Implications for Virus Reactivation After Immunosuppression in Transplant Patients and the Occurrence of PML Disease

Total Page:16

File Type:pdf, Size:1020Kb

Implications for Virus Reactivation After Immunosuppression in Transplant Patients and the Occurrence of PML Disease Review JC Polyomavirus and Transplantation: Implications for Virus Reactivation after Immunosuppression in Transplant Patients and the Occurrence of PML Disease James E. K. Hildreth 1,2,3 and Donald J. Alcendor 1,3,* 1 Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, School of Medicine, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, TN 37208, USA; [email protected] 2 Department of Internal Medicine, School of Medicine, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, TN 37208, USA 3 Center for AIDS Health Disparities Research, Immunology, and Physiology, Department of Microbiology, School of Medicine, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, TN 37208, USA * Correspondence: [email protected] Abstract: The JC polyomavirus (JCPyV/JCV) is a member of the Polyomaviridae family and is ubiqui- tious in the general population, infecting 50–80% of individuals globally. A primary infection with JCV usally results in an asymptomatic, persistent infection that establishes latency in the renourinary tract. Reactivation from latency via iatrogenic immununosuppression for allograft transplantation may result in organ pathology and a potential life-threatening neuropathological disease in the form of progressive multifocal leukoencephalopathy (PML). Currently, no treatment exists for PML, a rare complication that occurs after transplantation, with an incidence of 1.24 per 1000 persons a year among solid organ transplant patients. PML is also observed in HIV patients who are immununosup- Citation: Hildreth, J.E.K.; Alcendor, pressed and are not receiving antiretroviral therapy, as well as individuals treated with biologics to D.J. JC Polyomavirus and Transplantation: Implications for suppress chronic inflammatory responses due to multiple sclerosis, Crohn’s disease, non-Hodgkin’s Virus Reactivation after lymphoma, rheumatoid arthritis, and other autoimmune-mediated hematological disorders. Here, Immunosuppression in Transplant we describe the proposed mechanisms of JCV reactivation as it relates to iatrogenic immunosuppres- Patients and the Occurrence of PML sion for graft survival and the treatment of proinflammatory disease, such as biologics, proposed Disease. Transplantology 2021, 2, trafficking of JCV from the renourinary tract, JCV central nervous system dissemination and the 37–48. https://doi.org/10.3390/ pathology of PML in immunosuppressed patients, and potential novel therapeutics for PML disease. transplantology2010004 Keywords: JC polyomavirus; transplantation; progressive multifocal leukoencephalopathy; immuno- Academic Editor: Nassim Kamar suppression; neuropathology Received: 15 December 2020 Accepted: 29 January 2021 Published: 2 February 2021 1. Introduction Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in The JC polyomavirus (JCPyV/JCV) is a member of the Polyomaviridae family, genus published maps and institutional affil- Orthopolyomavirus, which also includes the BK polyomavirus (BKPyV/BKV) [1–3]. Both iations. viruses were isolated from patients with the initial JC and BK polyomaviruses, respec- tively [1,2]. JCV is thought to be transmitted by inhylation and infects 50–80% of the global population [4,5], with 10–30% of the world population shedding JCV in their urine [6]. JCV produces an asymptomatic, persistent infection primarily in the renourinary tract, reactivating only when the immune system is compromised. The reactivation of latent Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. JCV in the brain of immune-compromised individuals may result in a lytic infection of This article is an open access article oligodendrocytes, glial cells, and astrocytes [7–11]. The demyelination of oligodendrocytes distributed under the terms and induced by JCV lytic replication may lead to progressive multifocal leukoencephalopathy conditions of the Creative Commons (PML). PML is a frequently fatal demyelinating infectious disease of the brain caused Attribution (CC BY) license (https:// by neuropathogenic prototypes of JCV and is accompanied by progressive neurological creativecommons.org/licenses/by/ deficits and death [11–15]. The spectrum of neurological presentations includes ataxia, 4.0/). hemiparesis, hemianopia, cognitive impairment, limb ataxia, gait disorder, and aphasia. Transplantology 2021, 2, 37–48. https://doi.org/10.3390/transplantology2010004 https://www.mdpi.com/journal/transplantology Transplantology 2021, 2 38 The commonly involved areas include the subcortical white matter, periventricular areas, and cerebellar peduncles. PML is rare, with an incidence of <0.3/100,000 persons a year among the general population [16]. However, the incidence of PML HIV/AIDS patients without antiretroviral therapy is 2.4 per 1000 persons a year [17]. PML occurs in 3–5% of HIV-infected individuals with an uncontrolled disease, but HIV therapy has been shown to improve clinical outcomes [6,10,11,18]. This is a significantly higher incidence when compared to patients with other means of immunomodulation therapy. The clinical presen- tations of PML disease include motor weakness, speech abnormalities, cognitive deficits, headache, visual fields deficits, ataxia, aphasia, cranial nerve deficits, and seizures [8,10,19]. Currently, no specific treatment exists for JCV-induced PML. This represents an urgent unmet medical need for efficacious therapeutics for JCV-induced PML in immunocompro- mised patients. In addition, no suitable animal model for PML exists due to the failure of JCV to productively replicate in nonhuman hosts cells [20,21]. Here, we examine the role of iatrogenic immunosuppression on JCV reaction and the neuropathology that may result post-reactivation. 