Fund of Hedge Funds Portfolio Optimization Using the Omega Ratio

Total Page:16

File Type:pdf, Size:1020Kb

Fund of Hedge Funds Portfolio Optimization Using the Omega Ratio risk management / compliance LE Fund of Hedge Funds Portfolio IC T R Optimization Using the Omega Ratio A D E ® BY STEVE TOGHER, CAIA , clearly demonstrate how Omega quantitative measure should be an UR AND TambE BARsbaY captures these higher moments. It is end-all solution. an equation that adds to mean and Our objective here is to present a EAT variance, captures all of the higher method of “optimizing” a portfolio F t is interesting to ponder moment information in the return of hedge funds using the Omega how new and radical distribution, incorporates sensitivity ratio. For the purposes of our discus- theories and equations to return levels, and is intuitive and sion we will focus on a portfolio of Iin financial analysis become widely relatively easy to calculate. alternative investment managers accepted. It most likely is a function The body of literature about con- with nonnormal returns but, of of simplicity, elegance of design, structing and optimizing portfolios course, the underlying investments and ease of application. But it is of hedge funds continues to grow can be anything. We put optimizing even more interesting to observe and the alternatives are varied. In in quotes because our analysis is not how, once widely accepted, such most cases a comparison is made the sole input in determining the concepts can be misapplied. Perhaps to MVO, which suffers from similar optimized portfolio. two of the most common examples drawbacks as Sharpe when applied are the application of the Sharpe to hedge fund returns. DeSouza and Understanding the Omega Ratio ratio and mean variance optimiza- Gokcan (2004) defined an approach We believe that using the Omega tion (MVO) to hedge fund portfolio that is modeled on asset allocation ratio for this purpose is a rather intu- analysis. To be sure, both of these methodologies familiar in tradi- itive decision based on the abilities equations are elegant and beautiful tional investment management but and strengths of the measure. Those in design and both have changed takes into account the idiosyncrasies in agreement with the evidence that the way the world analyzes invest- of hedge fund investing as an asset more traditional measures such as ment options, but an overwhelming class. Amenc and Martellini (2002) the Sharpe ratio and other MVO- body of evidence suggests that they took the approach of evaluating type measures are inappropriate are not applicable to the asymmetri- out-of-sample performance of an for alternative investments should cal nature of hedge fund returns. improved estimator of the covari- appreciate Omega’s lack of assump- They don’t apply because they don’t ance structure of hedge fund index tions about distributions. accurately account for the impacts returns, focusing on its use for opti- In fact, it is from this lack of of the third and fourth moments mal portfolio selection. assumptions that Omega derives its of hedge fund return distributions, power. Because the measure takes which are used to calculate skew- Objective into account the exact distribution ness and kurtosis, respectively. The purpose of this paper is to build of the returns in question, it inher- That said, it is nearly impossible upon Omega’s intuitive nature and ently includes all of the information to review performance information discuss and review how Omega can encoded in the moments: mean, on a hedge fund without seeing the be used to optimize a fund of hedge variance, skewness, and kurtosis. fund’s Sharpe ratio on prominent funds portfolio. It is worth noting Admittedly, Omega is backward- display (assuming it is a compelling now, and we will expand on this looking and thus fallible, but it does number). Likewise the most popular later, that optimization through not have the added weakness of hedge fund databases and analyti- Omega is purely a quantitative assuming normality. In addition, cal programs all offer some type of pursuit and, as investment practi- as Cascon and Shadwick (2006) put MVO algorithm. tioners, we believe that while it is forth, if we compare investments Fortunately another elegant mea- an important part of multimanager that come from different affine fami- sure, the Omega ratio, is attaining hedge fund portfolio construction, lies of distributions, we then cannot widespread recognition and accep- it is not a final solution. And we use standard deviation as a “com- tance. Keating and Shadwick (2002) can find solace in this because no mon unit of risk,” which also leads 1 The Monitor The Voice of the Investment Management Consultants Association www.imca.org to a weakening of the arguments put Omega as an Optimizer able return, which can be anything forth by the Sharpe ratio and MVO, As