Brun's 1920 Theorem on Goldbach's Conjecture

Total Page:16

File Type:pdf, Size:1020Kb

Brun's 1920 Theorem on Goldbach's Conjecture Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2018 Brun's 1920 Theorem on Goldbach's Conjecture James A. Farrugia Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Mathematics Commons Recommended Citation Farrugia, James A., "Brun's 1920 Theorem on Goldbach's Conjecture" (2018). All Graduate Theses and Dissertations. 7153. https://digitalcommons.usu.edu/etd/7153 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. BRUN’S 1920 THEOREM ON GOLDBACH’S CONJECTURE by James A. Farrugia A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Mathematics Approved: David E. Brown, Ph.D. James S. Cangelosi, Ph.D Major Professor Committee Member Dariusz M. Wilczynski, Ph.D. Mark R. McLellan, Ph.D. Committee Member Vice President for Research Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2018 ii Copyright © James A. Farrugia 2018 All Rights Reserved iii ABSTRACT Brun’s 1920 Theorem on Goldbach’s Conjecture by James A. Farrugia, Master of Science Utah State University, 2018 Major Professor: Dr. David E. Brown Department: Mathematics and Statistics One form of Goldbach’s Conjecture asserts that every even integer greater than 4 is the sum of two odd primes. In 1920 Viggo Brun proved that every sufficiently large even number can be written as the sum of two numbers, each having at most nine prime factors. This thesis explains the overarching principles governing the intricate arguments Brun used to prove his result. Though there do exist accounts of Brun’s methods, those accounts seem to miss the forest for the trees. In contrast, this thesis explains the relatively simple structure underlying Brun’s arguments, deliberately avoiding most of his elaborate machinery and idiosyncratic notation. For further details, the curious reader is referred to Brun’s original paper (in French). Brun constructs two main sieves. For each of these sieves, he establishes a lower bound for the number of elements N that fall through the sieve. Then, he uses addi- tional results by Stirling and Mertens, along with innovative algebraic manipulations to construct improved lower bounds for N. Subsequently, Brun applies his earlier results, mutatis mutandis, to Merlin’s double sieve and obtains the result that allows him to prove his theorem on Goldbach’s Conjecture. In distilled form, Brun’s arguments run as follows: start with a lower bound of the form N > M − R, which this thesis calls “the Fundamental Inequality.” Then, bound M below by A and bound R above by B, to show that M > A − B. Thus, A − B is the improved lower bound for N. (95 pages) iv PUBLIC ABSTRACT Brun’s 1920 Theorem on Goldbach’s Conjecture James A. Farrugia One form of Goldbach’s Conjecture asserts that every even integer greater than 4 is the sum of two odd primes. In 1920 Viggo Brun proved that every sufficiently large even number can be written as the sum of two numbers, each having at most nine prime factors. This thesis explains the overarching principles governing the intricate arguments Brun used to prove his result. Though there do exist accounts of Brun’s methods, those accounts seem to miss the forest for the trees. In contrast, this thesis explains the relatively simple structure underlying Brun’s arguments, deliberately avoiding most of his elaborate machinery and idiosyncratic notation. For further details, the curious reader is referred to Brun’s original paper (in French). v ACKNOWLEDGMENTS Thanks to everyone who helped. James A. Farrugia vi Contents Page ABSTRACT.................................... iii PUBLIC ABSTRACT.............................. iv ACKNOWLEDGMENTS............................ v LIST OF FIGURES...............................viii 1 INTRODUCTION............................... 1 1.1 Overview....................................1 1.1.1 What Brun Did to Achieve his Result................1 1.1.2 Preview of the Fundamental Inequality: N > M − R ........2 1.1.3 Plan...................................2 1.2 The Sieve of Eratosthenes...........................3 1.3 The Sieve of Eratosthenes-Legendre.....................6 1.4 The Legendre Formula.............................8 1.4.1 Chief Limitation of the Legendre Formula.............. 10 1.4.1.1 What is the Error Term in the Legendre Formula?.... 11 1.4.1.2 What is Meant by Saying “the Error Term is Too Large”? 12 1.4.1.3 Why is a Large Error Term Problematic?......... 15 1.4.2 Of What Use, then, is the Legendre Formula?............ 16 1.5 The “Best” Lower Bound for N ........................ 17 1.6 Revisiting the Fundamental Inequality: N > M − R ............ 