ................................................................................................................................... 43 Accidents .................................................................................................................................................. 44 Sample Evidence .................................................................................................................................. 46 Further Reading ................................................................................................................................... 48 Conclusion ................................................................................................................................................ 49 National Speech & Debate Association • Public Forum Debate: MARCH 2020 ADVANCED BRIEF March 2020 Advanced Public Forum Brief 5 Introduction The concept of radioactivity was discovered by scientists and husband and wife Pierre and Marie Curie in 1898. During an experiment a substance that was created by the processing of inert elements created the element Radium. This element emitted a huge amount of radiation over time and slowly poisoned the Currie’s. Shortly after their deaths, scientists saw the potential behind the idea of radioactive elements in both energy production and potentially weaponization. However, dur to the times, ideas had moved faster than science and technology and all attempts at this failed. The dream of radioactive energy fueled many a science fiction writer. In 1914, HG. Wells, was inspired to write the alien weapons in his book, War of the Worlds, off of the potential destructive power of atomic energy. In 1924. Winston Churchill wrote a speculative policy on the political implication of atomic weapons. In 1933, Adolf Hitler rose to power in Germany. His desire to create a third Reich that spanned the globe, he determined that a weapon of immense power would be needed to overcome the resource disadvantage of the German empire. Fearing what he might make them construct, Jewish and other German scientists fled the nation and settled in London and the United States. It was through this migration that Leó Szilárd fled to London where he proposed, and in 1934 patented, the idea of a nuclear chain reaction via neutrons. In August 1939, Albert Einstein wrote a letter to U.S. President Franklin D. Roosevelt warning him concerned that Germany might have its own project to develop fission-based weapons. Roosevelt responded by setting up the Uranium Committee, It was only after the attack on Peral Harbor that Roosevelt took things seriously. Roosevelt appointed Robert Oppenheimer to head up the group of scientists whose soul job was to develop atomic weapons into something that can be used the allies before the NAZI’s. This project was called the “Manhattan Project.” With headquarters at Oak Ridge and Los Alamos, the Americans began their work. During this time, the United Kingdom was read into the file, but the USSR was not. Oak Ridge processed the uranium into workable nuclear material and Los Alamos constructed the weapon. At this point, the development of nuclear energy split from nuclear weapons. Although nuclear reactors were necessary in the production of weapons grade nuclear material for the bomb, the waste heat created by the processing and radioactivity posed a huge problem for scientists. After some thinking, scientists determined that the radioactivity could be cooled with water. The steam produced by the boiling water could then be channeled into a turbine and used to power a huge generator. Soon, scientists were using this generator to power the laboratory and the bases on which the generators were constructed. As nuclear weapons development took off in the days after World War II< more and more nuclear material was National Speech & Debate Association • Public Forum Debate: MARCH 2020 ADVANCED BRIEF March 2020 Advanced Public Forum Brief 6 needed, and thus more and more nuclear power plants were built to process the fuel. By the time you reach the late 1950’s, nuclear power plants were being constructed across the United States. They were touted as a means for cheap and clean electricity. News agencies hyped the power as the “wave of the future” and
Recommended publications
  • Nuclear Renaissance by Jone-Lin Wang and Christopher J
    Revisiting Nuclear Renaissance by Jone-Lin Wang and Christopher J. Hansen Critical milestones in the first wave of new nuclear development in the USA may prove decisive. overnments and businesses around the globe have countries — China, India, Japan, South Korea and the moved beyond talking to real action to renew USA. Gdevelopment of nuclear power, and have created good prospects for a major nuclear expansion over the com- In the USA, several dozen reactors are in various stages of ing decades. Over the past few years, high fossil fuel prices, proposal development, while international nuclear vendors energy security and climate change concerns and increas- and service providers are forming new alliances. Finally, ing urgency about reducing greenhouse gas (GHG) emis- rising uranium prices have led to development of new sions have all converged to improve the position of nuclear mines. power relative to other options. However, critical milestones in the first wave of new In the USA, where no new reactor has been ordered in 28 nuclear development will provide insights into whether and years, these trends, plus excellent performance of the exist- how well new nuclear development is proceeding. Such key ing nuclear fleet and financial incentives in the Energy near-term milestones are: Policy Act of 2005, have led to a race to develop new nuclear power reactors. In Asia, where the building of new nuclear v Late 2007–2008 — Submission of construction and plants never stopped, several countries have recently upped operation license (COL) applications; their target for new nuclear capacity. In Western Europe, a new reactor is under construction for the first time in more v 2007-2008 — Ordering long lead-time items such as than a decade, and a second one is not far behind.
