Effects of Omega-3 Fatty Acids on Mental Health

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Omega-3 Fatty Acids on Mental Health Evidence Report/Technology Assessment Number 116 Effects of Omega-3 Fatty Acids on Mental Health Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov Contract No. 290-02-0021 Prepared by: University of Ottawa Evidence-based Practice Center at The University of Ottawa, Ottawa, Canada Investigators Howard M Schachter, PhD Kader Kourad, MD, PhD Zul Merali, PhD Andrew Lumb, BA Khai Tran, PhD Maia Miguelez, PhD Gabriela Lewin, MD Margaret Sampson, MLIS Nick Barrowman, PhD Hope Senechal, BSc Candice McGahern, HRA Li Zhang, BSc Andra Morrison, BSc Jakov Shlik MD, PhD Yi Pan, MSc Elizabeth C Lowcock, BScH Isabelle Gaboury, MSc Jacques Bradwejn, MD Anne Duffy, MD AHRQ Publication No. 05-E022-2 July 2005 This report is based on research conducted by the University of Ottawa Evidence-based Practice Center (EPC), under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 290-02-0021). The findings and conclusions in this document are those of the authors, who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services. The information in this report is intended to help health care decisionmakers, patients and clinicians, health system leaders, and policymakers make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report as they would any medical reference and in conjunction with all other pertinent information, i.e., in the context of available resources and circumstances presented by individual patients. This report may be used, in whole or in part, as the basis for development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. Neither AHRQ’s nor the U.S. Department of Health and Human Services’ endorsement of such derivative products may be stated or implied. This document is in the public domain and may be used and reprinted without permission except those copyrighted materials noted for which further reproduction is prohibited without the specific permission of copyright holders. Suggested Citation: Schachter H, Kourad K, Merali Z, Lumb A, Tran K, Miguelez M, et al. Effects of Omega-3 Fatty Acids on Mental Health. Evidence Report/Technology Assessment No. 116. (Prepared by the University of Ottawa Evidence-based Practice Center, Under Contract No. 290-02-0021.) AHRQ Publication No. 05-E022-2. Rockville, MD: Agency for Healthcare Research and Quality. July 2005. ii Preface The Agency for Healthcare Research and Quality (AHRQ), through its Evidence-Based Practice Centers (EPCs), sponsors the development of evidence reports and technology assessments to assist public- and private-sector organizations in their efforts to improve the quality of health care in the United States. This report was requested and funded by the Office of Dietary Supplements, National Institutes of Health. The reports and assessments provide organizations with comprehensive, science-based information on common, costly medical conditions and new health care technologies. The EPCs systematically review the relevant scientific literature on topics assigned to them by AHRQ and conduct additional analyses when appropriate prior to developing their reports and assessments. To bring the broadest range of experts into the development of evidence reports and health technology assessments, AHRQ encourages the EPCs to form partnerships and enter into collaborations with other medical and research organizations. The EPCs work with these partner organizations to ensure that the evidence reports and technology assessments they produce will become building blocks for health care quality improvement projects throughout the Nation. The reports undergo peer review prior to their release. AHRQ expects that the EPC evidence reports and technology assessments will inform individual health plans, providers, and purchasers as well as the health care system as a whole by providing important information to help improve health care quality. We welcome comments on this evidence report. They may be sent by mail to the Task Order Officer named below at: Agency for Healthcare Research and Quality, 540 Gaither Road, Rockville, MD 20850, or by email to [email protected]. Carolyn M. Clancy, M.D. Jean Slutsky, P.A., M.S.P.H. Director Director Agency for Healthcare Research and Quality Center for Outcomes and Evidence Agency for Healthcare Research and Quality Paul M. Coates, Ph.D. Director Kenneth S. Fink, M.D., M.G.A., M.P.H. Office of Dietary Supplements Director, EPC Program National Institutes of Health Agency for Healthcare Research and Quality Beth A. Collins Sharp, R.N., Ph.D. EPC Program Task Order Officer Agency for Healthcare Research and Quality iii Acknowledgments The authors would like to thank numerous individuals for their support of the present project: Isabella Steffensen and Christine Murray for their ability to clarify the meaning of our words, figures and tables; Pieter Oosthuizen and Robin Emsley for responding affirmatively to our request for data; Malcolm Peet for trying to facilitate the sharing of data he collected yet which are now held by one of his studies’ funding sources; Bill Hodge for arranging timely help with assessors