Short Title: Three New Ascomycetes

Total Page:16

File Type:pdf, Size:1020Kb

Short Title: Three New Ascomycetes In Press at Mycologia, preliminary version published on June 8, 2012 as doi:10.3852/11-430 Short title: Three new ascomycetes Three new ascomycetes from freshwater in China Dian-Ming Hu State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China International Fungal Research & Development Center, the Research Institute of Resource Insects, Chinese Academy of Forestry, Bailongsi, Kunming 650224, China Lei Cai1 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China Kevin D. Hyde1 International Fungal Research & Development Center, the Research Institute of Resource Insects, Chinese Academy of Forestry, Bailongsi, Kunming 650224, China, and Institute of Excellence in Fungal Research and School of Science, Mae Fah Luang University, Chiang Rai, Thailand. Abstract: Three new freshwater ascomycetes, Diaporthe aquatica sp. nov. (Diaporthaceae), Ophioceras aquaticus sp. nov. (Magnaporthaceae) and Togninia aquatica sp. nov. (Togniniaceae), are described and illustrated based on morphological and molecular data (ITS, 18S, 28S rDNA sequences). Diaporthe aquatica is characterized by globose to subglobose, black ascomata with long necks, broadly cylindrical to obclavate asci, and small, ellipsoidal to fusiform, one-septate, hyaline ascospores; it is unusual among Diaporthe species in the fact that it lacks a stroma and has freshwater habitat. Ophioceras aquaticus is characterized by globose ascomata with a long beak, cylindrical, eight-spored asci with J- subapical rings and 3–5-septate filiform ascospores with slightly acute ends. Togninia aquatica is Copyright 2012 by The Mycological Society of America. characterized by globose ascomata with long necks, clavate and truncate asci clustered on distinct ascogenous hyphae, and small, reniform, hyaline ascospores. Differences among the new taxa and similar species are discussed. Key words: aquatic fungi, Diaporthaceae, Magnaporthaceae, systematics, Togniniaceae INTRODUCTION Freshwater ascomycetes are a highly diverse group of fungi, which mainly include Eurotiales (25 spp.), Halosphaeriales (24 spp.), Helotiales (101 spp.), Hypocreales (14 spp.), Pleosporales (121 spp.), Sordariales (114 spp.) and Xylariales (19 spp.) (Shearer et al. 2007). The taxonomic affinities of many other freshwater fungal taxa are unclear. For example, Annulatascaceae (Sordariomycetidae) is a typical freshwater family, with 75 estimated species belonging to 21 genera (Kirk et al. 2008, Lumbsch and Huhndorf 2010), but its ordinal placement is unclear. It is difficult to determine phylogenetic relationships among freshwater taxa based solely on morphology (Shearer et al. 2009); therefore, molecular phylogenetic studies are critical to an understanding of freshwater fungi. During our investigation of freshwater fungi in China (Cai et al. 2008; Cai and Hyde 2007; Hu et al. 2007, 2010a, b), we collected two taxa belonging to Diaporthales and another taxon belonging to Magnaporthaceae. Morphological comparisons and molecular analyses suggested that these are new taxa of Diaporthe Nitschke, Togninia Berl. and Ophioceras Sacc. Eight species and three genera of Diaporthales have been reported from freshwater habitats. Ho et al. (2001) reported Diaporthe beckhausii Nitschke, Gnomoniella rubicola Pass. and G. microspora M. Monod in streams in Hong Kong, Brunei and Malaysia respectively. Gnomonia petiolorum (Schwein.) Cooke and G. papuana Sivan. & D.E. Shaw were reported from freshwater habitats in USA (Fallah and Shearer 2001) and Papua New Guinea (Sivanesan and Shaw 1977). Jobellisia viridifusca K.M. Tsui & K.D. Hyde and J. luteola (Ellis & Everh.) M.E. Barr were reported in Hong Kong (Ranghoo et al. 2001) and USA (Raja et al. 2009). Thailandiomyces Pinruan, Sakayaroj, K.D. Hyde & E.B.G. Jones and Phruensis Pinruan are new genera reported from freshwater habitats in Thailand (Jones et al. 2008, Pinruan et al. 2004) and Hyalorostratum Raja & Shearer was reported as a new genus from freshwater habitats in the USA (Raja et al. 2010). Nineteen Magnaporthaceae species, including nine Ophioceras, have been reported from freshwater (Shearer and Raja 2010). MATERIALS AND METHODS Sample collection and specimen examination.—Unidentified submerged wood from streams, lakes, ponds, reservoirs and ditches were collected in southern China and incubated in moist chambers at room temperature (ca. 25 C). Samples were examined for fungal fruiting bodies under a dissecting microscope (Leica MZ16A). Observations and photographs were prepared from materials mounted in water and examined with a compound microscope (Nikon E800) (Hu et al. 2012). The single-spore isolation method outlined by Chomnunti et al. (2011) was used to obtain pure cultures with potato dextrose agar (PDA). The species found are deposited as herbarium specimens in International Fungal Research and Development Center (IFRD). DNA extraction.