posited by Favre-Bulle and Pache from zero to the risk-free rate to at least in the case of alternative (2003), a portfolio can be optimized virtually anything else. Optimizing investment manager analysis. using the Omega ratio at a speci- at a given threshold is rather simple The Omega ratio is defined by fied threshold which, depending and not unlike performing a tradi- Keating and Shadwick (2002) to be: on the investor, can be selected in tional MVO. Instead of minimizing a number of ways. In this case, the variance while maximizing return, threshold can be a minimum accept- one minimizes probability-weighted TABLE 1 Ordinary Risk Statistics ANNUaliZED StaNDARD DEViatioN ANNUaliZED RatE of RETURN Fund A .80% 14.60% where [a,b] is the interval of returns Fund B 0.97% 49.65% with a cumulative distribution Fund C 6.66% 33.4% function F(x), and r is the threshold Fund D 6.56% 13.88% return where the ratio is being evalu- Fund E 1.51% 16.11% ated. Clearly, a higher Omega ratio Fund F 6.45% 9.55% is better than a lower one, because it Fund G 1.69% 7.4% indicates either a greater probability- Fund H 3.94% 16.57% weighted gain or a smaller probabil- Fund I 0.38% 10.50% ity-weighted loss, or both, based on Fund J .80% 18.48% historical returns. Fund K 8.74% 19.57% FIGURE 1 Comparison of Omega Plots July / August 007 Risk Management / Compliance The Monitor 13 >> “PORTFOLIO OPTIMIZATION” CONTINUED interval but become less desirable loss and maximizes the probability- at other portions. Here, however, is weighted gain as calculated using As one can imagine, the where a somewhat more subjective the Omega ratio. decision would be made based on Our goal is to apply this proce- mechanics of the calculations are any number of factors that could dure in a similar fashion using the include such things as investor risk Omega ratio but across an entire quite straightforward while aversion and investor goals. range of threshold returns, thereby resulting in what we believe is the challenge lies in actually Steve Togher, CAIA®, is managing a rather robust optimization of director of alternative investments at sorts. We say “of sorts” because in defining and parsing out Fortigent LLC in New York, NY, where performing this procedure across he oversees the use of hedge funds and an entire range of thresholds it the best portfolios... other nontraditional investment solu- becomes somewhat challenging to tions. He earned a B.A. in computer define what a best portfolio would information systems and an M.B.A. in be, and thus we need to address finance, both from Baruch College. Con- other quantitative issues related to tact him at [email protected]. market factors impacting particular the upside and downside, as well as Tambe Barsbay is a quantitative strategies and more qualitative issues the value of the Omega ratio itself analyst of alternative investments with related to specific investor needs and in comparison to others across the Fortigent LLC and heads the Omega goals to ultimately come up with a entire range of thresholds. optimization programming team. He “best” portfolio. earned a B.S. cum laude with honors And so we can backtrack a bit Analysis in mathematical science from the now to examine in more detail the We will argue that the number New Jersey Institute of Technology quantitative aspect of choosing of funds being optimized is not and is pursuing an M.S. in mathemat- the best portfolio. Favre-Bulle and material to the study, provided the ics and statistics at Georgetown Univer- Pache (2003) did this at individual returns streams reflect nonnormal- sity. Contact him at tambe.barsbay@ thresholds by plotting efficient ity. Thus, we optimized a portfolio fortigent.com. frontiers of probability-weighted of 11 underlying single manager losses versus probability-weighted hedge funds with the ordinary risk References gains. We extend this by calculating statistics shown in table 1. Amenc, N., and L. Martellini. 2002. entire Omega ratio curves for large The optimization was run with Portfolio Optimization and Hedge numbers of portfolios. As one can very loose restrictions with regard Fund Style Allocation Decisions. The imagine, the mechanics of the cal- to minimums and maximums per Journal of Alternative Investments 5, no. culations are quite straightforward investment, a liberty that would not 2 (fall): 7–20. while the challenge lies in actually normally be taken in a real-world Cascon, A., and W. Shadwick. 2006. The defining and parsing out the best application, but it nonetheless is one CS Character and Limitations of the portfolios, a process that can be that allows us to produce meaning- Sharpe Ratio. The Journal of Investment loosened or tightened to produce ful results for illustrative purposes. Consulting 8, no. 1 (summer): 36–52. more or fewer results, respectively. Figure 1 shows an Omega plot DeSouza, C., and S. Gokcan.