of study quality; Samantha Fulton for helping check some of our work; Vladimir Fox for arranging the expert and timely translation of non-English language articles; Herb Woolf for responding with substance to our request of industry for evidence; Peter O’Blenis for assuring that the Internet-based software we used for all aspects of the review process was adapted to our needs; our collaborators at SC-RAND and Tufts-NEMC EPCs; Beth Collins-Sharp, Rosaly Correa-de-Araujo and Jacqueline Besteman who, as our Task Order Officers, provided steady support and guidance on behalf of AHRQ; and, Anne Thurn of the Office of Dietary Supplements for her thoughtful direction on behalf of the Federal Partners. Sections of Chapter 1 were developed in collaboration with Tufts-NEMC EPC, and with contributions from SC- RAND EPC. iv Structured Abstract Context: One popular view holds that psychiatric problems reflect disorders of brain functioning. Fifty percent to 60% of the adult brain is composed of lipids (dry weight), of which 35% are phospholipids comprised of unsaturated fatty acids. Of these, the polyunsaturated fatty acids docosahexaenoic acid (an omega-3 fatty acid) and arachidonic acid (an omega-6 fatty acid) are found in the highest concentrations. Thus, it has been proposed that omega-3 fatty acids could play an important role in mental health. Objectives: The purpose of this study was to conduct a systematic review of the scientific- medical literature to identify, appraise and synthesize the evidence for the effects of omega-3 fatty acids in mental health. Evidence was sought to permit the investigation of three basic questions: the efficacy and safety of omega-3 fatty acids as (primary or supplemental) treatment of psychiatric disorders or conditions (e.g., symptoms alone); the association between intake of omega-3 fatty acids and the onset, continuation or recurrence of psychiatric disorders or conditions; and, the association between the fatty acid content of biomarkers and the onset, continuation or recurrence of psychiatric disorders or conditions. The latter two questions examined the protective value of omega-3 fatty acid content in the diet and/or blood lipid biomarkers. The impact of effect modifiers was examined as well. The results will be used largely to inform a research agenda. Data Sources: A comprehensive search for citations was conducted using five databases (Medline, Embase, Cochrane Central Register of Controlled Trials, PsycInfo, and CAB Health). Searches were not restricted by language of publication, publication type, or study design, except with respect to the MeSH term “dietary fats,” which was limited by study design to increase its specificity. Search elements included: scientific terms, with acronyms, as well as generic and trade names relating to the exposure and its sources (e.g., eicosapentaenoic acid [EPA]; fish oil); and, relevant population terms (e.g., mental disorders). Additional published or unpublished literature was sought through manual searches of references lists of included studies and key review articles, and from the files of content experts. Study Selection: Studies were considered relevant if they described live human populations of any age, investigated the use of any foods or supplements known to contain omega-3 fatty acids, and utilized mental health outcomes. Studies examining the questions concerning treatment efficacy or the fatty acid content of biomarkers had to employ a controlled research design, whereas any type of design other than a case series or case study was permitted to address the possible association of the intake of omega-3 fatty acids and clinical outcomes. Three levels of screening for relevance, and two reviewers per level, were employed. Disagreements were resolved by forced consensus and, if necessary, third party intervention. Data Extraction: All data were abstracted
Recommended publications
  • Centre for Reviews and Dissemination
    Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta- analysis Leucht S, Corves C, D Arbter, Engel R R, Li C, Davis J M CRD summary The authors concluded that amisulpride, clozapine, olanzapine and risperidone can be effective in treating schizophrenia patients. Second-generation antipsychotic drugs can also result in fewer extrapyramidal side effects, but can induce weight gain. The authors' conclusions reflected the evidence presented, but some potential methodological flaws in the review process meant that the extent to which those conclusions were reliable was unclear. Authors' objectives To compare the effects of first and second-generation antipsychotic drugs in schizophrenia patients. Searching The search for eligible studies was started in 2005, including MEDLINE to October 2006, Cochrane Schizophrenia Group's Specialised Register and the US Food and Drugs Administration website. Search terms were reported and there were no language restrictions. Previous reviews were searched for additional relevant studies. Study selection Randomised controlled trials (RCTs) of oral second-generation antipsychotic drugs (amisulpride, aripiprazole, clozapine, olanzapine, quetiapine, risperidone, sertindole, ziprasidone and zotepine) compared with first-generation drugs in patients with schizophrenia or related disorders (schizoaffective, schizophreniform or delusional disorders) irrespective of diagnostic criteria were eligible for inclusion in the review. The optimum doses of second-generation drugs were selected