2. JCPyV Biology JCV, along with BKV, identified in 1971, were the first two polyomaviruses associated with human, but not oncogenic, disease [2,3]. To date, 13 different polyomaviruses exist that may infect humans, and this number likely will rise due to novel methodologies used in virus discovery [22]. Five out of the 13 human polyomaviruses have been associated with clinical disease, including JCV, BKV, Trichodysplasia spinulosa polyomavirus, human polyomavirus 7, and Merkel cell polyomavirus [22]. JCV is a small nonenveloped, double- stranded, circular DNA virus with a five-kilobase genome associated with cellular histones, forming a viral mini-chromosome that replicates in the nucleus of permissive cells. Erickson et al. showed that the JCV recruits and modulates the host DNA damage response to replicate its genome [23]. JCV encodes six proteins, the large T and small t antigens, which have oncogenic properties, three capsid proteins (VP1–3), and the agnoprotein [24]. Currently, it is unknown whether the transmissible form of the virus is archetypal (found in the kidney, urine, and sewage, such as the CY strain of JCV); prototypical (found in the brain and is associated with PML, such as the Mad-1 strain of JCV); or both. These two types of JCV viruses differ only within their noncoding regulatory region (NCRR). The prototypical JCV-PML types isolated from the cerebrospinal fluid (CSF) and brain tissues from PML patients have rearrangements, including duplications, tandem repeats, and insertions and deletions in the NCRR region. Evidence of JCV persistence has been found in renal tissue, bone marrow, and brain tissue. This state of persistence appears as episomal circular DNA that is nonreplicating, with no viral gene transcription. Evidence of genomic DNA in normal brain tissue has been observed [25]. The asymptomatic shedding of JCV occurs in the adult human population at a level of 50,000 copies/mL of urine. It has been demonstrated by Coleman et al. that pregnant women in their second and third trimesters may shed JCV asymptomatically at a rate of 3.2% [26]. The seropositivity rates for JCV are found in the range from 39% to 81% and to steadily rise as an individual reaches adulthood, having more sustained viral titers when compared to BKV [5,27]. Primary infections are thought to occur in childhood via the upper respiratory tract through inhalation and, also, via the gastrointestinal route due to contaminated food or water (Figure1). These findings are supported by the presence of JCV in the tonsils and intestinal cells, respectively [28–30]. In addition, JCV is known to infect B cells in the peripheral circulation, adding to the complexity of viral transmission (Figure1). JCV infection is endemic and ubiquitous, and transmission occurs in childhood by the feco-oral, urino- oral, and respiratory routes. The virus will remain latent in the bone marrow, kidneys, tonsils, lymphoid tissues, and/or the brain throughout the life of an infected individual (Figure1 ). Over time, if an individual becomes immunocompromised, JCV may reactivate from latency and cause a life-threatening clinical disease, most notably in the form of PML (Figure1). Transplantology 2021, 2, FOR PEER REVIEW 3 oral, and respiratory routes. The virus will remain latent in the bone marrow, kidneys, tonsils, lymphoid tissues, and/or the brain throughout the life of an infected individual (Figure 1). Over time, if an individual becomes immunocompromised, JCV may reactivate from latency and cause a life-threatening clinical disease, most notably in the form of PML (Figure 1). Transplantology 2021, 2 39 Figure 1. JC polyomavirusFigure (JCV) 1. infection JC polyomavirus and dissemination (JCV) infect fromion and environmental dissemination exposure from en tovironmental
Recommended publications
  • WO 2017/048702 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2017/048702 A l 2 3 March 2017 (23.03.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07D 487/04 (2006.01) A61P 35/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/519 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) International Application Number: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 16/05 1490 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 13 September 2016 (13.09.201 6) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (26) Publication Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 62/218,493 14 September 2015 (14.09.2015) US (84) Designated States (unless otherwise indicated, for every 62/218,486 14 September 2015 (14.09.2015) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: INFINITY PHARMACEUTICALS, INC.