—Total DNA was extracted from pure cultures with a Biospin Fungus Genomic DNA Extraction Kit (BioFlux®) following the manufacturer's protocol. The cultures used to extract DNA are provided (TABLE I). DNA amplification and sequencing.—Internal transcribed spacer (ITS) rDNA and fragments of the partial large subunit (LSU) and small subunit (SSU) rDNA were amplified by the polymerase chain reaction (PCR). Primers ITS4 and ITS5 (White et al. 1990) were used for PCR amplification of ITS rDNA sequences. Primers LROR and LR6 (Rehner and Samuels 1995, Vilgalys and Hester 1990) and NS1 and NS4 (White et al. 1990) were used respectively for PCR amplification of LSU and SSU rDNA sequences. The amplification of all the three genes was performed in a 50 µL reaction volume (buffer, 1.5 mM MgCl2, 0.2 mM dNTP, 0.8 µM of each primer and 1 unit Taq DNA polymerase). All the three genes were amplified with the same thermal cycle. Thermal-cycling parameters included an initial denaturation at 95 C for 2 min, followed by 35 cycles each consisting of denaturation at 94 C for 1 min, annealing at 50 C for 1 min, and extension at 72 C for 1 min. A final extension at 72 C for 10 min was included at the end of thermal cycling. The PCR products of ITS, LSU and SSU genes were purified and sequenced respectively with ITS4 and ITS5, LROR an LR6 and NS1 and NS4 primers in a sequencer (ABI-PRISM3730) at Sangon Biotech (Shanghai, China). Sequences alignment and phylogenetic analyses.—Sequences were aligned with BioEdit (Hall 1999). Eight novel sequences (TABLE I) from the new taxa, together with reference sequences obtained from GenBank, were aligned with Clustal X (Thompson et al. 1997). Alignment was adjusted manually to allow maximum alignment and minimize gaps. Phylogenetic analyses were performed with maximum parsimony as implemented in PAUP* 4.0b10 (Swofford 2002). Characters were equally weighted, and gaps were treated as missing data. Trees were inferred with the heuristic search option with TBR branch swapping and 1000 random sequence additions. MAXTREES were unlimited, branches of zero length were collapsed and all parsimonious trees were saved. Clade stability was assessed using a bootstrap (BT) analyses with 1000 replicates, each with 10 replicates of random stepwise of taxa. Kishino-Hasegawa tests (KH Test) (Kishino and Hasegawa 1989) were performed to determine whether trees were significantly different. Trees were drawn with TreeVIEW (Page 1996). The model of evolution was estimated with MrModeltest 2.2. Posterior probabilities (PP) (Rannala and Yang 1996, Zhaxybayeva and Gogarten 2002) were determined by Markov chain Monte Carlo sampling (BMCMC) in MrBayes 3.0b4 (Huelsenbeck and Ronquist 2001). Six simultaneous Markov chains were run 1 000 000 generations, and trees were sampled every 100th generation (resulting 10 000 total trees). The first 2000 trees, which represented the burn-in phase of the analyses, were discarded, and the remaining 8000 trees were used for calculating posterior probabilities (PP) in the majority rule consensus tree. RESULTS Phylogenetic analyses.—The ITS rDNA dataset of Diaporthe/Phomopsis included 44 sequences (32 of them from type strains) from 43 Diaporthe and Phomopsis species, with Valsa ambiens (Pers.) Fr. (Diaporthales, Valsaceae) as an outgroup taxon. The final dataset comprised 514 characters after alignment without ambiguous regions. Parsimony analysis resulted in 832 trees. One of the most parsimonious trees (TL = 511, CI = 0.429, RI = 0.675, RC = 0.289, HI = 0.571) is illustrated (FIG. 1). In the tree the two strains of Diaporthe aquatica clustered in the Diaporthe/Phomopsis clade and were related most closely to Diaporthe strumella var. longispora Wehm. The ITS rDNA dataset of Togoninia/Phaeoacremonium included 16 sequences (six of them from type strains) from eight Togoninia species and three Phaeoacremonium species, with Gnomonia betulina Vleugel (Diaporthales, Valsaceae) as an outgroup taxon. The final dataset comprised 547 characters after alignment without ambiguous regions. Parsimony analysis resulted in two trees without significant difference. One of the most parsimonious trees (TL = 239, CI = 0.862, RI = 0.840, RC = 0.724, HI = 0.138) is illustrated (FIG. 2). In the tree Togninia aquatica clustered in Togoninia/Phaeoacremonium clade and is related most closely to T. parasitica L. Mostert, W. Gams & Crous. The 28S rDNA dataset included sequences from 19 Magnaporthaceae strains representing three genera, with Ophiostoma piliferum (Fr.) Syd. & P. Syd. (Ophiostomatales, Ophiostomataceae) as an outgroup taxon.
