Chemical Analysis of the Fornax Dwarf Galaxy Letarte, Bruno

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Analysis of the Fornax Dwarf Galaxy Letarte, Bruno University of Groningen Chemical analysis of the Fornax dwarf galaxy Letarte, Bruno IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2007 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Letarte, B. (2007). Chemical analysis of the Fornax dwarf galaxy. [s.n.]. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 07-10-2021 Rijksuniversiteit Groningen Chemical Analysis of the Fornax Dwarf Galaxy Proefschrift ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. F. Zwarts, in het openbaar te verdedigen op vrijdag 30 maart 2007 om 14.45 uur door Bruno Letarte geboren op 12 juni 1976 te Québec, Canada Promotor: Prof. dr. E. Tolstoy Copromotor: Dr. V. Hill Beoordelingscommissie: Prof. dr. M. Spite Prof. dr. P. C. van der Kruit Prof. dr. J. W. Pel ISBN 90-367-2927-0 ISBN 90-367-2928-9 (electronic version) In the beginning the Universe was created. This has made a lot of peo- ple very angry and has been widely regarded as a bad move. –Douglas Adams Cover page – Fornax Dwarves, by Jesse Giroux Contact information: Bruno Letarte [email protected] [email protected] This thesis has been funded by: With support from: LKBF Leids Kerkhoven-Bosscha Fonds Contents 1 Introduction 9 1.1 The Cosmological Importance of Dwarf Galaxies . 9 1.2 The Formation of the Elements . 11 1.3 Abundances in Galaxies . 12 1.3.1 The Milky Way . 13 1.3.2 The Magellanic Clouds & Dwarf Galaxies . 14 1.4 The DART project . 15 1.4.1 Photometry . 15 1.4.2 Spectroscopy . 15 1.4.3 This Thesis . 17 2 Fornax and the Local Group 19 2.1 Dwarf galaxies in the Local Group . 19 2.2 Fornax dSph . 21 2.3 Globular Clusters in Fornax . 24 3 Using stellar atmospheric models ... chemical abundances 27 3.1 Describing the stellar atmosphere . 27 3.1.1 The flux . 28 3.1.2 The absorption coefficient . 30 3.1.3 Stellar atmospheric models . 35 3.2 Determining Stellar Atmospheric parameters . 35 3.2.1 Effective Temperature (Teff )...................... 35 3.2.2 Surface Gravity (log g)......................... 36 3.2.3 Metallicity . 39 3.2.4 Microturbulence velocity . 39 3.3 The abundance determination . 39 3.3.1 Measuring the equivalent widths . 40 3.3.2 The Stellar Models used . 40 3.3.3 Computing the abundances . 42 3.4 The line list . 43 3.4.1 Building a line list . 43 vi CONTENTS 3.4.2 The line by line selection . 45 4 Abundances with the FLAMES multi-fibre instrument 47 4.1 UVES vs FLAMES . 48 4.1.1 UVES . 49 4.1.2 FLAMES . 49 4.2 The FLAMES Spectra . 50 4.2.1 Extracting, calibrating . 50 4.2.2 Combining . 50 4.2.3 Determining the radial velocities (Vrad) . 52 4.2.4 Measuring the Equivalent Widths . 52 4.2.5 Cleaning up the spectra . 56 4.3 Selecting our stellar parameters . 57 4.3.1 Photometric gravity . 57 4.3.2 Photometric Teff ............................ 57 4.3.3 Iterating on the parameters . 62 4.3.4 Precision and error estimates . 65 4.4 Systematics and corrections . 68 4.4.1 Systematics . 68 4.4.2 Hyperfine splitting correction . 71 Appendix 4.A Large tables . 72 5 HR spectroscopy in Fornax Globular Clusters 77 5.1 Introduction . 78 5.2 Observations . 79 5.3 Data Reduction and Analysis . 81 5.4 Interpretation . 85 5.4.1 The Iron abundance . 85 5.4.2 The Alpha elements . 86 5.4.3 Deep mixing pattern . 89 5.4.4 Iron-peak elements . 90 5.4.5 Heavy elements . 92 5.5 Conclusions . 95 Appendix 5.A Large tables . 97 6 HR spectroscopic study of Fornax Field Stars 105 6.1 Sample selection . 106 6.2 Results . 107 6.2.1 Iron abundance . 107 6.2.2 Alpha Elements . 108 6.2.3 Iron peak elements . 113 6.2.4 Deep-mixing pattern . 114 6.2.5 The Na-Ni relationship . 115 6.2.6 Heavy elements . 116 6.3 Discussion . 120 6.3.1 Comparison of Fornax and Sculptor . 121 6.3.2 Age and [Fe/H] . 122 6.4 Conclusions . 123 CONTENTS vii Appendix 6.A Large tables . 124 7 Conclusions 141 7.1 New Data Reduction and Analysis Techniques . 141 7.2 The Fornax Globular Clusters . 142 7.3 Fornax Field stars . 