    [Show full text]
  • Pharmacotherapy, Drug-Drug Interactions and Potentially
    medRxiv preprint doi: https://doi.org/10.1101/2021.03.31.21254518; this version posted April 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Pharmacotherapy, drug-drug interactions and potentially inappropriate medication in depressive disorders Jan Wolff1,2,3, Pamela Reißner4, Gudrun Hefner5, Claus Normann2, Klaus Kaier6, Harald Binder6, Christoph Hiemke7, Sermin Toto8, Katharina Domschke2, Michael Marschollek1, Ansgar Klimke4,9 1 Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Germany. 2 Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. 3 Evangelical Foundation NeuerKerode, Germany. 4 Vitos Hochtaunus, Friedrichsdorf, Germany. 5 Vitos Clinic for Forensic Psychiatry, Eltville, Germany 6 Institute of Medical Biometry and Statistics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany. 7 Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Germany. 8 Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany. 9 Heinrich-Heine-University Düsseldorf, Germany. ___ Correspondence Dr. Jan Wolff, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Hannover, Germany. Address: Karl- Wiechert-Allee 3, 30625 Hannover. Email: [email protected], wolff.jan@mh- hannover.de, ORCID: https://orcid.org/0000-0003-2750-0606 Key words (MeSH) Depression, Polypharmacy, Antidepressants, Hospitals, Drug Interactions, Psychiatry NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
    [Show full text]
  • The Effects of Antipsychotic Treatment on Metabolic Function: a Systematic Review and Network Meta-Analysis
    The effects of antipsychotic treatment on metabolic function: a systematic review and network meta-analysis Toby Pillinger, Robert McCutcheon, Luke Vano, Katherine Beck, Guy Hindley, Atheeshaan Arumuham, Yuya Mizuno, Sridhar Natesan, Orestis Efthimiou, Andrea Cipriani, Oliver Howes ****PROTOCOL**** Review questions 1. What is the magnitude of metabolic dysregulation (defined as alterations in fasting glucose, total cholesterol, low density lipoprotein (LDL) cholesterol, high density lipoprotein (HDL) cholesterol, and triglyceride levels) and alterations in body weight and body mass index associated with short-term (‘acute’) antipsychotic treatment in individuals with schizophrenia? 2. Does baseline physiology (e.g. body weight) and demographics (e.g. age) of patients predict magnitude of antipsychotic-associated metabolic dysregulation? 3. Are alterations in metabolic parameters over time associated with alterations in degree of psychopathology? 1 Searches We plan to search EMBASE, PsycINFO, and MEDLINE from inception using the following terms: 1 (Acepromazine or Acetophenazine or Amisulpride or Aripiprazole or Asenapine or Benperidol or Blonanserin or Bromperidol or Butaperazine or Carpipramine or Chlorproethazine or Chlorpromazine or Chlorprothixene or Clocapramine or Clopenthixol or Clopentixol or Clothiapine or Clotiapine or Clozapine or Cyamemazine or Cyamepromazine or Dixyrazine or Droperidol or Fluanisone or Flupehenazine or Flupenthixol or Flupentixol or Fluphenazine or Fluspirilen or Fluspirilene or Haloperidol or Iloperidone
    [Show full text]
  • Antipsychotics and the Risk of Sudden Cardiac Death
    ORIGINAL INVESTIGATION Antipsychotics and the Risk of Sudden Cardiac Death Sabine M. J. M. Straus, MD; Gyse`le S. Bleumink, MD; Jeanne P. Dieleman, PhD; Johan van der Lei, MD, PhD; Geert W. ‘t Jong, PhD; J. Herre Kingma, MD, PhD; Miriam C. J. M. Sturkenboom, PhD; Bruno H. C. Stricker, PhD Background: Antipsychotics have been associated with Results: The study population comprised 554 cases of prolongation of the corrected QT interval and sudden car- sudden cardiac death. Current use of antipsychotics was diac death. Only a few epidemiological studies have in- associated with a 3-fold increase in risk of sudden car- vestigated this association. We performed a case- diac death. The risk of sudden cardiac death was high- control study to investigate the association between use est among those using butyrophenone antipsychotics, of antipsychotics and sudden cardiac death in a well- those with a defined daily dose equivalent of more than defined community-dwelling population. 0.5 and short-term (Յ90 days) users. The association with current antipsychotic use was higher for witnessed cases Methods: We performed a population-based case-control (n=334) than for unwitnessed cases. study in the Integrated Primary Care Information (IPCI) project, a longitudinal observational database with com- Conclusions: Current use of antipsychotics in a gen- plete medical records from 150 general practitioners. All eral population is associated with an increased risk of sud- instances of death between January 1, 1995, and April 1, den cardiac death, even at a low dose and for indica- 2001, were reviewed. Sudden cardiac death was classified tions other than schizophrenia.