Recommended publications
  • Castanedospora, a New Genus to Accommodate Sporidesmium
    Cryptogamie, Mycologie, 2018, 39 (1): 109-127 © 2018 Adac. Tous droits réservés South Florida microfungi: Castanedospora,anew genus to accommodate Sporidesmium pachyanthicola (Capnodiales, Ascomycota) Gregorio DELGADO a,b*, Andrew N. MILLER c & Meike PIEPENBRING b aEMLab P&K Houston, 10900 BrittmoorePark Drive Suite G, Houston, TX 77041, USA bDepartment of Mycology,Institute of Ecology,Evolution and Diversity, Goethe UniversitätFrankfurt, Max-von-Laue-Str.13, 60438 Frankfurt am Main, Germany cIllinois Natural History Survey,University of Illinois, 1816 South Oak Street, Champaign, IL 61820, USA Abstract – The taxonomic status and phylogenetic placement of Sporidesmium pachyanthicola in Capnodiales(Dothideomycetes) are revisited based on aspecimen collected on the petiole of adead leaf of Sabal palmetto in south Florida, U.S.A. New evidence inferred from phylogenetic analyses of nuclear ribosomal DNA sequence data together with abroad taxon sampling at family level suggest that the fungus is amember of Extremaceaeand therefore its previous placement within the broadly defined Teratosphaeriaceae was not supported. Anew genus Castanedospora is introduced to accommodate this species on the basis of its distinct morphology and phylogenetic position distant from Sporidesmiaceae sensu stricto in Sordariomycetes. The holotype material from Cuba was found to be exhausted and the Florida specimen, which agrees well with the original description, is selected as epitype. The fungus produced considerably long cylindrical to narrowly obclavate conidia
    [Show full text]
  • Novel <I>Phaeoacremonium</I>
    Persoonia 20, 2008: 87–102 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158508X324227 Novel Phaeoacremonium species associated with necrotic wood of Prunus trees U. Damm1,2, L. Mostert1, P.W. Crous1,2, P.H. Fourie1,3 Key words Abstract The genus Phaeoacremonium is associated with opportunistic human infections, as well as stunted growth and die-back of various woody hosts, especially grapevines. In this study, Phaeoacremonium species were Diaporthales isolated from necrotic woody tissue of Prunus spp. (plum, peach, nectarine and apricot) from different stone fruit molecular systematics growing areas in South Africa. Morphological and cultural characteristics as well as DNA sequence data (5.8S pathogenicity rDNA, ITS1, ITS2, -tubulin, actin and 18S rDNA) were used to identify known, and describe novel species. From Togninia β the total number of wood samples collected (257), 42 Phaeoacremonium isolates were obtained, from which 14 Togniniaceae species were identified. Phaeoacremonium scolyti was most frequently isolated, and present on all Prunus species sampled, followed by Togninia minima (anamorph: Pm. aleophilum) and Pm. australiense. Almost all taxa isolated represent new records on Prunus. Furthermore, Pm. australiense, Pm. iranianum, T. fraxinopennsylvanica and Pm. griseorubrum represent new records for South Africa, while Pm. griseorubrum, hitherto only known from humans, is newly reported from a plant host. Five species are newly described, two of which produce a Togninia sexual state. Togninia africana, T. griseo-olivacea and Pm. pallidum are newly described from Prunus armeniaca, while Pm. prunicolum and Pm. fuscum are described from Prunus salicina. Article info Received: 9 May 2008; Accepted: 20 May 2008; Published: 24 May 2008.