19 1.7 Sieve Integrity when Truncating the Legendre Formula........... 20 1.8 Why Some Composites Fall Through Brun’s Sieves............. 22 1.9 Brun’s Use of Merlin’s Double Sieve..................... 23 1.10 Contextual View of Brun’s Approach..................... 25 2 GOLDBACH’S CONJECTURE AND RELATED RESULTS . 28 2.1 Goldbach’s Conjecture............................. 28 2.2 Some Evidence that Goldbach’s Conjecture is True............. 29 2.2.1 Empirical Evidence........................... 29 2.2.2 The Prime Number Theorem and Heuristics............. 32 2.2.3 Sieve Methods............................. 35 2.2.4 The Circle Method........................... 36 2.2.5 Evidence Based on the Density of Primes.............. 36 2.2.6 Lower Bounds, Upper Bounds, and Asymptotic Estimates..... 36 2.3 Significance: Goldbach’s Conjecture, Sieve Methods, Brun’s Work.... 36 vii 2.3.1 Significance of Goldbach’s Conjecture................ 36 2.3.2 Significance of Sieve Methods..................... 38 2.3.3 Significance of Brun’s Sieve Methods................. 38 3 BRUN’S THEOREM ON GOLDBACH’S CONJECTURE . 40 3.1 Overview of “Le Crible d’Eratosth`eneet le Th´eor`emede Goldbach”... 40 3.2 Different Lower Bounds and Brun’s Generalized Notation......... 42 3.2.1 Different Lower Bounds for the Legendre Formula......... 42 3.2.1.1 Searching for Improved Lower Bounds........... 42 3.2.1.2 The Default (“Worst”) Lower Bound, Revisited..... 43 3.2.1.3 Discarding Terms in “Small Print”............. 44 3.2.1.4 Discarding Terms “to the Right of Vertical Lines”.... 46 3.2.2 Brun’s Notation in §2 for his Generalized Sieve........... 48 3.3 Discarding Terms in “Small Print”...................... 49 3.3.1 Algorithm for Discarding Terms in “Small Print”.......... 50 3.3.2 Brun’s Sieve in §3 Does Give a Lower Bound for N ......... 51 3.3.3 Stirling’s Formula is Used to Bound Part of the Expansion.... 53 3.3.4 Bounding the Main Term....................... 54 3.3.5 Bounding the Remainder Term.................... 55 3.3.6 Combining Results Yields a New Lower Bound for N ....... 56 3.3.7 Problem: the Improved Lower Bound Could Still be Negative... 56 3.4 Discarding Terms “to the Right of Vertical Lines”.............. 56 3.4.1 Algorithm for Discarding Terms “to the Right of Vertical Lines”. 57 3.4.1.1 The Basic Idea Behind the Algorithm........... 57 3.4.1.2 Brun’s Notation for the Algorithm............. 59 3.4.2 Brun’s Sieve in §4 Does Give a Lower Bound for N ......... 63 3.4.2.1 Examples Illustrating Key Formulas from Brun’s §2... 64 3.4.2.2 Deriving Brun’s Formula (2) from his Formula (1).... 64 3.4.2.3 From Brun’s Formula (2) to Formula (3)......... 65 3.4.2.4 The “N-terms” in Formula (3)............... 67 3.4.2.5 An Example Illustrating Brun’s Formula (13)....... 69 3.4.2.6 Brun’s Formula (14) follows from his Formula (13).... 71 3.4.3 Overview of Brun’s Steps in §4.................... 72 3.4.4 Assumptions Used by Brun for his Sieve in §4............ 73 3.4.5 The Values of Particular Determinable Numbers is Never at Issue 76 3.4.6 Bounding the Main Term....................... 76 3.4.7 Bounding the Remainder Term.................... 77 3.4.8 Combining and Extending Results.................. 78 3.5 Brun Proves his Theorem on Goldbach’s Conjecture............ 79 3.5.1 Overview................................ 79 3.5.2 Initial Lower Bound for the Double Sieve.............. 79 3.5.3 Bounding the Main Term and the Remainder............ 80 3.5.4 Combining and Extending Results.................. 81 3.6 Summary.................................... 82 REFERENCES.................................. 83 viii LIST OF FIGURES Figure Page 1.2.0.1 Primes and 1 fall through the sieve of Eratosthenes.............5 1.4.0.1 Finding N(1, 37, 2, 3, 5)............................8 1.7.0.1 Finding N(1, 37, 2, 3, 5)............................ 20 1.8.0.1 Finding N(1, 37, 2, 3): the 2-primes 25 and 35 fall through......... 22 1.9.0.1 Brun’s way of showing a sieve......................... 23 1.9.0.2 Brun’s way of showing his double sieve.................... 24 1.9.0.3 Double sieve starting with sequence of consecutive odd numbers..... 25 1.9.0.4 Double sieve allowing the 2-prime 25 to fall through............ 25 2.2.1.1 r(n): number of distinct representations of n as sum of two odd primes. 30 2.2.1.2 As n increases, r(n) reveals its signature pattern.............. 30 2.2.2.1 Consider r(50): with “matching pairs of primes” connected........ 32 n 2.2.2.2 Red line (log n)2 tracks the data but is too high for a lower bound..... 34 n 2.2.2.3 Red line (log n)2 tracks the data but is too high for a lower bound..... 34 √ 2 n 2.2.2.4 Red line 2 (log n)2 − 4, a plausible lower bound for r(n).........