    [Show full text]
  • Report: the New Nuclear Arms Race
    The New Nuclear Arms Race The Outlook for Avoiding Catastrophe August 2020 By Akshai Vikram Akshai Vikram is the Roger L. Hale Fellow at Ploughshares Fund, where he focuses on U.S. nuclear policy. A native of Louisville, Kentucky, Akshai previously worked as an opposition researcher for the Democratic National Committee and a campaign staffer for the Kentucky Democratic Party. He has written on U.S. nuclear policy and U.S.-Iran relations for outlets such as Inkstick Media, The National Interest, Defense One, and the Quincy Institute’s Responsible Statecraft. Akshai holds an M.A. in International Economics and American Foreign Policy from the Johns Hopkins University SAIS as well as a B.A. in International Studies and Political Science from Johns Hopkins Baltimore. On a good day, he speaks Spanish, French, and Persian proficiently. Acknowledgements This report was made possible by the strong support I received from the entire Ploughshares Fund network throughout my fellowship. Ploughshares Fund alumni Will Saetren, Geoff Wilson, and Catherine Killough were extremely kind in offering early advice on the report. From the Washington, D.C. office, Mary Kaszynski and Zack Brown offered many helpful edits and suggestions, while Joe Cirincione, Michelle Dover, and John Carl Baker provided much- needed encouragement and support throughout the process. From the San Francisco office, Will Lowry, Derek Zender, and Delfin Vigil were The New Nuclear Arms Race instrumental in finalizing this report. I would like to thank each and every one of them for their help. I would especially like to thank Tom Collina. Tom reviewed numerous drafts of this report, never The Outlook for Avoiding running out of patience or constructive advice.
    [Show full text]
  • Table 2.Iii.1. Fissionable Isotopes1
    FISSIONABLE ISOTOPES Charles P. Blair Last revised: 2012 “While several isotopes are theoretically fissionable, RANNSAD defines fissionable isotopes as either uranium-233 or 235; plutonium 238, 239, 240, 241, or 242, or Americium-241. See, Ackerman, Asal, Bale, Blair and Rethemeyer, Anatomizing Radiological and Nuclear Non-State Adversaries: Identifying the Adversary, p. 99-101, footnote #10, TABLE 2.III.1. FISSIONABLE ISOTOPES1 Isotope Availability Possible Fission Bare Critical Weapon-types mass2 Uranium-233 MEDIUM: DOE reportedly stores Gun-type or implosion-type 15 kg more than one metric ton of U- 233.3 Uranium-235 HIGH: As of 2007, 1700 metric Gun-type or implosion-type 50 kg tons of HEU existed globally, in both civilian and military stocks.4 Plutonium- HIGH: A separated global stock of Implosion 10 kg 238 plutonium, both civilian and military, of over 500 tons.5 Implosion 10 kg Plutonium- Produced in military and civilian 239 reactor fuels. Typically, reactor Plutonium- grade plutonium (RGP) consists Implosion 40 kg 240 of roughly 60 percent plutonium- Plutonium- 239, 25 percent plutonium-240, Implosion 10-13 kg nine percent plutonium-241, five 241 percent plutonium-242 and one Plutonium- percent plutonium-2386 (these Implosion 89 -100 kg 242 percentages are influenced by how long the fuel is irradiated in the reactor).7 1 This table is drawn, in part, from Charles P. Blair, “Jihadists and Nuclear Weapons,” in Gary A. Ackerman and Jeremy Tamsett, ed., Jihadists and Weapons of Mass Destruction: A Growing Threat (New York: Taylor and Francis, 2009), pp. 196-197. See also, David Albright N 2 “Bare critical mass” refers to the absence of an initiator or a reflector.
    [Show full text]
  • The Nuclear Waste Primer September 2016 What Is Nuclear Waste?