    [Show full text]
  • University of California Santa Cruz Responding to An
    UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes.
    [Show full text]
  • Mycosphere Notes 225–274: Types and Other Specimens of Some Genera of Ascomycota
    Mycosphere 9(4): 647–754 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/4/3 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Notes 225–274: types and other specimens of some genera of Ascomycota Doilom M1,2,3, Hyde KD2,3,6, Phookamsak R1,2,3, Dai DQ4,, Tang LZ4,14, Hongsanan S5, Chomnunti P6, Boonmee S6, Dayarathne MC6, Li WJ6, Thambugala KM6, Perera RH 6, Daranagama DA6,13, Norphanphoun C6, Konta S6, Dong W6,7, Ertz D8,9, Phillips AJL10, McKenzie EHC11, Vinit K6,7, Ariyawansa HA12, Jones EBG7, Mortimer PE2, Xu JC2,3, Promputtha I1 1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3 World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan Province, People’s Republic of China 4 Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China 5 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China 6 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 7 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 8 Department Research (BT), Botanic Garden Meise, Nieuwelaan 38, BE-1860 Meise, Belgium 9 Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Rue A.
    [Show full text]
  • Abstracts of Oral and Poster Presentations Given at the 10Th International Workshop on Grapevine Trunk Diseases, Reims, France, 4–7 July 2017
    Phytopathologia Mediterranea (2017) DOI: 10.14601/Phytopathol_Mediterr-21865 ABSTRACTS Abstracts of oral and poster presentations given at the 10th International Workshop on Grapevine Trunk Diseases, Reims, France, 4–7 July 2017 The 10th International Workshop on Grapevine Trunk diseases was held in Reims, France, on July 4–7 2017. This workshop was co-organized with the COST Action FA1303 entitled “Sustainable control of grape- vine trunk diseases” and supported by the International Organization of Vine and Wine (OIV). The meeting was attended by 240 participants from 29 countries and 155 papers were presented either as oral (63) or poster (92) presentations in four sessions: Pathogen characterization, Detection and epidemiology, Micro- bial ecology, Host-pathogen and fungus-fungus competitive interactions and Disease management. A field tour in the champagne vineyard was co-organized by the Comité Interprofessionnel du Vin de Champagne (CIVC). Delegates were presented with an overview of the Champagne region focussing on “terroir”, varietal crea- tion and grapevine diseases, especially GTDs. The tour concluded with a visit to Mercier cellar with cham- pagne tasting. The workshop is the 10th organized by the International Council on Grapevine Trunk Diseases (www. icgtd.org) and the 2nd one organised by the members of the COST Action FA1303 (www.managtd.eu). The next 11th IWGTD will be held in British Colombia Canada in 2019. Pathogen identification and worldwide, especially with grapevine trunk dis- characterization eases such as Petri disease and esca. Over the last 20 years, 29 species of this genus have been isolated Characterization and pathogenicity of Phaeo- from affected grapevines. However, the role of some acremonium species associated with Petri disease species as causal agents of grapevine dieback as well 1 and esca of grapevine in Spain.
    [Show full text]
  • Generic Names in Magnaporthales Ning Zhang, Jing Luo, Amy Y
    Generic names in Magnaporthales Ning Zhang, Jing Luo, Amy Y. Rossman, Takayuki Aoki, Izumi Chuma, Pedro W. Crous, Ralph Dean, Ronald P. de Vries, Nicole Donofrio, Kevin D. Hyde, et al. To cite this version: Ning Zhang, Jing Luo, Amy Y. Rossman, Takayuki Aoki, Izumi Chuma, et al.. Generic names in Magnaporthales. IMA Fungus, 2016, 7 (1), pp.155-159. 10.5598/imafungus.2016.07.01.09. hal- 01608608 HAL Id: hal-01608608 https://hal.archives-ouvertes.fr/hal-01608608 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License IMA FUNGUS · 7(1): 155–159 (2016) doi:10.5598/imafungus.2016.07.01.09 ARTICLE Generic names in Magnaporthales Ning Zhang1, Jing Luo1, Amy Y. Rossman2, Takayuki Aoki3, Izumi Chuma4, Pedro W. Crous5, Ralph Dean6, Ronald P. de Vries5,7, Nicole Donofrio8, Kevin D. Hyde9, Marc-Henri Lebrun10, Nicholas J. Talbot11, Didier Tharreau12, Yukio Tosa4, Barbara Valent13, Zonghua Wang14, and Jin-Rong Xu15 1Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA; corresponding author e-mail: zhang@aesop.