142 Bibliography 145 Nederlandse samenvatting 151 Résumé français 155 Acknowledgements 159 Chapter 1 Introduction warf galaxies are in principle the most simple and straightforward type of galaxy D and their study can be used to test numerous theories of the formation and evolution of stars and galaxies in a range of environments. This thesis concentrates on the detailed study of the chemical elements in individual stars in the nearby dwarf spheroidal galaxy, Fornax. A dwarf spheroidal galaxies are small roughly spherical galaxies that are typically found in the vicinity of larger galaxies, such as the Milky Way. They typically do not have any ongoing star formation, nor to they appear to have any gas associated to them. The abundance ratios of different elements in individual stars with a range of ages provide a detailed insight into the various chemical enrichment processes (e.g., supernovae, stellar winds) which in turn improves our understanding of the global processes of formation and evolution of a galaxy as a whole. 1.1 The Cosmological Importance of Dwarf Galaxies The most straightforward model of galaxy formation is that all galaxies form in the early Universe in a rapid collapse scenario (so called monolithic collapse, Eggen, Lynden-Bell, & Sandage 1962). These galaxies then evolve solely by changing their gas mass into a stellar mass with time. This model assumes that the majority of the mass of all galaxies was in place at their formation. However this basic picture was updated (e.g., Searle & Zinn 1978) to a model which assumes that galaxies are not formed in a single collapse, but that they are built up in time from smaller fragments. This theory came in parallel with the very successful “cold dark matter” (CDM) vision of structure formation in the Universe which assumes that the dark matter content of a galaxy is built up through the continuous accretion of small clumps, to build up the galaxies and clusters of galaxies we see today (e.g., White & Rees 1978; Navarro, Frenk, & White 1995). If we take the CDM model of structure formation and assume that the ratio of bary- onic to dark matter is roughly constant and known then this naturally results in the concept of numerous “building blocks”, or small galaxies, which are continuously being accreted onto larger galaxies over the history of the Universe. These small galaxies, with 10 chapter 1: Introduction a similar mass to the dwarf galaxies we see today, might act as stellar nurseries, creating the stars we see in the Milky Way (MW) today. Stars within the Galactic halo are some of the oldest objects ever observed and they should be representative of the earliest star formation in the Local Group (LG). These stars either formed in the proto-Milky Way or they may have formed in smaller satellite galaxies that were accreted to the Milky Way at a later time. CDM based models thus suggest that a considerable fraction of the stars in the Milky Way today should have formed in smaller building blocks. For example, the Sagittarius dwarf galaxy behaves exactly like a CDM building block, showing signs of being tidally disrupted and merging in its entirety into the Milky Way (Ibata et al. 1994). As required by the CDM view of the Universe small galaxies do appear to be dark matter dominated (e.g., Mateo 1998). Observations of dwarf spheroidal galaxies in the Local Group, such as Fornax dSph, suggest that dwarf galaxies must be considerably 9 10 more massive than the visible mass would suggest (e.g., ∼ 10 − 10 M , as compared 7 8 to visible masses of ∼ 10 − 10 M ), (Mateo et al. 1991; Walker et al. 2006; Battaglia et al. 2006). However there are inconsistencies in the predicted properties of the DM profiles of the observed dwarfs and the predictions of CDM (e.g., Wilkinson et al. 2006). It also appears that the properties of the stellar populations, the dark to baryonic matter ratio, and the kinematic properties of dwarf galaxies we see today are inconsistent with the requirements of building blocks of the Milky Way, i.e., adding together all the small galaxies we see today, or at any time in the past, will not result in a galaxy like the Milky Way (e.g., Shetrone et al.