Recommended publications
  • The Value-Added of Investable Hedge Fund Indices
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Heidorn, Thomas; Kaiser, Dieter G.; Voinea, Andre Working Paper The value-added of investable hedge fund indices Frankfurt School - Working Paper Series, No. 141 Provided in Cooperation with: Frankfurt School of Finance and Management Suggested Citation: Heidorn, Thomas; Kaiser, Dieter G.; Voinea, Andre (2010) : The value- added of investable hedge fund indices, Frankfurt School - Working Paper Series, No. 141, Frankfurt School of Finance & Management, Frankfurt a. M. This Version is available at: http://hdl.handle.net/10419/36695 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Frankfurt School – Working Paper Series No. 141 The Value-Added of Investable Hedge Fund Indices by Thomas Heidorn, Dieter G.
    [Show full text]
  • Università Degli Studi Di Padova Padua Research Archive
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio istituzionale della ricerca - Università di Padova Università degli Studi di Padova Padua Research Archive - Institutional Repository On the (Ab)use of Omega? Original Citation: Availability: This version is available at: 11577/3255567 since: 2020-01-04T17:03:43Z Publisher: Elsevier B.V. Published version: DOI: 10.1016/j.jempfin.2017.11.007 Terms of use: Open Access This article is made available under terms and conditions applicable to Open Access Guidelines, as described at http://www.unipd.it/download/file/fid/55401 (Italian only) (Article begins on next page) \On the (Ab)Use of Omega?" Massimiliano Caporina,∗, Michele Costolab, Gregory Janninc, Bertrand Mailletd aUniversity of Padova, Department of Statistical Sciences bSAFE, Goethe University Frankfurt cJMC Asset Management LLC dEMLyon Business School and Variances Abstract Several recent finance articles use the Omega measure (Keating and Shadwick, 2002), defined as a ratio of potential gains out of possible losses, for gauging the performance of funds or active strategies, in substitution of the traditional Sharpe ratio, with the arguments that return distributions are not Gaussian and volatility is not always the rel- evant risk metric. Other authors also use Omega for optimizing (non-linear) portfolios with important downside risk. However, we question in this article the relevance of such approaches. First, we show through a basic illustration that the Omega ratio is incon- sistent with the Second-order Stochastic Dominance criterion. Furthermore, we observe that the trade-off between return and risk corresponding to the Omega measure, may be essentially influenced by the mean return.
    [Show full text]
  • On the Ω‐Ratio
    On the Ω‐Ratio Robert J. Frey Applied Mathematics and Statistics Stony Brook University 29 January 2009 15 April 2009 (Rev. 05) Applied Mathematics & Statistics [email protected] On the Ω‐Ratio Robert J. Frey Applied Mathematics and Statistics Stony Brook University 29 January 2009 15 April 2009 (Rev. 05) ABSTRACT Despite the fact that the Ω­ratio captures the complete shape of the underlying return distribution, selecting a portfolio by maximizing the value of the Ω­ratio at a given return threshold does not necessarily produce a portfolio that can be considered optimal over a reasonable range of investor preferences. Specifically, this selection criterion tends to select a feasible portfolio that maximizes available leverage (whether explicitly applied by the investor or realized internally by the capital structure of the investment itself) and, therefore, does not trade off risk and reward in a manner that most investors would find acceptable. 2 Table of Contents 1. The Ω­Ratio.................................................................................................................................... 4 1.1 Background ............................................................................................................................................5 1.2 The Ω Leverage Bias............................................................................................................................7 1.3. A Simple Example of the ΩLB ..........................................................................................................8
    [Show full text]
  • Monte Carlo As a Hedge Fund Risk Forecasting Tool
    F eat UR E Monte Carlo as a Hedge Fund Risk Forecasting Tool By Kenneth S. Phillips edge funds have gained The notion of uncorrelated, absolute popularity over the past “retur ns encompassing a broad range of asset Hseveral years, especially among institutional investors. Assets allocated classes and distinct strategies has enjoyed to alternative investment strategies, distinct from private equity or venture great acceptance among conservative inves- capital, have grown by several hundred tors seeking more predictable and consistent percent since the dot-com bubble burst in 2000 and now top US$2.5 trillion. retur ns with less volatility. The notion of uncorrelated, absolute returns encompassing a broad range ” of asset classes and distinct strategies has enjoyed great acceptance among conservative investors seeking more level of qualitative due diligence, may management objectives resulted in the predictable and consistent returns with or may not have provided warnings evaporation of nearly US$6.5 billion of less volatility. As a result, the industry and/or given investors adequate time to investor equity, virtually overnight. has begun to mature and investors now redeem their capital. Although the ar- Global Equity Market Neutral range from risk-averse fiduciaries to ag- ticle implicitly considers different forms (GEMN). Since 2003, GEMN had gressive high-net-worth individuals. of investment risk such as leverage managed a globally diversified, equity As the number of hedge funds and and derivatives, it focuses primarily on market neutral hedge fund. Employ- complex strategies has grown, so too quantitative return-based data that was ing various amounts of leverage while have the frequency and severity of publicly available rather than strategy- attracting several billion dollars of negative events—what statisticians refer or security-specific risk.