    [Show full text]
  • Project Protocol
    CADTH Health Technology Assessment June 2016 (Update Drugs for the management of rheumatoid May 2017) arthritis: clinical evaluation – project protocol PROSPERO Registration Number: CRD42016041498 1 Cite as: Drugs for the management of rheumatoid arthritis: clinical evaluation – project protocol. Ottawa: CADTH; 2016 Jun; updated 2017 April. This report is prepared by the Canadian Agency for Drugs and Technologies in Health (CADTH) in collaboration with the Canadian Institutes of Health Research (CIHR) Drug Safety and Effectiveness Network (DSEN). This report contains a comprehensive review of existing public literature, studies, materials, and other information and documentation (collectively the “source documentation”) available to CADTH at the time it was prepared, and its creation was guided by expert input and advice throughout its preparation. The information in this report is intended to help health care decision-makers, patients, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. The information in this report should not be used as a substitute for the application of clinical judgment in respect to the care of a particular patient or other professional judgment in any decision-making process, nor is it intended to replace professional medical advice. While CADTH has taken care in the preparation of this report to ensure that its contents are accurate, complete, and up-to-date, CADTH does not make any guarantee to that effect. CADTH is not responsible for any errors or omissions or injury, loss, or damage arising from or as a result of the use (or misuse) of any information contained in or implied by the information in this report.
    [Show full text]
  • A PILOT RANDOMIZED CONTROLLED TRIAL of DE NOVO BELATACEPT-BASED IMMUNOSUPPRESSION in LUNG TRANSPLANTATION Howard J. Huang, MD Ra
    A PILOT RANDOMIZED CONTROLLED TRIAL OF DE NOVO BELATACEPT-BASED IMMUNOSUPPRESSION IN LUNG TRANSPLANTATION Howard J. Huang, MD Ramsey R. Hachem, MD Study ID: IM103-387 Draft: v 6.0 Date: 8 December 2017 ! 1 TABLE OF CONTENTS Section Page 1. List of Abbreviations 3 2. Protocol Summary 4 3. Study Schematic 4 4. Key Roles 5 5. Introduction 6 6. Objectives and Purpose 7 7. Study Design and Endpoints 7 8. Study Enrollment 8 9. Study Agent 11 10. Study Procedures and Schedule 11 11. Safety Considerations 13 12. Statistical Considerations 18 13. References 19 ! 2 LIST OF ABBREVIATIONS ACR Acute Cellular Rejection AE Adverse Event AMR Antibody-Mediated Rejection ATG Anti-Thymocyte Globulin ATS American Thoracic Society BAL Bronchoalveolar Lavage BELA Belatacept BMS Bristol-Myers Squibb BOS Bronchiolitis Obliterans Syndrome CARV Community-Acquired Respiratory Virus/Viral CBC Complete Blood Counts CFR Code of Federal Regulations CIP Cellular Immunophenotyping CKD Chronic Kidney Disease CLAD Chronic Lung Allograft Dysfunction CMP Comprehensive Metabolic Panel CMV Cytomegalovirus CNI Calcineurin Inhibitor DCC Data Coordinating Center DSA Donor-Specific HLA Antibodies DSMB Data Safety and Monitoring Board EBV Epstein-Barr Virus ECLS Extra-Corporeal Life Support ECMO Extra-Corporeal Membrane Oxygenation FOB Fiberoptic Bronchoscopy GCP Good Clinical Practice HIV Human Immunodeficiency Virus HLA Human Leukocyte Antigens HSV Herpes Simplex Virus IgG Immunoglobulin G IP Investigational Product IRB Institutional Review Board IS Immunosuppression ISHLT International
    [Show full text]
  • Early Description of Coronavirus 2019 Disease in Kidney Transplant Recipients in New York