    [Show full text]
  • Diseases of Trees in the Great Plains
    United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here.
    [Show full text]
  • Taxonomy and Pathology of Togninia (Diaporthales) and Its Phaeoacremonium Anamorphs
    STUDIES IN MYCOLOGY 54: 1–113. 2006. Taxonomy and Pathology of Togninia (Diaporthales) and its Phaeoacremonium Anamorphs Lizel Mostert1,2, Johannes Z. Groenewald1, Richard C. Summerbell1, Walter Gams1 and Pedro W. Crous1 1Centraalbureau voor Schimmelcultures, P.O. Box 85167, 3508 AD Utrecht, The Netherlands; 2Current address: Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa *Correspondence: Lizel Mostert, [email protected] Abstract: The genus Togninia (Diaporthales, Togniniaceae) is here monographed along with its Phaeoacremonium (Pm.) anamorphs. Ten species of Togninia and 22 species of Phaeoacremonium are treated. Several new species of Togninia (T.) are described, namely T. argentinensis (anamorph Pm. argentinense), T. austroafricana (anamorph Pm. austroafricanum), T. krajdenii, T. parasitica, T. rubrigena and T. viticola. New species of Phaeoacremonium include Pm. novae-zealandiae (teleomorph T. novae-zealandiae), Pm. iranianum, Pm. sphinctrophorum and Pm. theobromatis. Species can be identified based on their cultural and morphological characters, supported by DNA data derived from partial sequences of the actin and β-tubulin genes. Phylogenies of the SSU and LSU rRNA genes were used to determine whether Togninia has more affinity with the Calosphaeriales or the Diaporthales. The results confirmed that Togninia had a higher affinity to the Diaporthales than the Calosphaeriales. Examination of type specimens revealed that T. cornicola, T. vasculosa, T. rhododendri, T. minima var. timidula and T. villosa, were not members of Togninia. The new combinations Calosphaeria cornicola, Calosphaeria rhododendri, Calosphaeria transversa, Calosphaeria tumidula, Calosphaeria vasculosa and Jattaea villosa are proposed. Species of Phaeoacremonium are known vascular plant pathogens causing wilting and dieback of woody plants.
    [Show full text]
  • Leaf-Inhabiting Genera of the Gnomoniaceae, Diaporthales
    Studies in Mycology 62 (2008) Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales M.V. Sogonov, L.A. Castlebury, A.Y. Rossman, L.C. Mejía and J.F. White CBS Fungal Biodiversity Centre, Utrecht, The Netherlands An institute of the Royal Netherlands Academy of Arts and Sciences Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales STUDIE S IN MYCOLOGY 62, 2008 Studies in Mycology The Studies in Mycology is an international journal which publishes systematic monographs of filamentous fungi and yeasts, and in rare occasions the proceedings of special meetings related to all fields of mycology, biotechnology, ecology, molecular biology, pathology and systematics. For instructions for authors see www.cbs.knaw.nl. EXECUTIVE EDITOR Prof. dr Robert A. Samson, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] LAYOUT EDITOR Marianne de Boeij, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] SCIENTIFIC EDITOR S Prof. dr Uwe Braun, Martin-Luther-Universität, Institut für Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle, Germany. E-mail: [email protected] Prof. dr Pedro W. Crous, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Prof. dr David M. Geiser, Department of Plant Pathology, 121 Buckhout Laboratory, Pennsylvania State University, University Park, PA, U.S.A. 16802. E-mail: [email protected] Dr Lorelei L. Norvell, Pacific Northwest Mycology Service, 6720 NW Skyline Blvd, Portland, OR, U.S.A.
    [Show full text]
  • Beta-Tubulin and Actin Gene Phylogeny Supports
    A peer-reviewed open-access journal MycoKeys 41: 1–15 (2018) Beta-tubulin and Actin gene phylogeny supports... 1 doi: 10.3897/mycokeys.41.27536 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Beta-tubulin and Actin gene phylogeny supports Phaeoacremonium ovale as a new species from freshwater habitats in China Shi-Ke Huang1,2,3,7, Rajesh Jeewon4, Kevin D. Hyde2, D. Jayarama Bhat5,6, Putarak Chomnunti2,7, Ting-Chi Wen1 1 Engineering and Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, China 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3 Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, Chi- na 4 Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius 5 Azad Housing Society, No. 128/1-J, Curca, P.O. Goa Velha 403108, India 6 Formerly, Department of Botany, Goa University, Goa, 403206, India 7 School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand Corresponding author: Ting-Chi Wen ([email protected]) Academic editor: Marc Stadler | Received 15 June 2018 | Accepted 10 September 2018 | Published 11 October 2018 Citation: Huang S-K, Jeewon R, Hyde KD, Bhat DJ, Chomnunti P, Wen T-C (2018) Beta-tubulin and Actin gene phylogeny supports Phaeoacremonium ovale as a new species from freshwater habitats in China. MycoKeys 41: 1–15. https://doi.org/10.3897/mycokeys.41.27536 Abstract A new species of Phaeoacremonium, P.