    [Show full text]
  • Hedge Fund Performance Evaluation
    International Business & Economics Research Journal – May/June 2014 Volume 13, Number 3 Hedge Fund Performance Evaluation Using The Sharpe And Omega Ratios Francois van Dyk, UNISA, South Africa Gary van Vuuren, North-West University, Potchefstroom Campus, South Africa André Heymans, North-West University, Potchefstroom Campus, South Africa ABSTRACT The Sharpe ratio is widely used as a performance evaluation measure for traditional (i.e., long only) investment funds as well as less-conventional funds such as hedge funds. Based on mean- variance theory, the Sharpe ratio only considers the first two moments of return distributions, so hedge funds – characterised by asymmetric, highly-skewed returns with non-negligible higher moments – may be misdiagnosed in terms of performance. The Sharpe ratio is also susceptible to manipulation and estimation error. These drawbacks have demonstrated the need for augmented measures, or, in some cases, replacement fund performance metrics. Over the period January 2000 to December 2011 the monthly returns of 184 international long/short (equity) hedge funds with geographical investment mandates spanning North America, Europe, and Asia were examined. This study compares results obtained using the Sharpe ratio (in which returns are assumed to be serially uncorrelated) with those obtained using a technique which does account for serial return correlation. Standard techniques for annualising Sharpe ratios, based on monthly estimators, do not account for this effect. In addition, this study assesses whether the Omega ratio supplements the Sharpe Ratio in the evaluation of hedge fund risk and thus in the investment decision-making process. The Omega and Sharpe ratios were estimated on a rolling basis to ascertain whether the Omega ratio does indeed provide useful additional information to investors to that provided by the Sharpe ratio alone.
    [Show full text]
  • Sectoral Portfolio Optimization by Judicious Selection of Financial
    Sectoral portfolio optimization by judicious selection of financial ratios via PCA Vrinda Dhingra1, Amita Sharma2, Shiv K. Gupta1* Abstract Embedding value investment in portfolio optimization models has always been a challenge. In this paper, we attempt to incorporate it by first employing principal com- ponent analysis sector wise to filter out dominant financial ratios from each sector and thereafter, use the portfolio optimization model incorporating second order stochastic dominance criteria to derive the final optimal investment. We consider a total of 11 well known financial ratios corresponding to each sector representing four categories of ratios, namely Liquidity, Solvency, Profitability, and Valuation. PCA is then ap- plied sector wise over a period of 10 years from April 2004 to March 2014 to extract dominant ratios from each sector in two ways, one from the component solution and other from each category on the basis of their communalities. The two step Sectoral Portfolio Optimization (SPO) model integrating the SSD criteria in constraints is then utilized to build an optimal portfolio. The strategy formed using the former extracted ratios is termed as PCA-SPO(A) and the latter one as PCA-SPO(B). The results obtained from the proposed strategies are compared with the SPO model and one step nominal SSD model, with and without financial ratios for computational study. Empirical performance of proposed strategies is assessed over the period of 6 years from April 2014 to March 2020 using a rolling window scheme with varying out- of-sample time line of 3, 6, 9, 12 and 24 months for S&P BSE 500 market.
    [Show full text]
  • Analysis of Stock Performance Based on Fundamental Indicators
    FACULTY OF F I N A N C E & ACCOUNTING C o p e n h a g e n Business School Master’s thesis Analysis of stock performance based on fundamental indicators Authors: Anders Heegaard & Peter Brøndum Riis Sørensen CPR nr.: Anders Heegaard CPR nr.: Peter Brøndum Riis Sørensen Academic advisor: Hans Kjær Submitted : 23/09/13 Pages: 122 Characters (with spaces): 312,862 Copenhagen Business School 2013 Anders Heegaard Peter Brøndum Riis Sørensen Executive summary The objective of this thesis is to examine the validity of enterprise value/earnings before interest and tax (EV/EBIT) and return on invested capital (RoIC) as a screening tool to select stocks. The various ways of im- proving the selection process is an integral part of investing, and therefore this subject is deemed highly current and relevant. The thesis is divided into four parts. The first part is an analysis of the approach chosen to select stocks. The second part is the theoretical foundation behind the measures and the risk incurred. Subsequently, a test of the approach and an analysis of the results are presented. Finally, the findings are evaluated and dis- cussed, resulting in the fourth part, which determines the framework for the screening tool. In the first part the thesis, the approach was examined as well as the underlying investment philosophy. It was found that the strategy rests on the belief that if investors can invest in quality companies at “cheap” prices, su- perior results should be achieved. To determine the quality of a company, Return on Tangible Capital (ROC) was used, and to determine the price, EV/EBIT was used in the original approach developed by American inves- tor Joel Greenblatt.