    RAPID COMMUNICATION www.jasn.org Early Description of Coronavirus 2019 Disease in Kidney Transplant Recipients in New York The Columbia University Kidney Transplant Program* Department of Medicine, Division of Nephrology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York ABSTRACT Background The novel SARS-CoV-2 virus has caused a global pandemic of coronavirus kidney recipients (80%), with a me- disease 2019 (COVID-19). Although immunosuppressed individuals are thought to be dian time since transplant of 49 at an increased risk of severe disease, little is known about their clinical presentation, (interquartile range, 38–118; range, disease course, or outcomes. 0–232) months (Table 1). All but one Methods We report 15 kidney transplant recipients from the Columbia University patientweretakingtacrolimusatthe kidney transplant program who required hospitalization for confirmed COVID-19, time of COVID-19 diagnosis, and and describe their management, clinical course, and outcomes. most (80%) were also taking either my- cophenolate mofetil or mycophenolic Results Patients presented most often with a fever (87%) and/or cough (67%). Initial acid. Despite our status as an early ste- chest x-ray most commonly showed bilateral infiltrates, but 33% had no acute ra- roid withdrawal center for most trans- diographic findings. Patients were managed with immunosuppression reduction plants, ten patients (67%) were taking and the addition of hydroxychloroquine and azithromycin. Although 27% of our prednisone at the time of COVID-19 patients needed mechanical ventilation, over half were discharged home by the diagnosis. The underlying cause of end of follow-up. ESKD varied. Conclusions Kidney transplant recipients with COVID-19 have presentations that Patients reported symptom onset are similar to that of the general population.
    [Show full text]
  • Antibody-Mediated Rejection in Kidney Transplantation
    FDA Public Workshop: Antibody-mediated Rejection in Kidney Transplantation The Choice of Induction / Maintenance Immunosuppression and their Impact on Preexisting and De Novo Antibodies Millie Samaniego, MD, FACP, FASN, FAST Alan B. Leichtman Collegiate Chair of Transplant Nephrology Professor of Medicine University of Michigan Disclosures • I have nothing to disclose in relation to this presentation: • Following drugs used “off label” will be discussed: • Thymoglobulin • Campath • IVIg • Belatacept • Rituximab • Eculizumab • C1q Inhibitors TABLE 1 The Treatment of Acute Antibody-Mediated Rejection in Kidney Transplant Recipients-A Systematic Review. Roberts, Darren; Jiang, Simon; Chadban, Steven Transplantation. 94(8):775-783, October 27, 2012. DOI: 10.1097/TP.0b013e31825d1587 TABLE 1 Therapeutic agents used against DSAs in the treatment of antibody- mediated rejection and the evidence supporting their role © 2012 Lippincott Williams & Wilkins, Inc. Published by Lippincott Williams & Wilkins, Inc. 2 FIGURE 2 The Treatment of Acute Antibody-Mediated Rejection in Kidney Transplant Recipients-A Systematic Review. Roberts, Darren; Jiang, Simon; Chadban, Steven Transplantation. 94(8):775-783, October 27, 2012. DOI: 10.1097/TP.0b013e31825d1587 FIGURE 2 . Trends in the use of treatments for AMR over time on the basis of all publications identified in the systematic review. Using a gray scale, black represents the most commonly used (in the case of PP, approximately 700 patients were treated between 2007 and 2011), whereas no color (white) means that it was not used. This includes patients from any observational, treatment, or epidemiology-based study identified in the systematic review. The use of tacrolimus and mycophenolate in patients with AMR is likely to be underrepresented in this figure because in recent years, these treatments are commonly used as baseline immunosuppression for high-risk KTRs, whereas the data included here only included new treatments administered to patients in response to a diagnosis of AMR/vascular rejection.