Recommended publications
  • Scalar Curvature and Geometrization Conjectures for 3-Manifolds
    Comparison Geometry MSRI Publications Volume 30, 1997 Scalar Curvature and Geometrization Conjectures for 3-Manifolds MICHAEL T. ANDERSON Abstract. We first summarize very briefly the topology of 3-manifolds and the approach of Thurston towards their geometrization. After dis- cussing some general properties of curvature functionals on the space of metrics, we formulate and discuss three conjectures that imply Thurston’s Geometrization Conjecture for closed oriented 3-manifolds. The final two sections present evidence for the validity of these conjectures and outline an approach toward their proof. Introduction In the late seventies and early eighties Thurston proved a number of very re- markable results on the existence of geometric structures on 3-manifolds. These results provide strong support for the profound conjecture, formulated by Thur- ston, that every compact 3-manifold admits a canonical decomposition into do- mains, each of which has a canonical geometric structure. For simplicity, we state the conjecture only for closed, oriented 3-manifolds. Geometrization Conjecture [Thurston 1982]. Let M be a closed , oriented, 2 prime 3-manifold. Then there is a finite collection of disjoint, embedded tori Ti 2 in M, such that each component of the complement M r Ti admits a geometric structure, i.e., a complete, locally homogeneous RiemannianS metric. A more detailed description of the conjecture and the terminology will be given in Section 1. A complete Riemannian manifold N is locally homogeneous if the universal cover N˜ is a complete homogenous manifold, that is, if the isometry group Isom N˜ acts transitively on N˜. It follows that N is isometric to N=˜ Γ, where Γ is a discrete subgroup of Isom N˜, which acts freely and properly discontinuously on N˜.
    [Show full text]
  • Generalized Riemann Hypothesis Léo Agélas
    Generalized Riemann Hypothesis Léo Agélas To cite this version: Léo Agélas. Generalized Riemann Hypothesis. 2019. hal-00747680v3 HAL Id: hal-00747680 https://hal.archives-ouvertes.fr/hal-00747680v3 Preprint submitted on 29 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Generalized Riemann Hypothesis L´eoAg´elas Department of Mathematics, IFP Energies nouvelles, 1-4, avenue de Bois-Pr´eau,F-92852 Rueil-Malmaison, France Abstract (Generalized) Riemann Hypothesis (that all non-trivial zeros of the (Dirichlet L-function) zeta function have real part one-half) is arguably the most impor- tant unsolved problem in contemporary mathematics due to its deep relation to the fundamental building blocks of the integers, the primes. The proof of the Riemann hypothesis will immediately verify a slew of dependent theorems (Borwien et al.(2008), Sabbagh(2002)). In this paper, we give a proof of Gen- eralized Riemann Hypothesis which implies the proof of Riemann Hypothesis and Goldbach's weak conjecture (also known as the odd Goldbach conjecture) one of the oldest and best-known unsolved problems in number theory. 1. Introduction The Riemann hypothesis is one of the most important conjectures in math- ematics.