    [Show full text]
  • (19) 11 Patent Number: 6165500
    USOO6165500A United States Patent (19) 11 Patent Number: 6,165,500 Cevc (45) Date of Patent: *Dec. 26, 2000 54 PREPARATION FOR THE APPLICATION OF WO 88/07362 10/1988 WIPO. AGENTS IN MINI-DROPLETS OTHER PUBLICATIONS 75 Inventor: Gregor Cevc, Heimstetten, Germany V.M. Knepp et al., “Controlled Drug Release from a Novel Liposomal Delivery System. II. Transdermal Delivery Char 73 Assignee: Idea AG, Munich, Germany acteristics” on Journal of Controlled Release 12(1990) Mar., No. 1, Amsterdam, NL, pp. 25–30. (Exhibit A). * Notice: This patent issued on a continued pros- C.E. Price, “A Review of the Factors Influencing the Pen ecution application filed under 37 CFR etration of Pesticides Through Plant Leaves” on I.C.I. Ltd., 1.53(d), and is subject to the twenty year Plant Protection Division, Jealott's Hill Research Station, patent term provisions of 35 U.S.C. Bracknell, Berkshire RG12 6EY, U.K., pp. 237-252. 154(a)(2). (Exhibit B). K. Karzel and R.K. Liedtke, “Mechanismen Transkutaner This patent is Subject to a terminal dis- Resorption” on Grandlagen/Basics, pp. 1487–1491. (Exhibit claimer. C). Michael Mezei, “Liposomes as a Skin Drug Delivery Sys 21 Appl. No.: 07/844,664 tem” 1985 Elsevier Science Publishers B.V. (Biomedical Division), pp 345-358. (Exhibit E). 22 Filed: Apr. 8, 1992 Adrienn Gesztes and Michael Mazei, “Topical Anesthesia of 30 Foreign Application Priority Data the Skin by Liposome-Encapsulated Tetracaine” on Anesth Analg 1988; 67: pp 1079–81. (Exhibit F). Aug. 24, 1990 DE) Germany ............................... 40 26834 Harish M. Patel, "Liposomes as a Controlled-Release Sys Aug.
    [Show full text]
  • Drug and Medication Classification Schedule
    KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine
    [Show full text]
  • Lamotrigine, Quetiapine and Aripiprazole-Induced Neuroleptic
    Szota et al. BMC Psychiatry (2020) 20:179 https://doi.org/10.1186/s12888-020-02597-x CASE REPORT Open Access Lamotrigine, quetiapine and aripiprazole- induced neuroleptic malignant syndrome in a patient with renal failure caused by lithium: a case report Anna Maria Szota* , Izabela Radajewska, Przemysław Grudzka and Aleksander Araszkiewicz Abstract Background: Neuroleptic malignant syndrome (NMS) may be induced by atypical antipsychotic drugs (AAPDs) such as aripiprazole, olanzapine, risperidone and quetiapine, either as a single treatment or in combination with other drugs. A case of NMS following the administration of lamotrigine, aripiprazole and quetiapine in a patient with bipolar disorder, and with renal failure caused by toxic lithium levels has not been reported. Case presentation: A 51-year-old female patient with a 27-year history of bipolar disorder, being treated with lithium, fluoxetine, olanzapine, gabapentine, perazine and biperiden, was admitted to the hospital due to depressed mood and delusions. A urinary tract infection was diagnosed and antibiotic therapy was initiated. After 5 days of treatment her physical state deteriorated and she developed a fever of 38.4 °C. Her laboratory results revealed a toxic level of lithium (2.34 mmol/l). Acute renal failure was diagnosed and the lithium was withdrawn. After stabilization of her condition, and despite her antipsychotic treatment, further intensification of delusions and depressed mood were observed. All drugs being taken by the patient were withdrawn and lamotrigine and aripiprazole were initiated. Due to the insufficient effectiveness of aripiprazole treatment and because of problems with sleep, quetiapine was added, however further treatment with this drug combination and an increase of quetiapine to 400 mg/d eventually caused NMS.