    [Show full text]
  • Lessons Learned: Early Termination of A
    Lessons Learned: Early Termination of a Randomized Trial of Calcineurin Inhibitor and Corticosteroid Avoidance Using Belatacept Kenneth Newell, Emory University Aneesh Mehta, Emory University Christian Larsen, Emory University Peter G. Stock, University of California San Francisco Alton B Farris III, Emory University Shikha G. Mehta, University of Alabama Birmingham David Ikle, Rho Inc. Brian Armstrong, Rho Inc. Yvonne Morrison, National Institute of Allergy and Infectious Diseases Nancy Bridges, National Institute of Allergy and Infectious Diseases Only first 10 authors above; see publication for full author list. Journal Title: American Journal of Transplantation Volume: Volume 17, Number 10 Publisher: Wiley: 12 months | 2017-10-01, Pages 2712-2719 Type of Work: Article | Post-print: After Peer Review Publisher DOI: 10.1111/ajt.14377 Permanent URL: https://pid.emory.edu/ark:/25593/tdqdg Final published version: http://dx.doi.org/10.1111/ajt.14377 Copyright information: © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons Accessed September 30, 2021 12:24 PM EDT HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Am J Transplant Manuscript Author . Author Manuscript Author manuscript; available in PMC 2018 October 01. Published in final edited form as: Am J Transplant. 2017 October ; 17(10): 2712–2719. doi:10.1111/ajt.14377. Lessons learned: Early termination of a randomized trial of calcineurin inhibitor and corticosteroid avoidance using Belatacept Kenneth A. Newell1,
    [Show full text]
  • Everything You Always Wanted to Know About Rabies Virus ♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣ (But Were Afraid to Ask) Benjamin M
    ANNUAL REVIEWS Further Click here to view this article's online features: t%PXOMPBEmHVSFTBT115TMJEFT t/BWJHBUFMJOLFESFGFSFODFT t%PXOMPBEDJUBUJPOT Everything You Always Wanted t&YQMPSFSFMBUFEBSUJDMFT t4FBSDILFZXPSET to Know About Rabies Virus (But Were Afraid to Ask) Benjamin M. Davis,1 Glenn F. Rall,2 and Matthias J. Schnell1,2,3 1Department of Microbiology and Immunology and 3Jefferson Vaccine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107; email: [email protected] 2Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 Annu. Rev. Virol. 2015. 2:451–71 Keywords First published online as a Review in Advance on rabies virus, lyssaviruses, neurotropic virus, neuroinvasive virus, viral June 24, 2015 transport The Annual Review of Virology is online at virology.annualreviews.org Abstract This article’s doi: The cultural impact of rabies, the fatal neurological disease caused by in- 10.1146/annurev-virology-100114-055157 fection with rabies virus, registers throughout recorded history. Although Copyright c 2015 by Annual Reviews. ⃝ rabies has been the subject of large-scale public health interventions, chiefly All rights reserved through vaccination efforts, the disease continues to take the lives of about 40,000–70,000 people per year, roughly 40% of whom are children. Most of Access provided by Thomas Jefferson University on 11/13/15. For personal use only. Annual Review of Virology 2015.2:451-471. Downloaded from www.annualreviews.org these deaths occur in resource-poor countries, where lack of infrastructure prevents timely reporting and postexposure prophylaxis and the ubiquity of domestic and wild animal hosts makes eradication unlikely. Moreover, al- though the disease is rarer than other human infections such as influenza, the prognosis following a bite from a rabid animal is poor: There is cur- rently no effective treatment that will save the life of a symptomatic rabies patient.