    [Show full text]
  • Towards the Poincaré Conjecture and the Classification of 3-Manifolds John Milnor
    Towards the Poincaré Conjecture and the Classification of 3-Manifolds John Milnor he Poincaré Conjecture was posed ninety- space SO(3)/I60 . Here SO(3) is the group of rota- nine years ago and may possibly have tions of Euclidean 3-space, and I60 is the subgroup been proved in the last few months. This consisting of those rotations which carry a regu- note will be an account of some of the lar icosahedron or dodecahedron onto itself (the Tmajor results over the past hundred unique simple group of order 60). This manifold years which have paved the way towards a proof has the homology of the 3-sphere, but its funda- and towards the even more ambitious project of mental group π1(SO(3)/I60) is a perfect group of classifying all compact 3-dimensional manifolds. order 120. He concluded the discussion by asking, The final paragraph provides a brief description of again translated into modern language: the latest developments, due to Grigory Perelman. A more serious discussion of Perelman’s work If a closed 3-dimensional manifold has will be provided in a subsequent note by Michael trivial fundamental group, must it be Anderson. homeomorphic to the 3-sphere? The conjecture that this is indeed the case has Poincaré’s Question come to be known as the Poincaré Conjecture. It At the very beginning of the twentieth century, has turned out to be an extraordinarily difficult Henri Poincaré (1854–1912) made an unwise claim, question, much harder than the corresponding which can be stated in modern language as follows: question in dimension five or more,2 and is a If a closed 3-dimensional manifold has key stumbling block in the effort to classify the homology of the sphere S3 , then it 3-dimensional manifolds.
    [Show full text]
  • [Math.NT] 10 May 2005
    Journal de Th´eorie des Nombres de Bordeaux 00 (XXXX), 000–000 Restriction theory of the Selberg sieve, with applications par Ben GREEN et Terence TAO Resum´ e.´ Le crible de Selberg fournit des majorants pour cer- taines suites arithm´etiques, comme les nombres premiers et les nombres premiers jumeaux. Nous demontrons un th´eor`eme de restriction L2-Lp pour les majorants de ce type. Comme ap- plication imm´ediate, nous consid´erons l’estimation des sommes exponentielles sur les k-uplets premiers. Soient les entiers posi- tifs a1,...,ak et b1,...,bk. Ecrit h(θ) := n∈X e(nθ), ou X est l’ensemble de tous n 6 N tel que tousP les nombres a1n + b1,...,akn+bk sont premiers. Nous obtenons les bornes sup´erieures pour h p T , p > 2, qui sont (en supposant la v´erit´ede la con- k kL ( ) jecture de Hardy et Littlewood sur les k-uplets premiers) d’ordre de magnitude correct. Une autre application est la suivante. En utilisant les th´eor`emes de Chen et de Roth et un «principe de transf´erence », nous demontrons qu’il existe une infinit´ede suites arithm´etiques p1 < p2 < p3 de nombres premiers, telles que cha- cun pi + 2 est premier ou un produit de deux nombres premier. Abstract. The Selberg sieve provides majorants for certain arith- metic sequences, such as the primes and the twin primes. We prove an L2–Lp restriction theorem for majorants of this type. An im- mediate application is to the estimation of exponential sums over prime k-tuples.
    [Show full text]
  • On Sufficient Conditions for the Existence of Twin Values in Sieves
    On Sufficient Conditions for the Existence of Twin Values in Sieves over the Natural Numbers by Luke Szramowski Submitted in Partial Fulfillment of the Requirements For the Degree of Masters of Science in the Mathematics Program Youngstown State University May, 2020 On Sufficient Conditions for the Existence of Twin Values in Sieves over the Natural Numbers Luke Szramowski I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: Luke Szramowski, Student Date Approvals: Dr. Eric Wingler, Thesis Advisor Date Dr. Thomas Wakefield, Committee Member Date Dr. Thomas Madsen, Committee Member Date Dr. Salvador A. Sanders, Dean of Graduate Studies Date Abstract For many years, a major question in sieve theory has been determining whether or not a sieve produces infinitely many values which are exactly two apart. In this paper, we will discuss a new result in sieve theory, which will give sufficient conditions for the existence of values which are exactly two apart. We will also show a direct application of this theorem on an existing sieve as well as detailing attempts to apply the theorem to the Sieve of Eratosthenes. iii Contents 1 Introduction 1 2 Preliminary Material 1 3 Sieves 5 3.1 The Sieve of Eratosthenes . 5 3.2 The Block Sieve . 9 3.3 The Finite Block Sieve . 12 3.4 The Sieve of Joseph Flavius .