    [Show full text]
  • Discovery of the Teleomorph of the Hyphomycete, Sterigmatobotrys Macrocarpa, and Epitypification of the Genus to Holomorphic Status
    available online at www.studiesinmycology.org StudieS in Mycology 68: 193–202. 2011. doi:10.3114/sim.2011.68.08 Discovery of the teleomorph of the hyphomycete, Sterigmatobotrys macrocarpa, and epitypification of the genus to holomorphic status M. Réblová1* and K.A. Seifert2 1Department of Taxonomy, Institute of Botany of the Academy of Sciences, CZ – 252 43, Průhonice, Czech Republic; 2Biodiversity (Mycology and Botany), Agriculture and Agri- Food Canada, Ottawa, Ontario, K1A 0C6, Canada *Correspondence: Martina Réblová, [email protected] Abstract: Sterigmatobotrys macrocarpa is a conspicuous, lignicolous, dematiaceous hyphomycete with macronematous, penicillate conidiophores with branches or metulae arising from the apex of the stipe, terminating with cylindrical, elongated conidiogenous cells producing conidia in a holoblastic manner. The discovery of its teleomorph is documented here based on perithecial ascomata associated with fertile conidiophores of S. macrocarpa on a specimen collected in the Czech Republic; an identical anamorph developed from ascospores isolated in axenic culture. The teleomorph is morphologically similar to species of the genera Carpoligna and Chaetosphaeria, especially in its nonstromatic perithecia, hyaline, cylindrical to fusiform ascospores, unitunicate asci with a distinct apical annulus, and tapering paraphyses. Identical perithecia were later observed on a herbarium specimen of S. macrocarpa originating in New Zealand. Sterigmatobotrys includes two species, S. macrocarpa, a taxonomic synonym of the type species, S. elata, and S. uniseptata. Because no teleomorph was described in the protologue of Sterigmatobotrys, we apply Article 59.7 of the International Code of Botanical Nomenclature. We epitypify (teleotypify) both Sterigmatobotrys elata and S. macrocarpa to give the genus holomorphic status, and the name S.
    [Show full text]
  • Composition and Diversity of Fungal Decomposers of Submerged Wood in Two Lakes in the Brazilian Amazon State of Para´
    Hindawi International Journal of Microbiology Volume 2020, Article ID 6582514, 9 pages https://doi.org/10.1155/2020/6582514 Research Article Composition and Diversity of Fungal Decomposers of Submerged Wood in Two Lakes in the Brazilian Amazon State of Para´ Eveleise SamiraMartins Canto ,1,2 Ana Clau´ dia AlvesCortez,3 JosianeSantana Monteiro,4 Flavia Rodrigues Barbosa,5 Steven Zelski ,6 and João Vicente Braga de Souza3 1Programa de Po´s-Graduação da Rede de Biodiversidade e Biotecnologia da Amazoˆnia Legal-Bionorte, Manaus, Amazonas, Brazil 2Universidade Federal do Oeste do Para´, UFOPA, Santare´m, Para´, Brazil 3Instituto Nacional de Pesquisas da Amazoˆnia, INPA, Laborato´rio de Micologia, Manaus, Amazonas, Brazil 4Museu Paraense Emilio Goeldi-MPEG, Bele´m, Para´, Brazil 5Universidade Federal de Mato Grosso, UFMT, Sinop, Mato Grosso, Brazil 6Miami University, Department of Biological Sciences, Middletown, OH, USA Correspondence should be addressed to Eveleise Samira Martins Canto; [email protected] and Steven Zelski; [email protected] Received 25 August 2019; Revised 20 February 2020; Accepted 4 March 2020; Published 9 April 2020 Academic Editor: Giuseppe Comi Copyright © 2020 Eveleise Samira Martins Canto et al. *is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aquatic ecosystems in tropical forests have a high diversity of microorganisms, including fungi, which
    [Show full text]