    The Nuclear Waste Primer September 2016 What is Nuclear Waste? Nuclear waste is the catch-all term for anything contaminated with radioactive material. Nuclear waste can be broadly divided into three categories: • Low-level waste (LLW), comprised of protective clothing, medical waste, and other lightly-contaminated items • Transuranic waste (TRU), comprised of long-lived isotopes heavier than uranium • High-level waste (HLW), comprised of spent nuclear fuel and other highly-radioactive materials Low-level waste is relatively short-lived and easy to handle. Currently, four locations for LLW disposal exist in the United States. Two of them, Energy Solutions in Clive, Utah and Waste Control Specialists in Andrews, Texas, accept waste from any U.S. state. Transuranic waste is often a byproduct of nuclear weapons production and contains long-lived radioactive elements heavier than uranium, like plutonium and americium. Currently, the U.S. stores TRU waste at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. High-level waste includes spent nuclear fuel and the most radioactive materials produced by nuclear weapons production. Yucca Mountain is the currently designated high-level waste repository for the United States. 1 | What is Spent Nuclear Fuel? Spent nuclear fuel (SNF), alternatively referred to as used nuclear fuel, is the primary byproduct of nuclear reactors. In commercial power reactors in the U.S., fuel begins as uranium oxide clad in a thin layer of zirconium-aluminum cladding. After several years inside of the reactor, around fi ve percent of the uranium has been converted in some way, ranging from short-lived and highly radioactive fi ssion products to long-lived actinides like plutonium, americium, and neptunium.
    [Show full text]
  • Scotland, Nuclear Energy Policy and Independence Raphael J. Heffron
    Scotland, Nuclear Energy Policy and Independence EPRG Working Paper 1407 Cambridge Working Paper in Economics 1457 Raphael J. Heffron and William J. Nuttall Abstract This paper examines the role of nuclear energy in Scotland, and the concerns for Scotland as it votes for independence. The aim is to focus directly on current Scottish energy policy and its relationship to nuclear energy. The paper does not purport to advise on a vote for or against Scottish independence but aims to further the debate in an underexplored area of energy policy that will be of value whether Scotland secures independence or further devolution. There are four central parts to this paper: (1) consideration of the Scottish electricity mix; (2) an analysis of a statement about nuclear energy made by the Scottish energy minister; (3) examination of nuclear energy issues as presented in the Scottish Independence White Paper; and (4) the issue of nuclear waste is assessed. A recurrent theme in the analysis is that whether one is for, against, or indifferent to new nuclear energy development, it highlights a major gap in Scotland’s energy and environmental policy goals. Too often, the energy policy debate from the Scottish Government perspective has been reduced to a low-carbon energy development debate between nuclear energy and renewable energy. There is little reflection on how to reduce Scottish dependency on fossil fuels. For Scotland to aspire to being a low-carbon economy, to decarbonising its electricity market, and to being a leader within the climate change community, it needs to tackle the issue of how to stop the continuation of burning fossil fuels.
    [Show full text]
  • IAEA Guidelines and Formatting Rules for Papers for Proceeding
    Interactive Computer Codes for Education and Training on Nuclear Safety and Radioprotection Francisco leszczynski∗ RA-6 Division, Nuclear Engineering Unit, Bariloche Atomic Center, CNEA, Av.E.Bustillo 8500, S.C.de Bariloche, RN, Argentina Abstract. Two interactive computer codes for education and training on nuclear safety and radioprotection developed at RA6 Reactor Division-Bariloche Atomic Center-CNEA are presented on this paper. The first code named SIMREACT has been developed in order to simulate the control of a research nuclear reactor in real time with a simple but accurate approach. The code solves the equations of neutron punctual kinetics with time variable reactivity. Utilizing the timer of the computer and the controls of a PC keyboard, with an adequate graphic interface, a simulation in real time of the temporal behavior of a research reactor is obtained. The reactivity can be changed by means of the extraction or insertion of control rods. It was implemented also the simulation of automatic pilot and scram. The use of this code is focalized on practices of nuclear reactor control like start-up from the subcritical state with external source up to power to a desired level, change of power level, calibration of a control rod with different methods, and approach to critical condition by interpolation of the answer in function of reactivity. The second code named LICEN has been developed in order to help the studies of all the topics included in examination programs for obtaining licenses for research reactor operators and radioprotection officials. Using the PC mouse, with an adequate graphic interface, the student can gradually learn the topics related with general and special licenses.