    [Show full text]
  • Chapter 4 Sharpe Ratio, CAPM, Jensen's Alpha, Treynor Measure
    Excerpt from Prof. C. Droussiotis Text Book: An Analytical Approach to Investments, Finance and Credit Chapter 4 Sharpe Ratio, CAPM, Jensen’s Alpha, Treynor Measure & M Squared This chapter will continue to emphasize the risk and return relationship. In the previous chapters, the risk and return characteristics of a given portfolio were measured at first versus other asset classes and then second, measured to market benchmarks. This chapter will re-emphasize these comparisons by introducing other ways to compare via performance measurements ratios such the Share Ratio, Jensen’s Alpha, M Squared, Treynor Measure and other ratios that are used extensively on wall street. Learning Objectives After reading this chapter, students will be able to: Calculate various methods for evaluating investment performance Determine which performance ratios measure is appropriate in a variety of investment situations Apply various analytical tools to set up portfolio strategy and measure expectation. Understand to differentiate the between the dependent and independent variables in a linear regression to set return expectation Determine how to allocate various assets classes within the portfolio to achieve portfolio optimization. [Insert boxed text here AUTHOR’S NOTES: In the spring of 2006, just 2 years before the worse financial crisis the U.S. has ever faced since the 1930’s, I visited few European countries to promote a new investment opportunity for these managers who only invested in stocks, bonds and real estate. The new investment opportunity, already established in the U.S., was to invest equity in various U.S. Collateral Loan Obligations (CLO). The most difficult task for me is to convince these managers to accept an average 10-12% return when their portfolio consists of stocks, bonds and real estate holdings enjoyed returns in excess of 30% per year for the last 3-4 years.
    [Show full text]
  • Stochastic Dominance and Omega Ratio: Measures to Examine Market Efficiency, Arbitrage Opportunity, and Anomaly
    economies Article Stochastic Dominance and Omega Ratio: Measures to Examine Market Efficiency, Arbitrage Opportunity, and Anomaly Xu Guo 1, Xuejun Jiang 2 and Wing-Keung Wong 3,4,5,6,* 1 School of Statistics, Beijing Normal University, Beijing 100875, China; [email protected] 2 Department of Mathematics, South University of Science and Technology of China, Shenzhen 518055, China; [email protected] 3 Department of Finance and Big Data Research Center, Asia University, Taichung 41354, Taiwan 4 Department of Economics and Finance, Hang Seng Management College, Hong Kong, China 5 Department of Economics, Lingnan University, Hong Kong, China 6 Department of Finance, College of Management, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan * Correspondence: [email protected] Academic Editor: Ralf Fendel Received: 23 August 2017; Accepted: 2 October 2017; Published: 19 October 2017 Abstract: Both stochastic dominance and Omegaratio can be used to examine whether the market is efficient, whether there is any arbitrage opportunity in the market and whether there is any anomaly in the market. In this paper, we first study the relationship between stochastic dominance and the Omega ratio. We find that second-order stochastic dominance (SD) and/or second-order risk-seeking SD (RSD) alone for any two prospects is not sufficient to imply Omega ratio dominance insofar that the Omega ratio of one asset is always greater than that of the other one. We extend the theory of risk measures by proving that the preference of second-order SD implies the preference of the corresponding Omega ratios only when the return threshold is less than the mean of the higher return asset.