Recommended publications
  • Lecture 7: the Local Group and Nearby Clusters
    Lecture 7: the Local Group and nearby clusters • in this lecture we move up in scale, to explore typical clusters of galaxies – the Local Group is an example of a not very rich cluster • interesting topics include: – clusters and the structure of the Universe – the fate of galaxies: stable, destroyed or cannibals? Galaxies – AS 3011 1 the Local Group Galaxies – AS 3011 2 1 Inner Solar System Galaxies – AS 3011 3 Galaxies – AS 3011 4 2 some Local Group galaxies, roughly to the same physical scale: M31, Leo I LMC, M32 SMC MW M33 (images courtesy AAO) Galaxies – AS 3011 5 first impressions • there are some obvious properties of the Local Group: – it’s mostly empty, i.e. galaxies are quite distant from each other – with some exceptions like satellite galaxies – the three spirals are easily the biggest – dwarf galaxies are on the outskirts of the group • how typical is this of other galaxy groups? – turns out that the Local group is not very rich in galaxies Galaxies – AS 3011 6 3 groups and clusters • groups contain a smaller number of galaxies than clusters, and are more compact in both space and velocity spread: group: cluster: no. galaxies ~10+ >50 core radius ~300 kpc ~300 kpc median radius ~1 Mpc ~ 3Mpc v-dispersion 150 km/s 800 km/s M/L ~200 ~200 13 15 total mass few 10 Msolar few 10 Msolar Galaxies – AS 3011 7 classifying the Local Group • the Local Group has only about 10 significant galaxies 8 (L > 10 Lsolar), so does not qualify as a cluster – NB, dwarf spheroidals etc.
    [Show full text]
  • Introduction to Astronomy from Darkness to Blazing Glory
    Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
    [Show full text]
  • Does the Fornax Dwarf Spheroidal Have a Central Cusp Or Core?
    Research Collection Journal Article Does the Fornax dwarf spheroidal have a central cusp or core? Author(s): Goerdt, Tobias; Moore, Ben; Read, J.I.; Stadel, Joachim; Zemp, Marcel Publication Date: 2006-05 Permanent Link: https://doi.org/10.3929/ethz-b-000024289 Originally published in: Monthly Notices of the Royal Astronomical Society 368(3), http://doi.org/10.1111/ j.1365-2966.2006.10182.x Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Mon. Not. R. Astron. Soc. 368, 1073–1077 (2006) doi:10.1111/j.1365-2966.2006.10182.x Does the Fornax dwarf spheroidal have a central cusp or core? , Tobias Goerdt,1 Ben Moore,1 J. I. Read,1 Joachim Stadel1 and Marcel Zemp1 2 1Institute for Theoretical Physics, University of Zurich,¨ Winterthurerstrasse 190, CH-8057 Zurich,¨ Switzerland 2Institute of Astronomy, ETH Zurich,¨ ETH Honggerberg¨ HPF D6, CH-8093 Zurich,¨ Switzerland Accepted 2006 February 8. Received 2006 February 7; in original form 2005 December 21 ABSTRACT The dark matter dominated Fornax dwarf spheroidal has five globular clusters orbiting at ∼1 kpc from its centre. In a cuspy cold dark matter halo the globulars would sink to the centre from their current positions within a few Gyr, presenting a puzzle as to why they survive undigested at the present epoch. We show that a solution to this timing problem is to adopt a cored dark matter halo. We use numerical simulations and analytic calculations to show that, under these conditions, the sinking time becomes many Hubble times; the globulars effectively stall at the dark matter core radius.