    [Show full text]
  • The Effect of the Process Variables on the HPLC Separation of Tricyclic Neuroleptics on a Calixarene-Bonded Stationary Phase
    ORIGINAL ARTICLES Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany The effect of the process variables on the HPLC separation of tricyclic neuroleptics on a calixarene-bonded stationary phase H. Hashem, Th. Jira Received March 15, 2004, accepted May 25, 2004 Priv.-Doz. Dr. Thomas Jira, Ernst-Moritz-Arndt-University Greifswald, Institute of Pharmacy, Pharmaceu- tical/Medicinal Chemistry, F.-L.-Jahnstr. 17, D-17487 Greifswald, Germany [email protected] Pharmazie 60: 186–192 (2005) The chromatographic behavior of a new HPLC-stationary phase with supramolecular selectors on the basis of calixarenes is described for the separation of nine tricyclic neuroleptics. The effects of differ- ent chromatographic conditions (buffer system, pH-value, type and content of organic modifier, injec- tion volume) on the separation of the analytes were studied. Additionally, the effect of structural differ- ences of the neuroleptic analytes was studied. The chemical structure and pKa of the neuroleptics highly influenced their separation on the calix[8]arene phase. The separation of all analytes on the investigated calixarene-bonded stationary phase was possible with a mobile phase of acetonitrile with 30 mM ammonium acetate buffer (pH 3.5) 30 : 70(v/v) using 1 ml/min flow rate. 1. Introduction Neuroleptics which are widely used for the treatment of CH3 psychological problems are basic compounds, mainly thiox- CH3 anthene and phenothiazine derivatives. Many papers de- N N CH3 scribe the separation of this pharmacological group of ana- N N CH3 lytes on the usual RP-stationary phases (Goldstein and Van S CH3 S O Vunakis 1981; Kountourellis and Markopoulou 1991; Trac- CH3 qui et al.
    [Show full text]
  • Cyclic Antidepressant Drugs SI Conversion: [AUQ: Dr
    834 II: THERAPEUTIC DRUGS 127. Spiker DG, Pugh DD. Combining tricyclic and monoamine oxidase inhibi- 145. Chambost M, Liron L, Peillon D, et al. [Serotonin syndrome during fluoxetine tor antidepressants. Arch Gen Psychiatry 1976;33(7):828–830. poisoning in a patient taking moclobemide.] Can J Anaesth 2000;47(3):246– 128. Peebles-Brown AE. Hyperpyrexia following psychotropic drug overdose. 250. Anaesthesia 1985;40(11):1097–1099. 146. Myrenfors PG, Eriksson T, Sandsted CS, et al. Moclobemide overdose. J 129. Tuck JR, Punell G. Uptake of (3H)5-hydroxytryptamine and (3H)noradrenaline Intern Med 1993;233(2):113–115. by slices of rat brain incubated in plasma from patients treated with chlorimi- 147. Pounder DJ, Jones GR. Post-mortem drug redistribution––a toxicological pramine, imipramine or amitriptyline. J Pharm Pharmacol 1973;25(7):573–574. nightmare. Forensic Sci Int 1990;45(3):253–263. 130. Gillman PK. Successful treatment of serotonin syndrome with chlorproma- 148. Lichtenwalner MR, Tully RG, Cohn RD, et al. Two fatalities involving zine. Med J Aust 1996;165(6):345–346. phenelzine. J Anal Toxicol 1995;19(4):265–266. 131. Graham PM. Successful treatment of the toxic serotonin syndrome with 149. Yonemitsu K, Pounder DJ. Postmortem changes in blood tranylcypromine chlorpromazine. Med J Aust 1997;166(3):166–167. concentration: competing redistribution and degradation effects. Forensic 132. Tackley RM, Tregaskis B. Fatal disseminated intravascular coagulation fol- Sci Int 1993;59(2):177–184. lowing a monoamine oxidase inhibitor/tricyclic interaction. Anaesthesia 150. Baselt RC, Shaskan E, Gross EM. Tranylcypromine concentrations and 1987;42(7):760–763.