    [Show full text]
  • The Process of Student Cognition in Constructing Mathematical Conjecture
    ISSN 2087-8885 E-ISSN 2407-0610 Journal on Mathematics Education Volume 9, No. 1, January 2018, pp. 15-26 THE PROCESS OF STUDENT COGNITION IN CONSTRUCTING MATHEMATICAL CONJECTURE I Wayan Puja Astawa1, I Ketut Budayasa2, Dwi Juniati2 1Ganesha University of Education, Jalan Udayana 11, Singaraja, Indonesia 2State University of Surabaya, Ketintang, Surabaya, Indonesia Email: [email protected] Abstract This research aims to describe the process of student cognition in constructing mathematical conjecture. Many researchers have studied this process but without giving a detailed explanation of how students understand the information to construct a mathematical conjecture. The researchers focus their analysis on how to construct and prove the conjecture. This article discusses the process of student cognition in constructing mathematical conjecture from the very beginning of the process. The process is studied through qualitative research involving six students from the Mathematics Education Department in the Ganesha University of Education. The process of student cognition in constructing mathematical conjecture is grouped into five different stages. The stages consist of understanding the problem, exploring the problem, formulating conjecture, justifying conjecture, and proving conjecture. In addition, details of the process of the students’ cognition in each stage are also discussed. Keywords: Process of Student Cognition, Mathematical Conjecture, qualitative research Abstrak Penelitian ini bertujuan untuk mendeskripsikan proses kognisi mahasiswa dalam mengonstruksi konjektur matematika. Beberapa peneliti mengkaji proses-proses ini tanpa menjelaskan bagaimana siswa memahami informasi untuk mengonstruksi konjektur. Para peneliti dalam analisisnya menekankan bagaimana mengonstruksi dan membuktikan konjektur. Artikel ini membahas proses kognisi mahasiswa dalam mengonstruksi konjektur matematika dari tahap paling awal.
    [Show full text]
  • History of Mathematics
    History of Mathematics James Tattersall, Providence College (Chair) Janet Beery, University of Redlands Robert E. Bradley, Adelphi University V. Frederick Rickey, United States Military Academy Lawrence Shirley, Towson University Introduction. There are many excellent reasons to study the history of mathematics. It helps students develop a deeper understanding of the mathematics they have already studied by seeing how it was developed over time and in various places. It encourages creative and flexible thinking by allowing students to see historical evidence that there are different and perfectly valid ways to view concepts and to carry out computations. Ideally, a History of Mathematics course should be a part of every mathematics major program. A course taught at the sophomore-level allows mathematics students to see the great wealth of mathematics that lies before them and encourages them to continue studying the subject. A one- or two-semester course taught at the senior level can dig deeper into the history of mathematics, incorporating many ideas from the 19th and 20th centuries that could only be approached with difficulty by less prepared students. Such a senior-level course might be a capstone experience taught in a seminar format. It would be wonderful for students, especially those planning to become middle school or high school mathematics teachers, to have the opportunity to take advantage of both options. We also encourage History of Mathematics courses taught to entering students interested in mathematics, perhaps as First Year or Honors Seminars; to general education students at any level; and to junior and senior mathematics majors and minors. Ideally, mathematics history would be incorporated seamlessly into all courses in the undergraduate mathematics curriculum in addition to being addressed in a few courses of the type we have listed.