    [Show full text]
  • 小型飛翔体/海外 [Format 2] Technical Catalog Category
    小型飛翔体/海外 [Format 2] Technical Catalog Category Airborne contamination sensor Title Depth Evaluation of Entrained Products (DEEP) Proposed by Create Technologies Ltd & Costain Group PLC 1.DEEP is a sensor analysis software for analysing contamination. DEEP can distinguish between surface contamination and internal / absorbed contamination. The software measures contamination depth by analysing distortions in the gamma spectrum. The method can be applied to data gathered using any spectrometer. Because DEEP provides a means of discriminating surface contamination from other radiation sources, DEEP can be used to provide an estimate of surface contamination without physical sampling. DEEP is a real-time method which enables the user to generate a large number of rapid contamination assessments- this data is complementary to physical samples, providing a sound basis for extrapolation from point samples. It also helps identify anomalies enabling targeted sampling startegies. DEEP is compatible with small airborne spectrometer/ processor combinations, such as that proposed by the ARM-U project – please refer to the ARM-U proposal for more details of the air vehicle. Figure 1: DEEP system core components are small, light, low power and can be integrated via USB, serial or Ethernet interfaces. 小型飛翔体/海外 Figure 2: DEEP prototype software 2.Past experience (plants in Japan, overseas plant, applications in other industries, etc) Create technologies is a specialist R&D firm with a focus on imaging and sensing in the nuclear industry. Createc has developed and delivered several novel nuclear technologies, including the N-Visage gamma camera system. Costainis a leading UK construction and civil engineering firm with almost 150 years of history.
    [Show full text]
  • Images of Nuclear Energy: Why People Feel the Way They Do Emotions and Ideas Are More Deeply Rooted Than Realized
    SPECIAL REPORT Images of nuclear energy: Why people feel the way they do Emotions and ideas are more deeply rooted than realized by ^/ontroversy over nuclear energy, both bombs anxiety and anger. Even among pro-nuclear Spencer R. Weart and reactors, has been exceptionally durable and people, beneath the controlled language, there is violent, exciting more emotion and public a lot of anxiety, a lot of anger. And why not? protest than any other technology. A main reason After all, everyone has heard that nuclear is that during the 20th century, nuclear energy weapons can blow up the world — or maybe gradually became a condensed symbol for many deter those who would blow it up. With nuclear features of industrial and bureucratic authority reactors, too, everyone agrees they are immense- (especially the horrors of modern war). ly important. They will save us from the global Propagandists found nuclear energy a useful disasters of the Greenhouse Effect — or perhaps symbol because it had become associated with they will poison all our posterity. potent images: not only weapons, but also un- Most of us take for granted these intensely canny scientists with mysterious rays' and mutant emotional ideas; we suppose the ideas flow from monsters; technological Utopia or universal the nature of the bombs and reactors themselves. doom; and even spiritual degradation or rebirth. But I have come to feel uneasy about this over These images had archaic connections stretching the years doing historical research on nuclear back to alchemical visions of transmutation. energy. The fact is, emotions came first, and the Decades before fission was discovered, the im- powerful devices themselves came later.
    [Show full text]
  • Joonhong Ahn · Cathryn Carson Mikael Jensen · Kohta Juraku Shinya Nagasaki · Satoru Tanaka Editors
    Joonhong Ahn · Cathryn Carson Mikael Jensen · Kohta Juraku Shinya Nagasaki · Satoru Tanaka Editors Reflections on the Fukushima Daiichi Nuclear Accident Toward Social-Scientific Literacy and Engineering Resilience Reflections on the Fukushima Daiichi Nuclear Accident Joonhong Ahn · Cathryn Carson · Mikael Jensen Kohta Juraku · Shinya Nagasaki · Satoru Tanaka Editors Reflections on the Fukushima Daiichi Nuclear Accident Toward Social-Scientific Literacy and Engineering Resilience Editors Joonhong Ahn Shinya Nagasaki Department of Nuclear Engineering McMaster University University of California Hamilton, ON Berkeley, CA Canada USA Satoru Tanaka Cathryn Carson Department of Nuclear Engineering Department of History and Management University of California University of Tokyo Berkeley, CA Bunkyo-ku USA Japan Mikael Jensen Sundbyberg Sweden Kohta Juraku Department of Humanities and Social Sciences Tokyo Denki University Adachi-ku, Tokyo Japan ISBN 978-3-319-12089-8 ISBN 978-3-319-12090-4 (eBook) DOI 10.1007/978-3-319-12090-4 Library of Congress Control Number: 2014956647 Springer Cham Heidelberg New York Dordrecht London © The Editor(s) (if applicable) and The Author(s) 2015. The book is published with open access at SpringerLink.com. Open Access This book is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. All commercial rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
    [Show full text]