    [Show full text]
  • 1410.0681V1.Pdf
    ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 05/12/14 THE QUENCHING OF THE ULTRA-FAINT DWARF GALAXIES IN THE REIONIZATION ERA1 THOMAS M. BROWN2, JASON TUMLINSON2, MARLA GEHA3, JOSHUA D. SIMON4,LUIS C. VARGAS3,DON A. VANDENBERG5,EVAN N. KIRBY6, JASON S. KALIRAI2,7,ROBERTO J. AVILA2, MARIO GENNARO2,HENRY C. FERGUSON2 RICARDO R. MUÑOZ8,PURAGRA GUHATHAKURTA9, AND ALVIO RENZINI10 Accepted for publication in The Astrophysical Journal ABSTRACT We present new constraints on the star formation histories of six ultra-faint dwarf galaxies: Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I. Our analysis employs a combination of high-precision photometry obtained with the Advanced Camera for Surveys on the Hubble Space Telescope, medium-resolutionspectroscopy obtained with the DEep Imaging Multi-Object Spectrograph on the W.M. Keck Observatory, and updated Victoria-Regina isochrones tailored to the abundance patterns appropriate for these galaxies. The data for five of these Milky Way satellites are best fit by a star formation history where at least 75% of the stars formed by z ∼ 10 (13.3 Gyr ago). All of the galaxies are consistent with 80% of the stars forming by z ∼ 6 (12.8 Gyr ago) and 100% of the stars forming by z ∼ 3 (11.6 Gyr ago). The similarly ancient populations of these galaxies support the hypothesis that star formation in the smallest dark matter sub-halos was suppressed by a global outside influence, such as the reionization of the universe. Keywords: Local Group — galaxies: dwarf — galaxies: photometry — galaxies: evolution — galaxies: for- mation — galaxies: stellar content 1.
    [Show full text]
  • THE MAGELLANIC CLOUDS NEWSLETTER an Electronic Publication Dedicated to the Magellanic Clouds, and Astrophysical Phenomena Therein
    THE MAGELLANIC CLOUDS NEWSLETTER An electronic publication dedicated to the Magellanic Clouds, and astrophysical phenomena therein No. 115 — 2 February 2012 http://www.astro.keele.ac.uk/MCnews Editor: Jacco van Loon Figure 1: The Small Magellanic Cloud and Galactic globular cluster 47 Tucanae, two of the most beautiful objects in the Southern sky (from Kalirai et al. 2012; South is up and East is to the right). Image courtesy of and c Stephane Guisard, http://www.astrosurf.com/sguisard 1 Editorial Dear Colleagues, It is my pleasure to present you the 115th issue of the Magellanic Clouds Newsletter. There is a lot of attention to star clusters, pulsating stars, binary stars, and the dynamics of the Magellanic System; don’t miss some of the very interesting proceedings papers. It is not yet too late to register for the workshop on mass return from stars to galaxies, at STScI in March, but abstracts need to be in by 3 February (!): http://www.stsci.edu/institute/conference/mass-loss-return The next meeting which should be of interest to readers of this newsletter, is the Magellanic Clouds meeting in Perth, Australia in September – see the announcement at the end of the newsletter for more details. Thanks to those of you who supplied illustrations for this issue. They remain welcome. Also, don’t hesitate to use the ”announcement” type of submission to post results, ideas, requests for observations, et cetera. This is a forum, for discussion and collaboration. The next issue is planned to be distributed on the 1st of April 2012.