    [Show full text]
  • Arxiv:2102.04549V2 [Math.GT] 26 Jun 2021 Ieade Nih Notesrcueo -Aiod.Alteeconj Polyto These and Norm All Thurston to the 3-Manifolds
    SURVEY ON L2-INVARIANTS AND 3-MANIFOLDS LUCK,¨ W. Abstract. In this paper give a survey about L2-invariants focusing on 3- manifolds. 0. Introduction The theory of L2-invariants was triggered by Atiyah in his paper on the L2-index theorem [4]. He followed the general principle to consider a classical invariant of a compact manifold and to define its analog for the universal covering taking the action of the fundamental group into account. Its application to (co)homology, Betti numbers and Reidemeister torsion led to the notions of L2-(cohomology), L2-Betti numbers and L2-torsion. Since then L2-invariants were developed much further. They already had and will continue to have striking, surprizing, and deep impact on questions and problems of fields, for some of which one would not expect any relation, e.g., to algebra, differential geometry, global analysis, group theory, topology, transformation groups, and von Neumann algebras. The theory of 3-manifolds has also a quite impressive history culminating in the work of Waldhausen and in particular of Thurston and much later in the proof of the Geometrization Conjecture by Perelman and of the Virtual Fibration Conjecture by Agol. It is amazing how many beautiful, easy to comprehend, and deep theorems, which often represent the best result one can hope for, have been proved for 3- manifolds. The motivating question of this survey paper is: What happens if these two prominent and successful areas meet one another? The answer will be: Something very interesting. In Section 1 we give a brief overview over basics about 3-manifolds, which of course can be skipped by someone who has already some background.
    [Show full text]
  • Sieve Theory and Small Gaps Between Primes: Introduction
    Sieve theory and small gaps between primes: Introduction Andrew V. Sutherland MASSACHUSETTS INSTITUTE OF TECHNOLOGY (on behalf of D.H.J. Polymath) Explicit Methods in Number Theory MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH July 6, 2015 A quick historical overview pn+m − pn ∆m := lim inf Hm := lim inf (pn+m − pn) n!1 log pn n!1 Twin Prime Conjecture: H1 = 2 Prime Tuples Conjecture: Hm ∼ m log m 1896 Hadamard–Vallee´ Poussin ∆1 ≤ 1 1926 Hardy–Littlewood ∆1 ≤ 2=3 under GRH 1940 Rankin ∆1 ≤ 3=5 under GRH 1940 Erdos˝ ∆1 < 1 1956 Ricci ∆1 ≤ 15=16 1965 Bombieri–Davenport ∆1 ≤ 1=2, ∆m ≤ m − 1=2 ········· 1988 Maier ∆1 < 0:2485. 2005 Goldston-Pintz-Yıldırım ∆1 = 0, ∆m ≤ m − 1, EH ) H1 ≤ 16 2013 Zhang H1 < 70; 000; 000 2013 Polymath 8a H1 ≤ 4680 3 4m 2013 Maynard-Tao H1 ≤ 600, Hm m e , EH ) H1 ≤ 12 3:815m 2014 Polymath 8b H1 ≤ 246, Hm e , GEH ) H1 ≤ 6 H2 ≤ 398; 130, H3 ≤ 24; 797; 814,... The prime number theorem in arithmetic progressions Define the weighted prime counting functions1 X X Θ(x) := log p; Θ(x; q; a) := log p: prime p ≤ x prime p ≤ x p ≡ a mod q Then Θ(x) ∼ x (the prime number theorem), and for a ? q, x Θ(x; q; a) ∼ : φ(q) We are interested in the discrepancy between these two quantities. −x x x Clearly φ(q) ≤ Θ(x; q; a) − φ(q) ≤ q + 1 log x, and for any Q < x, X x X 2x log x x max Θ(x; q; a) − ≤ + x(log x)2: a?q φ(q) q φ(q) q ≤ Q q≤Q 1 P One can also use (x) := n≤x Λ(n), where Λ(n) is the von Mangoldt function.
    [Show full text]
  • Explicit Counting of Ideals and a Brun-Titchmarsh Inequality for The
    EXPLICIT COUNTING OF IDEALS AND A BRUN-TITCHMARSH INEQUALITY FOR THE CHEBOTAREV DENSITY THEOREM KORNEEL DEBAENE Abstract. We prove a bound on the number of primes with a given split- ting behaviour in a given field extension. This bound generalises the Brun- Titchmarsh bound on the number of primes in an arithmetic progression. The proof is set up as an application of Selberg’s Sieve in number fields. The main new ingredient is an explicit counting result estimating the number of integral elements with certain properties up to multiplication by units. As a conse- quence of this result, we deduce an explicit estimate for the number of ideals of norm up to x. 1. Introduction and statement of results Let q and a be coprime integers, and let π(x,q,a) be the number of primes not exceeding x which are congruent to a mod q. It is well known that for fixed q, π(x,q,a) 1 lim = . x→∞ π(x) φ(q) A major drawback of this result is the lack of an effective error term, and hence the impossibility to let q tend to infinity with x. The Brun-Titchmarsh inequality remedies the situation, if one is willing to accept a less precise relation in return for an effective range of q. It states that 2 x π(x,q,a) , for any x q. ≤ φ(q) log x/q ≥ While originally proven with 2 + ε in place of 2, the above formulation was proven by Montgomery and Vaughan [16] in 1973. Further improvement on this constant seems out of reach, indeed, if one could prove that the inequality holds with 2 δ arXiv:1611.10103v2 [math.NT] 9 Mar 2017 in place of 2, for any positive δ, one could deduce from this that there are no Siegel− 1 zeros.