    [Show full text]
  • Omega and Sharpe Ratio
    Omega and Sharpe ratio Eric Benhamou∗1,2, Beatrice Guez1, and Nicolas Paris1 1A.I Square Connect 2Lamsade PSL November 26, 2019 Abstract return level. In an enlightening research, Keating and Shadwick (2002b) and Keating and Shadwick (2002a) Omega ratio, defined as the probability-weighted ra- introduce the Omega ! ratio, and claimed that this tio of gains over losses at a given level of expected universal performance measure, designed to redress return, has been advocated as a better performance the information impoverishment of traditional mean- indicator compared to Sharpe and Sortino ratio as it variance analysis would address these concern. They depends on the full return distribution and hence en- emphasize that the Omega metric has the great ad- capsulates all information about risk and return. We vantage over traditional measures to encapsulate all compute Omega ratio for the normal distribution and information about risk and return as it depends on show that under some distribution symmetry assump- the full return distribution, as well as to avoid looking tions, the Omega ratio is oversold as it does not pro- at a specific level as this measure is provided for all vide any additional information compared to Sharpe level, hence entitling each investor to look at his/her ratio. Indeed, for returns that have elliptic distribu- risk appetite level. Strictly speaking, the omega ra- tions, we prove that the optimal portfolio according to tio is defined as the probability-weighted ratio of gains Omega ratio is the same as the optimal portfolio ac- over losses at a given level of expected return.
    [Show full text]
  • Performance Attribution from Bacon
    Performance Attribution from Bacon Matthieu Lestel February 5, 2020 Abstract This vignette gives a brief overview of the functions developed in Bacon(2008) to evaluate the performance and risk of portfolios that are included in PerformanceAn- alytics and how to use them. There are some tables at the end which give a quick overview of similar functions. The page number next to each function is the location of the function in Bacon(2008) Contents 1 Risk Measure 3 1.1 Mean absolute deviation (p.62) . 3 1.2 Frequency(p.64) ................................ 3 1.3 SharpeRatio(p.64)............................... 4 1.4 Risk-adjusted return: MSquared (p.67) . 4 1.5 MSquared Excess (p.68) . 4 2 Regression analysis 5 2.1 Regression equation (p.71) . 5 2.2 Regression alpha (p.71) . 5 2.3 Regression beta (p.71) . 5 2.4 Regression epsilon (p.71) . 6 2.5 Jensen'salpha(p.72) .............................. 6 2.6 SystematicRisk(p.75) ............................. 6 2.7 SpecificRisk(p.75)............................... 7 2.8 TotalRisk(p.75) ................................ 7 2.9 Treynorratio(p.75)............................... 7 2.10 Modified Treynor ratio (p.77) . 7 2.11 Appraisal ratio (or Treynor-Black ratio) (p.77) . 8 2.12 Modified Jensen (p.77) . 8 1 2.13 Fama decomposition (p.77) . 8 2.14 Selectivity (p.78) . 9 2.15 Net selectivity (p.78) . 9 3 Relative Risk 9 3.1 Trackingerror(p.78) .............................. 9 3.2 Information ratio (p.80) . 10 4 Return Distribution 10 4.1 Skewness (p.83) . 10 4.2 Sample skewness (p.84) . 10 4.3 Kurtosis(p.84) ................................
    [Show full text]
  • CAIA Level II Workbook September 2019
    ® ® CAIA Level II Workbook September 2019 Chartered Alternative Investment Analyst Association® CAIA Level II Workbook, September 2019 Contents: Preface Section one: Review Questions & Answers Section Two: Glossary of Keywords 1 CAIA Level II Workbook, September 2019 Preface Congratulations on your successful completion of Level I and welcome to Level II of the Chartered Alternative Investment Analyst (CAIA) program. The CAIA program, organized by the CAIA Association and co-founded by the Alternative Investment Management Association (AIMA) and the Center for International Securities and Derivatives Markets (CISDM), is the only globally recognized professional designation in the area of alternative investments, the fastest growing segment of the investment industry. The following is a set of materials designed to help you prepare for the CAIA Level II exam. Workbook The exercises are provided to help candidates enhance their understanding of the reading materials. The questions that will appear on the actual Level II exam will not be of the same format as these exercises. In addition, the exercises presented here have various levels of difficulty, and, therefore, candidates should not use them to assess their level of preparedness for the actual examination. September 2019 Level II Study Guide It is critical that each candidate should carefully review the study guide. It contains information about topics to be studied as well as a list of equations that the candidate MAY see on the exam. The study guide can be found on the CAIA website, on the Curriculum page. Errata Sheet Correction notes appear in the study guide to address known errors existing in the assigned readings that are viewed as being substantive.
    [Show full text]