    [Show full text]
  • Snake in the Clouds: a New Nearby Dwarf Galaxy in the Magellanic Bridge ∗ Sergey E
    MNRAS 000, 1{21 (2018) Preprint 19 April 2018 Compiled using MNRAS LATEX style file v3.0 Snake in the Clouds: A new nearby dwarf galaxy in the Magellanic bridge ∗ Sergey E. Koposov,1;2 Matthew G. Walker,1 Vasily Belokurov,2;3 Andrew R. Casey,4;5 Alex Geringer-Sameth,y6 Dougal Mackey,7 Gary Da Costa,7 Denis Erkal8, Prashin Jethwa9, Mario Mateo,10, Edward W. Olszewski11 and John I. Bailey III12 1McWilliams Center for Cosmology, Carnegie Mellon University, 5000 Forbes Ave, 15213, USA 2Institute of Astronomy, University of Cambridge, Madingley road, CB3 0HA, UK 3Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA 4School of Physics and Astronomy, Monash University, Clayton 3800, Victoria, Australia 5Faculty of Information Technology, Monash University, Clayton 3800, Victoria, Australia 6Astrophysics Group, Physics Department, Imperial College London, Prince Consort Rd, London SW7 2AZ, UK 7Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia 8Department of Physics, University of Surrey, Guildford, GU2 7XH, UK 9European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany 10Department of Astronomy, University of Michigan, 311 West Hall, 1085 S University Avenue, Ann Arbor, MI 48109, USA 11Steward Observatory, The University of Arizona, 933 N. Cherry Avenue., Tucson, AZ 85721, USA 12Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We report the discovery of a nearby dwarf galaxy in the constellation of Hydrus, between the Large and the Small Magellanic Clouds. Hydrus 1 is a mildy elliptical ultra-faint system with luminosity MV 4:7 and size 50 pc, located 28 kpc from the Sun and 24 kpc from the LMC.
    [Show full text]
  • Dark Matter Searches Targeting Dwarf Spheroidal Galaxies with the Fermi Large Area Telescope
    Doctoral Thesis in Physics Dark Matter searches targeting Dwarf Spheroidal Galaxies with the Fermi Large Area Telescope Maja Garde Lindholm Oskar Klein Centre for Cosmoparticle Physics and Cosmology, Particle Astrophysics and String Theory Department of Physics Stockholm University SE-106 91 Stockholm Stockholm, Sweden 2015 Cover image: Top left: Optical image of the Carina dwarf galaxy. Credit: ESO/G. Bono & CTIO. Top center: Optical image of the Fornax dwarf galaxy. Credit: ESO/Digitized Sky Survey 2. Top right: Optical image of the Sculptor dwarf galaxy. Credit:ESO/Digitized Sky Survey 2. Bottom images are corresponding count maps from the Fermi Large Area Tele- scope. Figures 1.1a, 1.2, 1.3, and 4.2 used with permission. ISBN 978-91-7649-224-6 (pp. i{xxii, 1{120) pp. i{xxii, 1{120 c Maja Garde Lindholm, 2015 Printed by Publit, Stockholm, Sweden, 2015. Typeset in pdfLATEX Abstract In this thesis I present our recent work on gamma-ray searches for dark matter with the Fermi Large Area Telescope (Fermi-LAT). We have tar- geted dwarf spheroidal galaxies since they are very dark matter dominated systems, and we have developed a novel joint likelihood method to com- bine the observations of a set of targets. In the first iteration of the joint likelihood analysis, 10 dwarf spheroidal galaxies are targeted and 2 years of Fermi-LAT data is analyzed. The re- sulting upper limits on the dark matter annihilation cross-section range 26 3 1 from about 10− cm s− for dark matter masses of 5 GeV to about 5 10 23 cm3 s 1 for dark matter masses of 1 TeV, depending on the × − − annihilation channel.