    [Show full text]
  • THE MILLENIUM PROBLEMS the Seven Greatest Unsolved Mathematifcal Puzzles of Our Time Freshman Seminar University of California, Irvine
    THE MILLENIUM PROBLEMS The Seven Greatest Unsolved Mathematifcal Puzzles of our Time Freshman Seminar University of California, Irvine Bernard Russo University of California, Irvine Fall 2014 Bernard Russo (UCI) THE MILLENIUM PROBLEMS The Seven Greatest Unsolved Mathematifcal Puzzles of our Time 1 / 11 Preface In May 2000, at a highly publicized meeting in Paris, the Clay Mathematics Institute announced that seven $1 million prizes were being offered for the solutions to each of seven unsolved problems of mathematics |problems that an international committee of mathematicians had judged to be the seven most difficult and most important in the field today. For some of these problems, it takes considerable effort simply to understand the individual terms that appear in the statement of the problem. It is not possible to describe most of them accurately in lay terms|or even in terms familiar to someone with a university degree in mathematics. The goal of this seminar is to provide the background to each problem, to describe how it arose, explain what makes it particularly difficult, and give some sense of why mathematicians regard it as important. This seminar is not for those who want to tackle one of the problems, but rather for mathematicians and non-mathematicians alike who are curious about the current state at the frontiers of humankind's oldest body of scientific knowledge. Bernard Russo (UCI) THE MILLENIUM PROBLEMS The Seven Greatest Unsolved Mathematifcal Puzzles of our Time 2 / 11 After three thousand years of intellectual development, what are the limits of our mathematical knowledge? To benefit from this seminar, all you need by way of background is a good high school knowledge of mathematics.
    [Show full text]
  • An Introduction to Sieve Methods and Their Applications Alina Carmen Cojocaru , M
    Cambridge University Press 978-0-521-84816-9 — An Introduction to Sieve Methods and Their Applications Alina Carmen Cojocaru , M. Ram Murty Frontmatter More Information An Introduction to Sieve Methods and Their Applications © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-84816-9 — An Introduction to Sieve Methods and Their Applications Alina Carmen Cojocaru , M. Ram Murty Frontmatter More Information LONDON MATHEMATICAL SOCIETY STUDENT TEXTS Managing editor: Professor J. W. Bruce, Department of Mathematics, University of Hull, UK 3 Local fields, J. W. S. CASSELS 4 An introduction to twistor theory: Second edition, S. A. HUGGETT & K. P. TOD 5 Introduction to general relativity, L. P. HUGHSTON & K. P. TOD 8 Summing and nuclear norms in Banach space theory, G. J. O. JAMESON 9 Automorphisms of surfaces after Nielsen and Thurston, A. CASSON & S. BLEILER 11 Spacetime and singularities, G. NABER 12 Undergraduate algebraic geometry, MILES REID 13 An introduction to Hankel operators, J. R. PARTINGTON 15 Presentations of groups: Second edition, D. L. JOHNSON 17 Aspects of quantum field theory in curved spacetime, S. A. FULLING 18 Braids and coverings: selected topics, VAGN LUNDSGAARD HANSEN 20 Communication theory, C. M. GOLDIE & R. G. E. PINCH 21 Representations of finite groups of Lie type, FRANCOIS DIGNE & JEAN MICHEL 22 Designs, graphs, codes, and their links, P. J. CAMERON & J. H. VAN LINT 23 Complex algebraic curves, FRANCES KIRWAN 24 Lectures on elliptic curves, J. W. S CASSELS 26 An introduction to the theory of L-functions and Eisenstein series, H. HIDA 27 Hilbert Space: compact operators and the trace theorem, J.
    [Show full text]