    [Show full text]
  • Handbook of Experimental Pharmacology Volume
    Handbook of Experimental Pharmacology Volume 212 Editor-in-Chief F.B. Hofmann, München Editorial Board J.A. Beavo, Seattle J.E. Barrett, Philadelphia D. Ganten, Berlin P. Geppetti, Florence M.C. Michel, Ingelheim C.P. Page, London W. Rosenthal, Berlin For further volumes: http://www.springer.com/series/164 . Gerhard Gross • Mark A. Geyer Editors Current Antipsychotics Editors Gerhard Gross Mark A. Geyer Abbott, Neuroscience Research, GPRD University of California San Diego Ludwigshafen, Germany Department of Psychiatry Institut fu¨r Pharmakologie La Jolla Universita¨t Duisburg-Essen California Universita¨tsklinikum Essen USA Essen Germany ISSN 0171-2004 ISSN 1865-0325 (electronic) ISBN 978-3-642-25760-5 ISBN 978-3-642-25761-2 (eBook) DOI 10.1007/978-3-642-25761-2 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2012952465 # Springer-Verlag Berlin Heidelberg 2012 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • Availability of Psychiatric Medications to Croatian
    Psychiatria Danubina, 2011; Vol. 23, No. 3, pp 320-324 Conference paper © Medicinska naklada - Zagreb, Croatia AVAILABILITY OF PSYCHIATRIC MEDICATIONS TO CROATIAN HEALTHCARE USERS AND THE INFLUENCE OF AVAILABILITY OF ATYPICAL ANTIPSYCHOTICS ON PSYCHIATRIC HOSPITAL MORBIDITY Vlado Jukić, Miroslav Herceg & Aleksandar Savić University Psychiatric Hospital Vrapče, Zagreb, Croatia * * * * * INTRODUCTION RESULTS In professional psychiatric circles as well as in the general population there is a constant debate over the The results are presented in Table 1-6 and on Figure issue of availability of drugs through the Croatian 1. By analyzing lists of drugs of the CIHI we obtained Institute for Health Insurance (CIHI) to Croatian the following data. Table 1 shows the increase in healthcare users. While psychiatrists are often frustrated number of psychiatric medications, original substances by the lack of access to the newest medications, those as well as preparations, over the 22-year period from that were maybe just recently marketed in the richest 1998 until 2011. countries, at the same time it is suggested to the public It is particularly interesting to see the situation in the that, due to ignorance and negligence of the authorities, list of drugs in 1991, the first year of the war, and the many of those drugs that are widely available in other introduction of new drugs after 1994 (just before the countries are not available to our patients. Despite our end of the war). The greatest increase is seen in the own experiences and impressions, which suggest that in group of antidepressants (300%), antiparkinsonics Croatia, at present, in the year 2011, there are no (275%) and antipsychotics (267%).
    [Show full text]
  • Antipsychotics for Treatment of Delirium in Hospitalised Non-ICU Patients
    This is a repository copy of Antipsychotics for treatment of delirium in hospitalised non-ICU patients. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/132847/ Version: Published Version Article: Burry, Lisa, Mehta, S.R., Perreault, M.M et al. (6 more authors) (2018) Antipsychotics for treatment of delirium in hospitalised non-ICU patients. Cochrane Database of Systematic Reviews. CD005594. ISSN 1469-493X https://doi.org/10.1002/14651858.CD005594.pub3 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Cochrane Database of Systematic Reviews Antipsychotics for treatment of delirium in hospitalised non- ICU patients (Review) Burry L, Mehta S, Perreault MM, Luxenberg JS, Siddiqi N, Hutton B, Fergusson DA, Bell C, Rose L Burry L, Mehta S, Perreault MM, Luxenberg JS, Siddiqi N, Hutton B, Fergusson DA, Bell C, Rose L. Antipsychotics for treatment of delirium in hospitalised non-ICU patients. Cochrane Database of Systematic Reviews 2018, Issue 6.
    [Show full text]