    [Show full text]
  • Ml Driven Prediction of Collision of Milky Way & Andromeda
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-3, September 2019 Ml Driven Prediction of Collision of Milky Way & Andromeda Ansh Mittal, Anusurya, Deepika Kumar, Garima Kumar Abstract: The 3D position of Sun with respect to the galactic center of Milky Way can be used to understand its evolution. After Milky Way collides with Andromeda(M31), the same will hold true. Ensuing sections deal with the implementation of Regressive Analysis to predict the location of Sun in the galactic center after Galactic collision. This model utilizes results of previous studies of black hole mergers to predict the resultant mass of Sagittarius A* and M31’s black hole, which had been found to be (1.49±0.16) × Figure 1: Different types of Collisions between two 8 10 M☉. This mass has been used to calculate the centrifugal force galaxies as has been mentioned in [5] that Sun might experience during and after the galactic collision. The current position, inclination, and velocity of Sun (derived Galaxies may be of various types [7] like the dark galaxy, from aforementioned predictions) have been used to predict its Type CD galaxy, Type D galaxy, and Ultra Diffuse galaxy. distance and inclination after the collision which has been Out of these galaxies, UDG or the ultra-diffuse galaxy had o predicted as 63,362.83 ly and 32.75 , from the new galactic center been a galaxy which has very low luminosity. Although Milky and its plane (97.48% and 96.32% accurate) respectively. way and UDG galaxy share the same mass and size, only 1% Index Terms: Sun, Milky Way, Andromeda(M31), Regression of the visible star count has been observed there for UDG Analysis, Galactic collision, Sagittarius A*.
    [Show full text]
  • The European Space Agency
    Teachers Notes Booklet 6: Galaxies and the Expanding Universe Page 1 of 18 The European Space Agency The European Space Agency (ESA) was formed on 31 May 1975. It currently has 17 Member States: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland & United Kingdom. The ESA Science Programme currently contains the following active missions: Venus Express – an exploration of our Cluster – a four spacecraft mission to sister planet. investigate interactions between the Rosetta – first mission to fly alongside Sun and the Earth's magnetosphere and land on a comet XMM-Newton – an X-ray telescope Double Star – joint mission with the helping to solve cosmic mysteries Chinese to study the effect of the Sun Cassini-Huygens – a joint ESA/NASA on the Earth’s environment mission to investigate Saturn and its SMART-1 – Europe’s first mission to moon Titan, with ESA's Huygens probe the Moon, which will test solar-electric SOHO - new views of the Sun's propulsion in flight, a key technology for atmosphere and interior future deep-space missions Hubble Space Telescope – world's Mars Express - Europe's first mission most important and successful orbital to Mars consisting of an orbital platform observatory searching for water and life on the Ulysses – the first spacecraft to planet investigate the polar regions around the INTEGRAL – first space observatory to Sun simultaneously observe celestial objects in gamma rays, X-rays and visible light Details on all these missions and others can be found at - http://sci.esa.int. Prepared by Anne Brumfitt Content Advisor Chris Lawton Science Editor, Content Advisor, Web Integration & Booklet Design Karen O'Flaherty Science Editor & Content Advisor Jo Turner Content Writer © 2005 European Space Agency Teachers Notes Booklet 6: Galaxies and the Expanding Universe Page 2 of 18 Booklet 6 – Galaxies and the Expanding Universe Contents 6.1 Structure of the Milky Way .............................................
    [Show full text]
  • Disk Heating, Galactoseismology, and the Formation of Stellar Halos
    galaxies Article Disk Heating, Galactoseismology, and the Formation of Stellar Halos Kathryn V. Johnston 1,*,†, Adrian M. Price-Whelan 2,†, Maria Bergemann 3, Chervin Laporte 1, Ting S. Li 4, Allyson A. Sheffield 5, Steven R. Majewski 6, Rachael S. Beaton 7, Branimir Sesar 3 and Sanjib Sharma 8 1 Department of Astronomy, Columbia University, 550 W 120th st., New York, NY 10027, USA; cfl[email protected] 2 Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544, USA; [email protected] 3 Max Planck Institute for Astronomy, Heidelberg 69117, Germany; [email protected] (M.B.); [email protected] (B.S.) 4 Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA; [email protected] 5 Department of Natural Sciences, LaGuardia Community College, City University of New York, 31-10 Thomson Ave., Long Island City, NY 11101, USA; asheffi[email protected] 6 Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904, USA; [email protected] 7 The Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101, USA; [email protected] 8 Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia; [email protected] * Correspondence: [email protected]; Tel.: +1-212-854-3884 † These authors contributed equally to this work. Academic Editors: Duncan A. Forbes and Ericson D. Lopez Received: 1 July 2017; Accepted: 14 August 2017; Published: 26 August 2017 Abstract: Deep photometric surveys of the Milky Way have revealed diffuse structures encircling our Galaxy far beyond the “classical” limits of the stellar disk.