    [Show full text]
  • Table S1. Medications Searched in Institutional Database Query Immune Checkpoint Inhibitors Additional Immune Modulators Atezol
    BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Immunother Cancer Table S1. Medications Searched in Institutional Database Query Immune Checkpoint Inhibitors Additional Immune Modulators Atezolizumab Abatacept Avelumab Adalimumab Cemiplimab Anakinra Durvalumab Belatacept Ipilimumab Certolizumab Lirilumab Cyclophosphamide Mogamulizumab Etanercept Nivolumab Golimumab Pembrolizumab Immune globulin IV Tremelimumab Infliximab Urelumab Mycophenolate mofetil Varlilumab Rituximab Tocilizumab Vedolizumab Beattie J, et al. J Immunother Cancer 2021; 9:e001884. doi: 10.1136/jitc-2020-001884 BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Immunother Cancer Table S2. Toxicity of additional immune modulators Treatment detail Toxicity Patient 1 day 18,32 Infliximab dosed day 59 P.aeruginosa, S.marcescens pneumonia; died Patient 2 day 9 Infliximab dosed day 44 Febrile neutropenia; P. aeruginosa SBP and day 26 Mycophenolate initiated sepsis; C. albicans fungemia; treated and discharged Patient 8 day 4,11 Infliximab dosed day 14 Disseminated HSV-1; died Patient 26 day 79-128 Infliximab dosed (x7) day 130 E. faecalis, P. aeruginosa bacteremia; died; day 81, 97 Cyclophosphamide dosed Fungal pneumonia on autopsy Beattie J, et al. J Immunother Cancer 2021; 9:e001884. doi: 10.1136/jitc-2020-001884 BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Immunother Cancer Table S3.
    [Show full text]
  • September 2017 ~ Resource #330909
    −This Clinical Resource gives subscribers additional insight related to the Recommendations published in− September 2017 ~ Resource #330909 Medications Stored in the Refrigerator (Information below comes from current U.S. and Canadian product labeling and is current as of date of publication) Proper medication storage is important to ensure medication shelf life until the manufacturer expiration date and to reduce waste. Many meds are recommended to be stored at controlled-room temperature. However, several meds require storage in the refrigerator or freezer to ensure stability. See our toolbox, Medication Storage: Maintaining the Cold Chain, for helpful storage tips and other resources. Though most meds requiring storage at temperatures colder than room temperature should be stored in the refrigerator, expect to see a few meds require storage in the freezer. Some examples of medications requiring frozen storage conditions include: anthrax immune globulin (Anthrasil [U.S. only]), carmustine wafer (Gliadel [U.S. only]), cholera (live) vaccine (Vaxchora), dinoprostone vaginal insert (Cervidil), dinoprostone vaginal suppository (Prostin E2 [U.S.]), varicella vaccine (Varivax [U.S.]; Varivax III [Canada] can be stored in the refrigerator or freezer), zoster vaccine (Zostavax [U.S.]; Zostavax II [Canada] can be stored in the refrigerator or freezer). Use the list below to help identify medications requiring refrigerator storage and become familiar with acceptable temperature excursions from recommended storage conditions. Abbreviations: RT = room temperature Abaloparatide (Tymlos [U.S.]) Aflibercept (Eylea) Amphotericin B (Abelcet, Fungizone) • Once open, may store at RT (68°F to 77°F • May store at RT (77°F [25°C]) for up to Anakinra (Kineret) [20°C to 25°C]) for up to 30 days.
    [Show full text]
  • Progressive Multifocal Leukoencephalopathy and the Spectrum of JC Virus-​Related Disease
    REVIEWS Progressive multifocal leukoencephalopathy and the spectrum of JC virus- related disease Irene Cortese 1 ✉ , Daniel S. Reich 2 and Avindra Nath3 Abstract | Progressive multifocal leukoencephalopathy (PML) is a devastating CNS infection caused by JC virus (JCV), a polyomavirus that commonly establishes persistent, asymptomatic infection in the general population. Emerging evidence that PML can be ameliorated with novel immunotherapeutic approaches calls for reassessment of PML pathophysiology and clinical course. PML results from JCV reactivation in the setting of impaired cellular immunity, and no antiviral therapies are available, so survival depends on reversal of the underlying immunosuppression. Antiretroviral therapies greatly reduce the risk of HIV-related PML, but many modern treatments for cancers, organ transplantation and chronic inflammatory disease cause immunosuppression that can be difficult to reverse. These treatments — most notably natalizumab for multiple sclerosis — have led to a surge of iatrogenic PML. The spectrum of presentations of JCV- related disease has evolved over time and may challenge current diagnostic criteria. Immunotherapeutic interventions, such as use of checkpoint inhibitors and adoptive T cell transfer, have shown promise but caution is needed in the management of immune reconstitution inflammatory syndrome, an exuberant immune response that can contribute to morbidity and death. Many people who survive PML are left with neurological sequelae and some with persistent, low-level viral replication in the CNS. As the number of people who survive PML increases, this lack of viral clearance could create challenges in the subsequent management of some underlying diseases. Progressive multifocal leukoencephalopathy (PML) is for multiple sclerosis. Taken together, HIV, lymphopro- a rare, debilitating and often fatal disease of the CNS liferative disease and multiple sclerosis account for the caused by JC virus (JCV).