  • Nuclear Power Reactors in California
    Nuclear Power Reactors in California As of mid-2012, California had one operating nuclear power plant, the Diablo Canyon Nuclear Power Plant near San Luis Obispo. Pacific Gas and Electric Company (PG&E) owns the Diablo Canyon Nuclear Power Plant, which consists of two units. Unit 1 is a 1,073 megawatt (MW) Pressurized Water Reactor (PWR) which began commercial operation in May 1985, while Unit 2 is a 1,087 MW PWR, which began commercial operation in March 1986. Diablo Canyon's operation license expires in 2024 and 2025 respectively. California currently hosts three commercial nuclear power facilities in various stages of decommissioning.1 Under all NRC operating licenses, once a nuclear plant ceases reactor operations, it must be decommissioned. Decommissioning is defined by federal regulation (10 CFR 50.2) as the safe removal of a facility from service along with the reduction of residual radioactivity to a level that permits termination of the NRC operating license. In preparation for a plant’s eventual decommissioning, all nuclear plant owners must maintain trust funds while the plants are in operation to ensure sufficient amounts will be available to decommission their facilities and manage the spent nuclear fuel.2 Spent fuel can either be reprocessed to recover usable uranium and plutonium, or it can be managed as a waste for long-term ultimate disposal. Since fuel re-processing is not commercially available in the United States, spent fuel is typically being held in temporary storage at reactor sites until a permanent long-term waste disposal option becomes available.3 In 1976, the state of California placed a moratorium on the construction and licensing of new nuclear fission reactors until the federal government implements a solution to radioactive waste disposal.
    [Show full text]
  • Dear President Obama
    OPEN LETTER TO PRESIDENT OBAMA FROM U.S. ORGANIZATIONS Mr. President: It’s time to move from talk to action on nuclear disarmament. April 28, 2014 Dear President Obama, During the closing session of the Nuclear Security Summit in The Hague on March 25, 2014, you cited a number of concrete measures to secure highly-enriched uranium and plutonium and strengthen the nuclear nonproliferation regime that have been implemented as a result of the three Nuclear Security Summits, concluding: “So what’s been valuable about this summit is that it has not just been talk, it’s been action.” Would that you would apply the same standard to nuclear disarmament! On April 5, 2009 in Prague, you gave millions of people around the world new hope when you declared: “So today, I state clearly and with conviction America’s commitment to seek the peace and security of a world without nuclear weapons.” Bolstered by that hope, over the past three years, there has been a new round of nuclear disarmament initiatives by governments not possessing nuclear weapons, both within and outside the United Nations. Yet the United States has been notably “missing in action” at best, and dismissive or obstructive at worst. This conflict may come to a head at the 2015 Review of the Nuclear Nonproliferation Treaty (NPT). We write now, on the eve of the third Preparatory Committee (PrepCom) meeting for the 2015 Review Conference of the NPT, which will take place at UN headquarters in New York April 28 – May 9, 2014, to underscore our plea that your administration shed its negative attitude and participate constructively in deliberations and negotiations regarding the creation of a multilateral process to achieve a nuclear weapons free world.
    [Show full text]
  • Fuel Geometry Options for a Moderated Low-Enriched Uranium Kilowatt-Class Space Nuclear Reactor T ⁎ Leonardo De Holanda Mencarinia,B,Jeffrey C
    Nuclear Engineering and Design 340 (2018) 122–132 Contents lists available at ScienceDirect Nuclear Engineering and Design journal homepage: www.elsevier.com/locate/nucengdes Fuel geometry options for a moderated low-enriched uranium kilowatt-class space nuclear reactor T ⁎ Leonardo de Holanda Mencarinia,b,Jeffrey C. Kinga, a Nuclear Science and Engineering Program, Colorado School of Mines (CSM), 1500 Illinois St, Hill Hall, 80401 Golden, CO, USA b Subdivisão de Dados Nucleares - Instituto de Estudos Avançados (IEAv), Trevo Coronel Aviador José Alberto Albano do Amarante, n 1, 12228-001 São José dos Campos, SP, Brazil ABSTRACT A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel and could be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. The HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) serves as a basis for a similar reactor fueled with LEU fuel. Based on MCNP6™ neutronics performance estimates, the size of a 5 kWe reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core in four different configurations (a homogeneous fuel/moderator mixture and spherical, disc, and helical fuel geometries) to reduce the mass of uranium required to produce the same excess reactivity, decreasing the size of the reactor. The lowest mass reactor with a given moderator represents a balance between the reflector thickness and core diameter needed to maintain the multiplication factor equal to 1.035, with a H/D ratio of 1.81.
    [Show full text]