    [Show full text]
  • Evidence of Enrichment by Individual SN from Elemental Abundance Ratios in the Very Metal-Poor Dsph Galaxy Boötes I
    A&A 508, L1–L4 (2009) Astronomy DOI: 10.1051/0004-6361/200912833 & c ESO 2009 Astrophysics Letter to the Editor Evidence of enrichment by individual SN from elemental abundance ratios in the very metal-poor dSph galaxy Boötes I S. Feltzing1,K.Eriksson2, J. Kleyna3, and M. I. Wilkinson4 1 Lund Observatory, Box 43, 221 00 Lund, Sweden e-mail: [email protected] 2 Department of Astronomy and Space Physics, Uppsala University, Box 515, 751 20 Uppsala, Sweden e-mail: [email protected] 3 Institute for Astronomy, Honululu, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 4 Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK e-mail: [email protected] Received 6 July 2009 / Accepted 18 September 2009 ABSTRACT Aims. We establish the mean metallicity from high-resolution spectroscopy for the recently found dwarf spheroidal galaxy Boötes I and test whether it is a common feature for ultra-faint dwarf spheroidal galaxies to show signs of inhomogeneous chemical evolution (e.g. as found in the Hercules dwarf spheroidal galaxy). Methods. We analyse high-resolution, moderate signal-to-noise spectra for seven red giant stars in the Boötes I dSph galaxy using standard abundance analysis techniques. In particular, we assume local thermodynamic equilibrium and employ spherical model atmospheres and codes that take the sphericity of the star into account when calculating the elemental abundances. Results. We confirm previous determinations of the mean metallicity of the Boötes I dwarf spheroidal galaxy to be −2.3 dex. Whilst five stars are clustered around this metallicity, one is significantly more metal-poor, at −2.9 dex, and one is more metal-rich at, −1.9 dex.
    [Show full text]
  • Neutral Hydrogen in Local Group Dwarf Galaxies
    Neutral Hydrogen in Local Group Dwarf Galaxies Jana Grcevich Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2013 c 2013 Jana Grcevich All rights reserved ABSTRACT Neutral Hydrogen in Local Group Dwarfs Jana Grcevich The gas content of the faintest and lowest mass dwarf galaxies provide means to study the evolution of these unique objects. The evolutionary histories of low mass dwarf galaxies are interesting in their own right, but may also provide insight into fundamental cosmological problems. These include the nature of dark matter, the disagreement be- tween the number of observed Local Group dwarf galaxies and that predicted by ΛCDM, and the discrepancy between the observed census of baryonic matter in the Milky Way’s environment and theoretical predictions. This thesis explores these questions by studying the neutral hydrogen (HI) component of dwarf galaxies. First, limits on the HI mass of the ultra-faint dwarfs are presented, and the HI content of all Local Group dwarf galaxies is examined from an environmental standpoint. We find that those Local Group dwarfs within 270 kpc of a massive host galaxy are deficient in HI as compared to those at larger galactocentric distances. Ram- 4 3 pressure arguments are invoked, which suggest halo densities greater than 2-3 10− cm− × out to distances of at least 70 kpc, values which are consistent with theoretical models and suggest the halo may harbor a large fraction of the host galaxy’s baryons. We also find that accounting for the incompleteness of the dwarf galaxy count, known dwarf galaxies whose gas has been removed could have provided at most 2.1 108 M of HI gas to the Milky Way.
    [Show full text]