    [Show full text]
  • Dimethyl Fumarate and Progressive Multifocal Leucoencephalopathy (PML)
    Dimethyl fumarate and progressive multifocal leucoencephalopathy (PML) Introduction Dimethyl fumarate Psorinovo® is not registered through the Medicines Evaluation Board (MEB). It is a compounded drug made by GMP compounding pharmacy Mierlo Hout in the Netherlands, and used for the indication psoriasis [1]. Psorinovo® has been compounded by pharmacy Mierlo Hout for 28 years. According to Dutch law Mierlo Hout pharmacy is regarded as a supplying-pharmacy. ® Dimethyl fumarate, registered as Tecfidera , was granted marketing authorization in the Netherlands on 30 January 2014 and is indicated for the treatment of adult patients with relapsing remitting multiple sclerosis [2]. Progressive multifocal leukoencephalopathy (PML) is a severe demyelinating disease of the central nervous system caused by reactivation of the polyomavirus JC (JC virus). Asymptomatic primary infection with the JC virus occurs in childhood, antibodies can be found in 86% of adults. PML occurs almost exclusively in immunosuppressed individuals. There were only isolated cases reported of PML in patients without apparent immunosuppression. However, there are reports of PML affecting patients who have conditions associated with minimal or occult immunosuppression, such as hepatic cirrhosis and renal failure [3]. PML has also been reported in patients treated with drugs such as belatacept, brentuximab, efalizumab, fludarabine, glucocorticoids, infliximab, mycophenolate, rituximab, ruxolitinib and natalizumab. In some cases, these drugs were used in combination with other immunosuppressive medications (eg, cyclophosphamide, leflunomide, methotrexate). Many of the patients had an underlying hematologic malignancy or collagen vascular disease [3]. There is no specific treatment for PML. The main approach is restoring the host adaptive immune response, a strategy that appears to prolong survival.
    [Show full text]
  • Congenital Cytomegalovirus Infection Alters Olfaction Before Hearing Deterioration in Mice
    10424 • The Journal of Neuroscience, December 5, 2018 • 38(49):10424–10437 Development/Plasticity/Repair Congenital Cytomegalovirus Infection Alters Olfaction Before Hearing Deterioration In Mice X Franc¸oise Lazarini,1,2 Lida Katsimpardi,1,2* Sarah Levivien,1,2,3*Se´bastien Wagner,1,2 XPierre Gressens,3,4,5 Natacha Teissier,3,4,6† and Pierre-Marie Lledo1,2† 1Institut Pasteur, Perception and Memory Unit, F-75015 Paris, France, 2Centre National de la Recherche Scientifique, Unite´ Mixte de Recherche 3571, F-75015 Paris, France, 3PROTECT, INSERM, Unite´ 1141, F-75019 Paris, France, 4Paris Diderot University, Sorbonne Paris Cite´, F-75018 Paris, France, 5Center for Developing Brain, King’s College, London, WC2R2LS United Kingdom, and 6Pediatric Otorhinolaryngology Department, Robert Debre´ Hospital, Assistance Publique–Hoˆpitaux de Paris, F-75019 Paris, France In developed countries, cytomegalovirus (CMV)-infected newborns are at high risk of developing sensorineural handicaps such as hearing loss, requiring extensive follow-up. However, early prognostic tools for auditory damage in children are not yet available. In the fetus, CMV infection leads to early olfactory bulb (OB) damage, suggesting that olfaction might represent a valuable prognosis for neurological outcome of this viral infection. Here, we demonstrate that in utero CMV inoculation causes fetal infection and growth retardation in mice of both sexes. It disrupts OB normal development, leading to disproportionate OB cell layers and rapid major olfactory deficits. Olfaction is impaired as early as day 6 after birth in both sexes, long before the emergence of auditory deficits. Olfactometry in males reveals a long-lasting alteration in olfactory perception and discrimination, particularly in binary mixtures of monomolecular odorants.
    [Show full text]